
J. Math. Anal. Appl. 362 (2010) 542–552
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

On the set of limit points of the partial sums of series rearranged
by a given divergent permutation

Roman Wituła

Institute of Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 January 2009
Available online 19 September 2009
Submitted by U. Stadtmueller

Keywords:
Limit points
Divergent permutations

We give a new characterization of divergent permutations. We prove that for any divergent
permutation p, any closed interval I of R

∗ (the 2-point compactification of R) and any real
number s ∈ I , there exists a series

∑
an of real terms convergent to s such that I = σap(n)

(where σap(n) denotes the set of limit points of the partial sums of the series
∑

ap(n)). We
determine permutations p of N for which there exists a conditionally convergent series∑

an such that
∑

ap(n) = +∞. If the permutation p of N possesses the last property
then we prove that for any α ∈ R and β ∈ R

∗ there exists a series
∑

an convergent to α
and such that σap(n) = [β,+∞]. We show that for any countable family P of divergent
permutations there exist conditionally convergent series

∑
an and

∑
bn such that any

series of the form
∑

ap(n) with p ∈ P is convergent to the sum of
∑

an , while σbp(n) = R
∗

for every p ∈ P .
© 2009 Elsevier Inc. All rights reserved.

0. Introduction

The paper is in a sense historic. It was written in 1993 and accepted in 1995 for publication in the Journal of Mathe-
matical Analysis and Applications but finally not published there – which was my private decision. The reason for this was
my discovery, between 1994–1995 of the findings of [4], where, as it turned out, two essential results of my work were
presented (Theorem 3 of [4] ≡ Theorem 3.1 of the present paper and Theorem 5 of [4] which is “almost” my Theorem 5.2).

Moreover, Nash-Williams and White, in paper [9] from 1999 resolved the fundamental problem of the description of the
set of limit points of the partial sums of the rearranged series convergence

∑∞
n=1 ap(n) if, a real series

∑∞
n=1 an = 0 and

a permutation p of N are given (see also the final remarks in this paper). The same authors generalized these results to
the series with elements from R

n (see [10,11]). Surely, the theorems concerning the series in R
n , n � 2 are much more

profound than those drawn in the case of real series. It should also be emphasized that the investigations in this field have
a longer history:

– A.S. Kronrod paper [7] (written under the auspices of D.I. Menszov) was one of the first papers in this field – the paper
that is hardly known; but is directly connected with the results derived in the paper;

– Jasek’s papers (see [5,6] and the references in these papers);
– The research conducted under the supervision of Prof. Z. Zahorski (a well-known specialist on the theory of real func-

tion – the so-called “Zahorski classes” Mk are commonly recognized) – see papers [17,19–24].

In view of the above, why have I decided to resuscitate and publish the “old” paper supplemented by some changes and
additions? The answer is to be found in the presented techniques of proving, and, more precisely, in using:

E-mail address: roman.witula@polsl.pl.
0022-247X/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2009.09.028

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:roman.witula@polsl.pl
http://dx.doi.org/10.1016/j.jmaa.2009.09.028


R. Wituła / J. Math. Anal. Appl. 362 (2010) 542–552 543
– A combinatoric characterization of divergent permutations (see also Theorem 5 in paper [28], where it was properly
substantiated);

– The introduction of two new notions: families U(p) and V(p) of positive integers assigned to divergent permutation p
(see Section 4), facilitating a very easy and clear manner of constructing the series with the required properties.

Accordingly, it seems that the presented proofs are neater (more compact and short presented) than similar proofs
from [4,9,10].

1. Basic notation and terminology

The sets of reals, positive integers, nonnegative integers, even and odd positive integers will be denoted by R, N, N0, 2N

and 2N − 1, respectively.

Definition 1.1. We say that two nonempty, finite and disjoint subsets X and Y of N are spliced when card X = card Y and
the following condition is satisfied:

either xi < yi < xi+1 < yn for every i = 1,2, . . . ,n − 1,

or yi < xi < yi+1 < xn for every i = 1,2, . . . ,n − 1,

where {xi: i = 1,2, . . . ,n} and {yi: i = 1,2, . . . ,n} are the sets X and Y listed in increasing order. In other words, two
nonempty, finite and disjoint sets X,Y ⊂ N are spliced iff they have the same cardinality and an increasing sequence in
which the elements of X and Y alternate can be created from the set of all elements of X and Y.

Definition 1.2. Let p be a permutation of N and let k ∈ N. We say that a 2k-set X ⊂ N is spliced by p if the sets:{
p(xn): n = 1,2, . . . ,k

}
and

{
p(xn): n = k + 1,k + 2, . . . ,2k

}
are spliced. Here {xn: 1,2, . . . ,2k} denotes the increasing sequence of all elements of X.

Definition 1.3. A subset I of N is said to be an interval if either I = ∅ or it can be expressed in the form I = {m,m + 1,

. . . ,m + n − 1} for some m,n ∈ N. We will use the following symbols: [m,n], [m,n), (m,n] and (m,n) with m,n ∈ N, m < n,
to denote the sets: {m,m + 1, . . . ,n}, {m,m + 1, . . . ,n − 1}, {m + 1,m + 2, . . . ,n} and {m + 1,m + 2, . . . ,n − 1}, respectively.
Also the set {x ∈ R

∗: a � x} will be denoted by [a,+∞].

Definition 1.4. We say that a set A of positive integers is a union of n mutually separated intervals (abbrev.: n MSI) if there
exists a family A ⊂ 2N of nonempty intervals with

⋃
A = A and card A = n satisfying the condition: dist(I, J ) � 2 for any

two different members I and J of A.

For brevity, we write K < L for two nonempty subsets K and L of N when k < l for any k ∈ K and l ∈ L. In the sequel
we will write k < L(L < k) instead of {k} < L (L < {k}, resp.)

In this paper we will often identify a given sequence with its set of values. Moreover, we will consider only series
∑

an

consisting of real terms. We will use the notation σan for the set of points of accumulation (the derived set) of the partial
sums of a series

∑
an . The set σan will be treated as a subset of the extended reals:

R
∗ := {−∞} ∪ R ∪ {+∞} = the 2-point compactification of R.

When σan is a one element set {s} we will write s = ∑
an , the usual notation.

We note that σan is closed (because derived sets are always closed) and that if an → 0 it is also convex, hence a closed
interval of R

∗ . In particular, σan is always a closed interval of R
∗ when {an} is a rearrangement of a convergent series.

2. Divergent permutations

Definition 2.1. A permutation p of N is called a divergent permutation if there exists a conditionally convergent series
∑

an

such that the series
∑

ap(n) is divergent. The family of all divergent permutations is denoted by D.

It is well known (see [1,7,12,13,16,28]) that a permutation p of N is divergent if and only if for every k ∈ N there
exists a nonempty interval I ⊂ N such that the set p(I) is a union of at least k MSI (see also [2,3,8,14,15,18,25,27,29] for
supplementary material).

The following theorem gives a new characterization of divergent permutations.

Theorem 2.1. A permutation p of N is divergent if and only if for every k ∈ N there exists a 2k-set X ⊂ N spliced by p.
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Proof. Let us fix k ∈ N. If p is a divergent permutation then there exists an interval I ⊂ N such that the set p(I) is a union
of at least (2k + 1) MSI. Then the set J defined by

J := [
min p(I),max p(I)

] \ p(I)

is a union of at least 2k MSI and, additionally, p−1( J )∩ I = ∅. Hence, an increasing sequence {xn: n = 1,2, . . . ,2k} of positive
integers can be chosen in such a way that either

{xn: n = 1,2, . . . ,k} ⊂ I and

{xn: n = k + 1,k + 2, . . . ,2k} ⊂ p−1( J ), (1)

or

{xn: n = 1,2, . . . ,k} ⊂ p−1( J ) and

{xn: n = k + 1,k + 2, . . . ,2k} ⊂ I (2)

and furthermore the set X := {xn: n = 1,2, . . . ,2k} is spliced by p.
On the other hand, if {xn: n = 1,2, . . . ,2k} is an increasing sequence spliced by p then each of the sets

p
([x1, xk]

)
and p

([xk+1, x2k]
)

is a union of at least k MSI. �
Corollary 2.2. Let p ∈ D. Then for any r, s ∈ N there exists a 2r-set X ⊂ N spliced by p such that X ∪ p(X) > s.

Proof. Take t ∈ N with t � p([1, s]). By Theorem 2.1 there exists an increasing sequence of positive integers {xn: n = 1,2,

. . . ,2(r + t)} spliced by p. Let Y = {yn: n = 1,2, . . . ,2(r + t)} be the increasing sequence formed from the elements of the
set {p(xn): n = 1,2, . . . ,2(r + t)} and let Y

∗ = {yri : i = 1,2, . . . , t} be the subsequence of Y formed from the elements of
the set {p(xn): n = 1,2, . . . , t}. Without loss of generality suppose that r1 > 1. Then it is sufficient to take

X = p−1(
Y \ (Y∗ ∪ Y

∗∗)
)
,

where Y
∗∗ := {yri−1: i = 1,2, . . . , t}. �

3. Characterization of the sets of limit points

Theorem 3.1. Let p ∈ D. Then for any nonempty, closed interval I ⊂ R
∗ and for any s ∈ (I ∩ R), there exists a sequence {an} ⊂ R with∑

an = s and σap(n) = I .

Proof. Let us fix a divergent permutation p. Then Corollary 2.2 guarantees the existence of a countable family of increasing
sequences of positive integers Xr = {x(r)

n : n = 1,2, . . . ,2r}, r ∈ N, spliced by p such that for each r

p(1) < Xr ∪ p(Xr) < Xr+1 ∪ p(Xr+1). (3)

Let

X
(1)
r := {

p
(
x(r)

n
)
: n = 1,2, . . . , r

}
and

X
(2)
r := {

p
(
x(r)

n
)
: n = r + 1, r + 2, . . . ,2r

}
. (4)

We may assume that either

min X
(1)
r < min X

(2)
r for every r ∈ N (5)

or

min X
(2)
r < min X

(1)
r for every r ∈ N. (6)

If I = R
∗ , s ∈ R, then the terms of the desired series

∑
an we define by

an =
{

(−1)r/r
1
2 for n ∈ X

(1)
r , r ∈ N,

(−1)r+1/r
1
2 for n ∈ X

(2)
r , r ∈ N.

Moreover, we put ap(1) = s and an = 0 for all remaining indices n ∈ N.
When I �= R

∗ the definition of the elements an depends on which of the conditions (5) or (6) holds. First let us assume
that condition (5) is satisfied. There are two cases:
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(i) I = {x ∈ R: a � x � b}, a,b ∈ R, a � b and s ∈ I . We set

an =
{

(b − s)/r for n ∈ X
(1)
r , r ∈ (2N − 1),

(s − b)/r for n ∈ X
(2)
r , r ∈ (2N − 1),

and

an =
{

(a − s)/r for n ∈ X
(1)
r , r ∈ 2N,

(s − a)/r for n ∈ X
(2)
r , r ∈ 2N.

(ii) I = [a,+∞], a, s ∈ R, a � s. We set

an =
{

1/r
1
2 for n ∈ X

(1)
r , r ∈ (2N − 1),

−1/r
1
2 for n ∈ X

(2)
r , r ∈ (2N − 1),

and

an =
{

(a − s)/r for n ∈ X
(1)
r , r ∈ 2N,

(s − a)/r for n ∈ X
(2)
r , r ∈ 2N.

Furthermore, we put ap(1) = s and an = 0 for all indices

n ∈
(

N
∖ ⋃

r∈N

(
X

(1)
r ∪ X

(2)
r

))

such that n �= p(1).
We leave it to the reader to verify that the series

∑
an is convergent to s and that σap(n) = I in each case considered

above.
If condition (6) holds then the definition of the elements an requires only one change: we should replace the sets X

(1)
r

and X
(2)
r in the definition of the elements an by the sets X

(2)
r and X

(1)
r , respectively, for every r ∈ N.

In order to make the definitions of the series
∑

an as clear as possible we present the detailed form of such series in
the case (i) when condition (5) holds. From conditions (3) and (4) we deduce that∑

an = 01 + s︸ ︷︷ ︸
0-block

+02 + (b − s) + 03 + (s − b)︸ ︷︷ ︸
1-block

+04 + (a − s) + 05 + (s − a)︸ ︷︷ ︸
2-block

+ 06 + (b − s)/2 + 07 + (s − b)/2 + 08 + (b − s)/2 + 09 + (s − b)/2︸ ︷︷ ︸
3-block

+ 010 + (a − s)/2 + 011 + (s − a)/2 + 012 + (a − s)/2 + 013 + (s − a)/2︸ ︷︷ ︸
4-block

+· · ·

+ 0k(r) + xr + 0k(r)+1 − xr + 0k(r)+2 + xr + · · ·︸ ︷︷ ︸
r-block

+ 0k(r)+i + (−1)i xr + · · · + 0k(r)+2r−1 − xr︸ ︷︷ ︸
r-block

+· · ·

where 0r is a finite sum of zeros, k(r) := 0.5(r2 + 3) and xr := (b − s)/r when r is odd, and k(r) := 0.5(r2 + 4) and xr :=
(a − s)/r when r is even. However the series

∑
ap(n) has the following form:∑

ap(n) = O1 + s︸ ︷︷ ︸
0-block

+O2 + (b − s) + O3 + (s − b)︸ ︷︷ ︸
1-block

+O4 + (a − s) + O5 + (s − a)︸ ︷︷ ︸
2-block

+ O6 + (b − s)/2 + O7 + (b − s)/2 + O8 + (s − b)/2 + O9 + (s − b)/2︸ ︷︷ ︸
3-block

+ O10 + (a − s)/2 + O11 + (a − s)/2 + O12 + (s − a)/2 + O13 + (s − a)/2︸ ︷︷ ︸
4-block

+· · ·

+ Ok(r) + xr + Ok(r)+1 + xr + · · · + Ok(r)+r−1 + xr︸ ︷︷ ︸
r-block

+ Ok(r)+r − xr + Ok(r)+r+1 − xr + · · · + Ok(r)+2r−1 − xr︸ ︷︷ ︸+· · ·

r-block
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where the symbol Or denotes a finite sum of zeros for every r ∈ N and where k(r) and xr are defined as above. We note
that the rearranged series

∑
ap(n) is built from “blocks”. First, the partial sums of this series whose upper index belongs to

the given r-block (r is assumed to be odd) run through the set {x ∈ R: s � x � b} from s to b with the step equal to either
(b − s)/r or 0 (if r is even then the partial sums of

∑
ap(n) run through the set {x ∈ R: a � x � s} from s to a with the

step equal to either (a − s)/r or 0). Next, they run from b to s with the step equal to either (s − b)/r or 0 (run from a to s
with the step equal to either (s − a)/r or 0, resp.). Hence σap(n) is a dense subset of the set {x ∈ R: a � x � b} which is the
desired result. �
Remark. The series

∑
an can be chosen to be conditionally convergent also in the case I = {s}, s ∈ R. It is sufficient to

define

an =
{

r−2 for n ∈ X
(1)
r , r ∈ N,

−r−2 for n ∈ X
(2)
r , r ∈ N.

4. Divergence to infinity

For each p ∈ D and for each n ∈ N there exist a positive integer t(p,n) and a family {I(p,n)

i : i = 1,2, . . . , t(p,n)} ⊂ 2N of
nonempty intervals such that

t(p,n)⋃
i=1

I(p,n)

i = p
([1,n]) and dist

(
I(p,n)

i , I(p,n)

j

)
� 2 for i �= j.

This enables us to express the following results.

Theorem 4.1. Let p be a permutation of N. Then p ∈ D if and only if lim supn→∞ t(p,n) = ∞.

Proof. By the definition of t(p,n),

p
([1,n]) is a union of k MSI ⇔ t(p,n) = k.

Since p([n,m]) = p([1,m]) \ p([1,n]), for n < m, we see that the set p([n,m]) is a union of at most (t(p,n) + t(p,m)) MSI.
Hence p ∈ D if and only if the sequence {t(p,n): n ∈ N} is unbounded. �
Theorem 4.2. Let p ∈ D. If lim infn→∞ t(p,n) < ∞ then the sum

∑
an is a limit point of the partial sums of the series

∑
ap(n) for

each conditionally convergent series
∑

an.

Proof. Assume α = lim infn→∞ t(p,n) < ∞. Then there exists an infinite subset A of N such that t(p,n) = α for every n ∈ A.
We will denote by k(n) the positive integer which is defined to be max{k ∈ N: [1,k] ⊂ p([1,n])} for sufficiently large n ∈ N.
Let

∑
an be a conditionally convergent series. A trivial verification shows that∣∣∣∣∣

n∑
i=1

ap(i) −
∑

ai

∣∣∣∣∣ � max

{∣∣∣∣∣
v∑

i=u

ai

∣∣∣∣∣: u, v ∈ N, k(n) < u � v

}

for large enough n ∈ A. Since k(n) → ∞ as n → ∞, this clearly implies that the sum
∑

an is a limit point of the series∑
ap(n) . �

Remark. Theorem 4.2 tells us that, if Theorem 3.1 is to be valid for all divergent permutations, the condition s ∈ I ∩ R

cannot be weakened.

With each divergent permutation p we can associate two basic sets:

U(p) := {
u ∈ N: t(p, u) − t(p, u − 1) = 1

}
(7)

and

V(p) := {
v ∈ N: t(p, v) − t(p, v − 1) = −1

}
(8)

where t(p,0) := 0. Obviously, both sets U(p) and V(p) are infinite. The increasing sequences of all elements of the
sets p(U(p)) and p(V(p)) will be denoted by {un(p)} and by {vn(p)}, respectively.

Lemma 4.3. For every divergent permutation p and for every positive integer n the following relations are satisfied:
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(i) un(p) < vn(p) < un+1(p),
(ii) p−1(un(p)) < p−1(vn(p)),

(iii) card(p−1(I(p,n)

i ) ∩ U(p)) − card(p−1(I(p,n)

i ) ∩ V(p)) = 1 for every index i = 1,2, . . . , t(p,n),
(iv) card([1,n] ∩ U(p)) − card([1,n] ∩ V(p)) = t(p,n).

Proof. The relations (i), (ii) and (iv) can be deduced immediately from the definitions of the sets U(p) and V(p). The
equality (iii) can be proved by induction on the cardinality of the interval I(p,n)

i . The relation (iv) also follows from (iii). �
Theorem 4.4. Let {pi} be a sequence of divergent permutations such that limn→∞ t(pi,n) = ∞ for every i ∈ N. Moreover, suppose
that

pi
(
U(pi)

) = p j
(
U(p j)

)
and pi

(
V(pi)

) = p j
(
V(p j)

)
(9)

for any i, j ∈ N. Then for every α ∈ R there exist conditionally convergent series
∑

an and
∑

bn, such that

(i)
∑

an = ∑
bn = α,

(ii)
∑∞

n=1 api(n) = +∞ for every i ∈ N,

and

(iii) the set of limit points of the partial sums of a series
∑∞

n=1 bpi(n) is equal to [α,+∞] for every i ∈ N.

Proof. We will use the symbols (i), (ii) and (iv) to denote the conclusions (i), (ii) and (iv) of Lemma 4.3, respectively.
To simplify the notation, we will write un and vn instead of un(p1) and vn(p1), respectively, for each n ∈ N.
First we will construct the terms of the series

∑
an . For this purpose we choose by induction an increasing sequence

{wn} of members of the set U(p1) with wn > p−1
n (u1), such that, for any n ∈ N,

t(pi, w) > n2 (10)

for i = 1,2, . . . ,n and for any w � wn . Put

a(ui) = n−1 and a(vi) = −n−1

when p−1
1 (ui) ∈ [wn, wn+1) and put a(u1) = α and a(n) = 0 for the remaining n ∈ N.

By (i) the series
∑

a(n) is convergent to α. On the other hand, applying the relations (ii), (iv) and (10) we get

w∑
s=1

a
(

pi(s)
)
� α + (

t(pi, w) − 1
)
/n � α + n

for w ∈ [wn, wn+1), and i = 1,2, . . . ,n. This yields
∑∞

n=1 a(pi(n)) = +∞ for every positive integer i.
For the construction of the series

∑
bn we need to choose increasing sequences {xn} and {yi,n: n ∈ N}, i ∈ N, of positive

integers satisfying, for every i,n ∈ N with i � n, the following conditions:

p−1
1 (u1) < Xi,n < Xi,n+1 and yi,n ∈ Xi,n, (11)

t(pi, yi,n) > n2 (12)

and

pi
([1, yi,n]

)
� ux2n . (13)

Here Xi,n := p−1
i ([ux2n−1 , vx2n ]), for i � n. Then we set

b(u1) = α, b(ui) = n−1 and b(vi) = −n−1

for i ∈ {x2n−1, x2n−1 + 1, . . . , x2n}. Moreover, we set b(n) = 0 for all remaining indices n ∈ N. We conclude from (i) that the
series

∑
b(n) is convergent. Using (ii), (iv), (13) and (12) we obtain

yi,n∑
s=1

b
(

pi(s)
)
� α + (

t(pi, yi,n) − 1
)
/n � α + n (14)

for i � n. Simultaneously, by (11), we have

max Xi,n∑
b
(

pi(s)
) = α (15)
s=1
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for i � n. From (14), (15) and from the convergence to zero of the sequence {b(n)} it follows that the set of limit points
of the partial sums of any series

∑∞
n=1 b(pi(n)), i ∈ N, includes the set {x ∈ R: α � x}. However, by (ii) almost all partial

sums of a series
∑∞

n=1 b(pi(n)), i ∈ N, are � α. Hence, all these series have the same set of limit points of the partial sums,
namely the set [α,+∞]. The proof is finished. �
Remark. The assumptions of Theorem 4.4 are strong, yet they make it possible to derive a very intriguing thesis. In [26]
(see also Ex. 3.3 from [24]) there is an example of two divergent permutations p and q such that:

lim
n→∞ t(p,n) = lim

n→∞ t(q,n) = ∞,

p
(
U (p)

) = q
(
U (q)

)
and p

(
V (p)

) = q
(

V (q)
)
,

for which there exist two conditionally convergent series
∑

an and
∑

bn such that∑
an =

∑
bn =

∑
aq(n) =

∑
bp(n) = 0,

and ∑
ap(n) =

∑
bq(n) = +∞.

These example could be extended to countable infinite family of divergent permutations.

Together with Theorems 4.1 and 4.2 the above theorem (we need only the simple case when all permutations pi are the
same) implies the following result.

Theorem 4.5. Let p ∈ D. We have
∑

ap(n) = +∞ for some conditionally convergent series
∑

an if and only if limn→∞ t(p,n) = ∞.

Summarizing the main results of Sections 3 and 4 we get the following theorem.

Theorem 4.6. Let p ∈ D and let I be a closed interval of R
∗ . Then for every s ∈ (I ∩ R) there exists a conditionally convergent series∑

an such that s = ∑
an ∈ I = σap(n) . For a conditionally convergent series

∑
an the set σan is necessarily a closed interval of R

∗ . If
lim infn→∞ t(p,n) < ∞ and the series

∑
an is convergent then

∑
an ∈ σap(n) . If limn→∞ t(p,n) = ∞ then there exists a convergent

series
∑

an such that σap(n) = {+∞}.

5. Miscellaneous results

Theorem 5.1. For each sequence {pn} of divergent permutations there exist two conditionally convergent series
∑

ak and
∑

bk of real
terms with the properties:

(i) the series
∑∞

k=1 apn(k) is convergent to zero for every n ∈ N and
(ii) the set of limit points of the partial sums of the series

∑∞
k=1 bpn(k) is equal to R

∗ for every n ∈ N.

Proof. Take {pn} to be a sequence of divergent permutations and write p0 for the identity function of N. First we will
construct the series

∑
ak . Put

s1 = 1, t1 = 2 and v1 = max p−1
1

([1,2]).
Suppose the elements s1, t1 and v1 have been defined for every i = 1,2, . . . ,n − 1. Then we choose the positive inte-

gers sn and tn in such a way that:

vn−1 < sn < tn (16)

and

vn−1 <

n⋃
i=1

p−1
i

({sn, tn}
)
. (17)

Next we set

vn = max
n⋃

i=1

p−1
i

([1, tn]
)
. (18)

From (16)–(18) we get

vn−1 < sn < tn � vn (19)
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for n ∈ N, and

pi
(
(vn−1, vn]

) ∩ {sk, tk: k ∈ N} = {sn, tn} (20)

for i � n. Now define

an =
⎧⎨
⎩

k−1 for n = sk, k ∈ N,

−k−1 for n = tk, k ∈ N,

0 for all remaining n ∈ N.

The inequalities (19) imply that the series
∑

an is conditionally convergent. On the other hand, the relation (20) yields the
convergence of the series

∑∞
k=1 apn(k) for every n ∈ N. Moreover, we see that

∞∑
k=1

apn(k) =
∑

ak = 0

for each index n ∈ N.
Now we construct the series

∑
bk . By Theorem 3.1 with each permutation pi , i ∈ N, can be associated a conditionally

convergent series
∑∞

n=1 a(i)
n such that the set of limit points of the partial sums of the series

∑∞
n=1 a(i)

pi(n)
is equal to R

∗ .
Proceeding by induction, we can select positive integers

k(i,n), s(i,n), and t(i,n)

for i,n ∈ N, i � n, satisfying the following conditions:

k(i,n) < s(i,n) � t(i,n) <

{
k(1,n + 1), i = n,

k(i + 1,n), i < n,
(21)

pi
([

s(i,n), t(i,n)
]) ⊂ [

k(i,n),k(i + 1,n)
)

whenever i < n, and

pn
([

s(n,n), t(n,n)
]) ⊂ [

k(n,n),k(1,n + 1)
)
, (22)

(−1)n
t(i,n)∑

r=s(i,n)

a(i)
pi(r)

� n, (23)

∣∣∣∣∣
v∑

r=u

a(i)
r

∣∣∣∣∣ � n−3 for any u, v ∈ N with v � u � k(i,n). (24)

We define the desired series
∑

br by, for each i ∈ N, setting br = a(i)
r for every r which belongs to the set

[
k(i, i),k(1, i + 1)

) ∪
∞⋃

n=i+1

[
k(i,n),k(i + 1,n)

)
.

Furthermore, we set br = 0 for all indices r ∈ [1,k(1,1)). By (21) this definition is consistent. By (24) we have∣∣∣∣∣
k(1,n+1)−1∑

r=k(1,n)

br

∣∣∣∣∣ � n−2

for every n ∈ N. Hence
∑

br is convergent. On the other hand, by (22) we obtain

t(i,n)∑
r=s(i,n)

bpi(r) =
t(i,n)∑

r=s(i,n)

a(i)
pi(r)

(25)

for any i,n ∈ N, i � n, which by (23) implies that both −∞ and +∞ are limit points of the partial sums of each series∑∞
r=1 bpi(r) , i ∈ N. Thus the set of limit points of the partial sums of each of these series is equal to R

∗ . �
Theorem 5.2. Let p ∈ D and let limn→∞ t(p,n) = ∞. Then for every α ∈ R and for every β ∈ R

∗ there exists a conditionally conver-
gent series

∑
an such that∑

an = α and σap(n) = [β,+∞].
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Proof. Let β ∈ R+ . For abbreviation, we will write U and V instead of U(p) and V(p), respectively. The increasing sequences
of all elements of the sets p(U) and p(V) will be denoted by {un} and {vn}, respectively. The function w : p(U) \ {u1} → V

is defined by the relation w(un+1) = p−1(vn) for every positive integer n.
Two auxiliary sequences: {rn: n ∈ N0} of positive integers and {yn: n ∈ N0} of positive reals will be then created as

follows. First choose r0 ∈ U, r0 > p−1(u1) and set y0 = 0,

μn = card
([r0,n] ∩ U

)
and νn = card

([r0,n] ∩ V
)

for every n ∈ N, n � r0. Next assume that for some k ∈ N0 all elements ri and yi , 0 � i � k, have been defined and yi � 1/i
for every 1 � i � k. Moreover, suppose that the sequence {ri: 0 � i � k} is increasing,

ri >
{

w(u): u ∈ p
([r0, ri−1] ∩ U

)}
(26)

and

μn − νn � β(i + 1), (27)

yi(μn − νn) > max{i, β + 1}, (28)

for every i,n ∈ N, i � k and n � ri . Define

f (x,n) = yk(μrk − γn) + x(μn − μrk − νn + γn)

and

γn = card
([1,n] ∩ {

w(u): u ∈ p
([r0, rk] ∩ U

)})
for every n ∈ N and x ∈ R. We note that by (28)

f (yk,n) = yk(μn − νn) > 1 + β (29)

for every n ∈ N, n � rk , f (0,n) � 0 for every n ∈ N and f (0,n) = 0 for all sufficiently large n ∈ N. Moreover, since
(μn − νn) → ∞ as n → ∞, it follows that x is arbitrarily small whenever f (x,n) = β and n is sufficiently large. Choose
s ∈ N, s > rk such that γs = μrk , f (1/(k + 1), s) � β and

μn − νn � μs − νs for every n ∈ N, n � s. (30)

Put

yk+1 = max
{

x ∈ R+: f (x,n) = β for some rk � n � s
}
.

Clearly by (27) we have yk+1 � 1/(k + 1) and, by (29), (30), f (yk+1,n) � β for every n ∈ N, n � rk . We finish a step of
induction by choosing an index rk+1 > s such that

μn − νn > β(k + 1)

and

yk+1(μn − νn) > max{k + 1, β + 1}
for every n ∈ N, n � rk+1.

Set

an(β) =
{

yk+1, n ∈ p((rk, rk+1] ∩ U), k ∈ N0,

−yk+1, n ∈ {p(w(u)): u ∈ p((rk, rk+1] ∩ U)}, k ∈ N0,

and an(β) = 0 for the remaining indices n ∈ N. Since yk → 0 as k → ∞ we get
∑

an(β) = 0. On the other hand, by (26),
(28) and (29), for every positive integer k we have

n∑
i=1

ap(i)(β) = f (yk+1,n) �
{

β for every n ∈ (rk, rk+1],
yk+1(μrk+1 − νrk+1) � k + 1 for n = rk+1,

and, by the definition of yk+1, there exists an index n ∈ (rk, rk+1] such that f (yk+1,n) = β . Hence σap(n)(β) = [β,+∞].
Now let α,γ ∈ R, α < γ . Consider the series

ak =
{

α for k = u1,

ak(γ − α) for k ∈ N, k �= u1.

Then
∑

an = α and σap(n) = [γ ,+∞]. The cases γ � α and γ = +∞ obey Theorem 3.1 and Theorem 4.4, respectively. This
finishes the proof. �
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Theorem 5.3. For each increasing sequence {xn} of positive integers and for each conditionally convergent series
∑

an there exists a
divergent permutation p satisfying the following conditions:

(i) limn→∞ t(p,n) = ∞,
(ii) p(U(p)) = {x2n−1: n ∈ N} and p(V(p)) = {x2n: n ∈ N}

and

(iii) the series
∑

ap(n) is convergent and
∑

ap(n) = ∑
an.

Proof. Fix positive integers kn � 2, n ∈ N. Let a subsequence Y = {yn} of the sequence {x2n−1} be chosen so that y1 � x3
and ∑

|ayn | < ∞. (31)

Denote by {In} ⊂ 2N the sequence of intervals given by the relations:⋃
n∈N

In = {i ∈ N: i > x1}, In < In+1,

card(I2n) = kn and card(I2n−1) = x2n+1 − x2n−1 − χ
Y
(x2n+1),

for every n ∈ N. Here χ
Y

: N → {0,1} denotes the characteristic function of Y.
Now we are ready to define the desired permutation p. We will define the restrictions of p to the intervals In , n ∈ N, as

follows. First we set p(1) = x1 and p(i) = x1 − i +1 for i = 2,3, . . . , x1. Then for every positive integer n, the restriction p|I2n
is defined to be the increasing mapping of the interval I2n onto the set {yi: i = 1 + hn−1,2 + hn−1, . . . ,hn} where h0 := 0
and hn := 1 + k1 + k2 + · · · + kn .

If x2n+1 /∈ Y then the restriction p|I2n−1 is defined by requiring p to be the increasing mapping of the interval
(min I2n−1,min I2n−1 +x2n −x2n−1 −1] onto the interval (x2n−1, x2n) and the decreasing mapping of the interval [min I2n−1 +
x2n − x2n−1,max I2n−1) onto the interval (x2n, x2n+1). Moreover, we set p(min I2n−1) = x2n+1 and p(max I2n−1) = x2n .

On the other hand, if x2n+1 ∈ Y then we define p|I2n−1 to be the increasing mapping of the interval [min I2n−1,

min I2n−1 + x2n − x2n−1 − 1) onto the interval (x2n−1, x2n) and the decreasing mapping of the interval [min I2n−1 + x2n −
x2n−1 − 1,max I2n−1) onto the interval (x2n, x2n+1). Furthermore, we set p(max I2n−1) = x2n .

We remark that t(p, i + 1) = 1 + t(p, i) whenever both indices i and i + 1 belong to the same interval I2n for some
n ∈ N. Moreover, we have t(p, i) � t(p,max I2n)− 1 for any i ∈ I2n+1 and n ∈ N. From the inequality kn � 2, n ∈ N, it may be
concluded that

t(p,max I2n) � n for n ∈ N.

Hence we deduce that limn→∞ t(p,n) = ∞.
It is easy to show that∣∣∣∣∣

s∑
i=1

ap(i) −
x2n+1∑
i=1

ai

∣∣∣∣∣ �
∑

yi>x2n+1

|ayi |

whenever s ∈ I2n and∣∣∣∣∣
s∑

i=1

ap(i) −
x2n−1∑
i=1

ai

∣∣∣∣∣ �
∑

yi>x2n−1

|ayi | + 2 max

{∣∣∣∣∣
v∑

i=u

ai

∣∣∣∣∣: u, v ∈ N, x2n−1 < u � v

}

when s ∈ I2n−1. These two estimates, together with the assumption (31), show that the series
∑

ap(n) is convergent to the
sum of the series

∑
an . The relations

p
(
U(p)

) = {x2n−1: n ∈ N} and p
(
V(p)

) = {x2n: n ∈ N}
follow directly from the definition of p, and the proof is complete. �
6. Final remarks

The form of the set of the limit points of the rearranged series
∑∞

n=1 ap(n) if real series
∑

an = 0 and permutation p of N

are given, is determined by the so-called: “width w(p) of p” (this concept was introducing by Nash-Williams and White
in [9]); we note that w(p) ∈ N ∪ {0,∞}. We set w(p) := 0 if p is a convergent permutation.

Definition 1. We use symbol t(A; p), where A ⊂ N and p is a permutation of N, to denote the number of MSI which form
the partition of the set p(A).
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Definition 2. Let p be a divergent permutation of N. If there exist q ∈ N and an increasing sequence {Nk}∞k=1 of the finite
subsets of N such that Nk is a union of q MSI and sequence {t(Nk; p)}∞k=1 is bounded, then w(p) is equal to the smallest
q ∈ N with this property. In other cases, we set w(p) = ∞.

The following facts are fundamental to this theory (see [9,10]):

1o w(p) � 2 iff limn→∞ t([1,n], p) = limn→∞ t(p,n) = ∞;
2o if w(p) = q ∈ N and

∑∞
n=1 an is a real series with the sum 0, then σap(n) is the closed interval of R

∗ that must contain
set {(q − 1)x,qx} for some x ∈ R

∗ . In the sequel, if w(p) = 1, then σap(n) = [x, y] for some x, y ∈ R
∗ with x � 0 � y. On

the other hand, if 2 � w(p) = q < ∞ then

σap(n) ∈
{
[q − 1,q],

[
−1

q
,

1

1 − q

]
, every interval [a,+∞] and [−∞,a] with a ∈ R

∗, . . .
}
,

but [q,q + ε] �= σap(n) for any ε ∈ R, 0 � ε <
q

q−1 ;
3o w(p) = ∞ iff there exists a real convergent series

∑
an such that p-rearranged series

∑
ap(n) is also convergent but to

a different sum.

In my PhD dissertation [26] (see also [24, Th. 3.2]) it is proven that if p is a divergent permutation and there exists a
conditionally convergent series

∑
an such that series

∑
ap(n) is also convergent and

∑
an �= ∑

ap(n) , then for every α ∈ R,
and every nonempty closed interval I ⊂ R

∗ there exists a conditionally convergent series
∑

bn such as:∑
bn = α and σbp(n) = I.

This fact from Theorem 4.6 can be easily deduced.
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