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We study the existence of 2π-periodic solutions of the second order Hamiltonian systems
−ẍ− A(t)x = λx+ V ′

x(t, x) with superlinear terms and with saddle structure near the origin.
Some multiplicity results are obtained by using bifurcation method, homological linking
and Morse theory.
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1. Introduction

In this paper we are concerned with the existence of 2π -periodic solutions of the second order Hamiltonian systems of
the form

−ẍ − A(t)x = λx + V ′
x(t, x) (HS)λ

where λ ∈ R is a parameter, A(t) is a continuous symmetric matrix function in RN and 2π -periodic in t , and the potential
V satisfies the following conditions

(V 1) V ∈ C2(R × RN ,R) is 2π -periodic in t .
(V 2) V (t,0) = 0, V ′

x(t,0) = 0, V ′′
x (t,0) = 0.

(V 3) There exist r̄ > 0 and θ > 2 such that

0 < θ V (t, x) �
(

V ′
x(t, x), x

)
, for |x| � r̄, t ∈ [0,2π ].

(V 4) V ′′
x (t, x) > 0 for |x| > 0 small and t ∈ [0,2π ].

(V 5) V ′′
x (t, x) < 0 for |x| > 0 small and t ∈ [0,2π ].

Here and in the sequel, | · | and (·,·) denote the norm and the inner product in RN , Bx denotes the matrix product in RN

for an N × N matrix B and x ∈ RN . For two symmetric matrices B and C in RN , B > C means that B − C is positive definite.
We always use 0 to denote the origin in various spaces.
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Due to V ′
x(t,0) = 0, x ≡ 0 is a trivial solution of (HS)λ for any parameter λ ∈ R. Our interest is the multiplicity of

nontrivial 2π -periodic solutions of (HS)λ for certain range of the parameter. Let λ1 < λ2 < · · · < λk < · · · be the distinct
eigenvalues of the linear Hamiltonian systems{−ẍ − A(t)x = λx,

x(0) = x(2π), ẋ(0) = ẋ(2π).
(LHS)

We make a convention λ0 = −∞ for the use of convenience below. Denote S1 = R/(2πZ), V −(t, x) = max{−V (t, x),0}. Our
results are the following theorems.

Theorem 1.1. Assume that V satisfies (V 1)–(V 4). Let k � 1 be fixed. Then there is δ > 0, such that when sup(t,x)∈[0,2π ]×RN V −(t, x)� δ,
for λ ∈ (λk − δ,λk), (HS)λ has at least three nontrivial 2π -periodic solutions.

Theorem 1.2. Assume that V satisfies (V 1)–(V 3) and (V 5). Let k � 1 be fixed. Then there is δ > 0, such that when
sup(t,x)∈[0,2π ]×RN V −(t, x) � δ, for λ ∈ (λk, λk + δ), (HS)λ has at least three nontrivial 2π -periodic solutions.

Theorem 1.3. Assume that V satisfies (V 1)–(V 3) and V � 0 for |x| > 0 small, t ∈ [0,2π ]. Let k � 1 be fixed. Then there is δ > 0, such
that when sup(t,x)∈[0,2π ]×RN V −(t, x) � δ, for λ ∈ (λk − δ,λk], (HS)λ has at least two nontrivial 2π -periodic solutions.

We now give some comments and comparisons. In a remarkable paper [10] of Rabinowitz, (HS)0 was studied by applying
a critical point theorem, which is now well known as the generalized mountain pass theorem, built by Rabinowitz in [9]
for the case that A ≡ 0 and one nonconstant periodic solution was obtained when the potential V was of class C1 and
satisfied (V 2), (V 3) and global sign condition V � 0. In [4] the author extended the existence result in [10] by studying
(HS)0 with A being a constant symmetric matrix via local linking [5] argument and one nontrivial periodic solution was
obtained when the potential V was of class C1 and satisfied (V 2), (V 3) and local sign conditions (see [4]) near the origin.
Motivated by a recent work of Rabinowitz, Su and Wang [12], in the current paper, we obtain multiplicity results of (HS)λ
when λ is very close to any a fixed eigenvalue of (LHS). These results are new, since, to the best of our knowledge, there
are less multiplicity results for Hamiltonian systems with superlinear terms in the literature if the even assumption on V
was absent. These results are valid for A being constant even zero. We emphasize here that the origin x = 0 acts as a local
saddle point of the energy functional Φ of (HS)λ defined below when λ � λ1. When λ is close to λ1 from the left side,
x = 0 acts as a local minimizer of Φ .

The approach to the existence results is variational which means that we look for critical points of the energy functional
of (HS)λ:

Φ(x) = 1

2

2π∫
0

|ẋ|2 − (
A(t)x, x

) − λ|x|2 dt −
2π∫
0

V (t, x)dt

which is defined on the Hilbert space

E := H1(S1;RN) =
{

x: S1 → RN
∣∣∣ 2π∫

0

|ẋ|2 + |x|2 dt < ∞
}

with the inner product

〈x, y〉 =
2π∫
0

(
ẋ(t), ẏ(t)

) + (
x(t), y(t)

)
dt

and the corresponding norm ‖x‖2 = 〈x, x〉. It follows from (V 1) and the compact embedding E ↪→ C([0,2π ],RN ) that
Φ ∈ C2(E,R) with derivatives given by, for x, y, z ∈ E,

〈
Φ ′(x), y

〉 = 2π∫
0

(ẋ, ẏ) − (
A(t)x, y

) − λ(x, y)dt −
2π∫
0

(
V ′

x(t, x), y
)

dt,

〈
Φ ′′(x)y, z

〉 = 2π∫
0

( ẏ, ż) − (
A(t)y, z

) − λ(y, z)dt −
2π∫
0

(
V ′′

x (t, x)y, z
)

dt.

We will follow the ideas in [12] by combining Morse theory, topological linking and bifurcation arguments to prove these
theorems. In Section 2, we prove two solutions for (HS)λ by bifurcation methods in [11] and then give the estimation of the



X. Li et al. / J. Math. Anal. Appl. 385 (2012) 1–11 3
Morse index of these solutions. In Section 3 we get a solution by linking argument and give partial estimates of the Morse
index via homological linking idea. The proofs of Theorems 1.1–1.3 are finished in Section 4.

2. Solutions near zero with their Morse indices

In this section we get two solutions for (HS)λ via bifurcation arguments [11]. We first cite a bifurcation theorem in [11].

Proposition 2.1. (See Theorem 11.35 in [11].) Let E be a Hilbert space and Ψ ∈ C2(E,R) with

∇Ψ (u) = Lu + H(u)

where L ∈ L(E, E) is symmetric and H(u) = o(‖u‖) as ‖u‖ → 0. Consider the equation

Lu + H(u) = λu. (2.1)

Let μ ∈ σ(L) be an isolated eigenvalue of finite multiplicity. Then either

(i) (μ,0) is not an isolated solution of (2.1) in {μ} × E, or
(ii) there is an one-sided neighborhood Λ of μ such that for all λ ∈ Λ \ {μ}, (2.1) has at least two distinct nontrivial solutions, or

(iii) there is a neighborhood Λ of μ such that for all λ ∈ Λ \ {μ}, (2.1) has at least one nontrivial solution.

We now apply Proposition 2.1 to get two nontrivial 2π -periodic solutions of (HS)λ for λ close to an eigenvalue of (LHS)
and then give the estimates of the Morse index. We use some notations. For j = 1,2,3, . . . , denote

E(λ j) = ker

(
d2

dt2
+ A(t) + λ j

)
, E j =

j⊕
i=1

E(λi), E⊥
j = {

x ∈ E
∣∣ 〈x, y〉 = 0, y ∈ E j

}
.

Note that dim E0 = 0. Set ν j = dim E(λ j), � j = dim E j = ∑ j
i=1 νi . For a critical point x of a functional Φ ∈ C2(E,R), we

denote by μ(x) and ν(x) the Morse index and nullity of Φ at x ∈ E .

Theorem 2.2. Assume that V satisfies (V 1) and (V 2). Let k � 1 be fixed. Then there exists δ > 0, such that (HS)λ has at least two
nontrivial 2π -periodic solutions for

(1) every λ ∈ (λk − δ,λk) if V ′′
x (t, x) > 0 for |x| > 0 small, t ∈ [0,2π ];

(2) every λ ∈ (λk, λk + δ) if V ′′
x (t, x) < 0 for |x| > 0 small, t ∈ [0,2π ].

Furthermore, the Morse index and nullity of such a solution xλ satisfy

�k−1 � μ(xλ) � μ(xλ) + ν(xλ) � �k, for 0 < |λ − λk| < δ. (2.2)

Proof. We first prove the existence results by verifying that case (ii) of Proposition 2.1 occurs under the given conditions.
Under (V 1) and (V 2), every eigenvalue λ j of (LHS) gives rise to a bifurcation point (λ j,0) of (HS)λ (see [11]). Let (λ, x) ∈
R × E be a solution of (HS)λ near (λk,0) which satisfies{−ẍ − A(t)x = λx + V ′

x(t, x),

x(0) = x(2π), ẋ(0) = ẋ(2π).
(2.3)

By (V 1) and (V 2), we have

V ′
x(t, x) = V ′

x(t,0) + V ′′
x (t, ηx)x = V ′′

x (t, ηx)x, for some 0 < η < 1. (2.4)

We consider the case (1). By the embedding E ↪→ C([0,2π ],RN ), for ‖x‖ > 0 small, ‖x‖C > 0 small. Then by the assumption
(V 4), we have that

V ′′
x

(
t, ηx(t)

)
> 0, t ∈ [0,2π ].

It follows that

A(t) + V ′′
x

(
t, ηx(t)

)
> A(t), t ∈ [0,2π ].

Now consider the linear Hamiltonian systems{− ÿ − (
A(t) + V ′′

x

(
t, ηx(t)

))
y = μy,

(2.5)

y(0) = y(2π), ẏ(0) = ẏ(2π).
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We denote the distinct eigenvalues of (2.5) by μ1(x) < μ2(x) < · · · < μi(x) < · · · as x 
= 0. Notice that by (V 2), if we
take x = 0 then for each i ∈ N, there is j ∈ N such that μi(0) = λ j . Thus the standard variational characterization of the
eigenvalues of (2.5) shows that μi(x) is less than the corresponding j-th ordered eigenvalue λ j of (LHS), and furthermore,
μi(x) → λ j as x → 0 in E . By (2.3) and (2.4), we see that x is a solution of (2.5) with eigenvalue λ. It follows that λ < λk
since λ is close to λk . This proves the case (1). The existence for case (2) is proved in a similar way.

Now we estimate of the Morse indices for the solutions obtained above. Let xλ be a bifurcation solution of (HS)λ . Then

‖xλ‖ → 0, as λ → λk.

By the embedding E ↪→ C([0,2π ],RN ), we have

‖xλ‖C → 0, λ → λk. (2.6)

For each y ∈ E , we have

〈
Φ ′′(xλ)y, y

〉 = 2π∫
0

| ẏ|2 − (
A(t)y, y

) − λ|y|2 dt −
2π∫
0

(
V ′′

x (t, xλ)y, y
)

dt.

Therefore, for y ∈ Ek−1,

〈
Φ ′′(xλ)y, y

〉
� (λk−1 − λ)

2π∫
0

|y|2 dt +
2π∫
0

∣∣(V ′′
x (t, xλ)y, y

)∣∣dt,

and for z ∈ E⊥
k ,

〈
Φ ′′(xλ)z, z

〉
� (λk+1 − λ)

2π∫
0

|z|2 dt −
2π∫
0

∣∣(V ′′
x (t, xλ)z, z

)∣∣dt.

By (V 2) and (2.6), we see that there is δ > 0 such that when 0 < |λ − λk| < δ,〈
Φ ′′(xλ)y, y

〉
< 0, 0 
= y ∈ Ek−1,

〈
Φ ′′(xλ)z, z

〉
> 0, 0 
= z ∈ E⊥

k .

Thus (2.2) holds. The proof is complete. �
For the later use we now give the computations of critical groups of Φ at zero. Recall that the q-th critical group of Φ

at its isolated critical point x is defined as Cq(Φ, x) := Hq(Φ
c ∩ U ,Φc ∩ U \ {x}) (see [2,8]). Here c = Φ(x) and Hq(A, B) is

the q-th relative singular homological group of the topological pair (A, B) with the coefficients in a field F.

Remark 2.3. Due to the compactness of the embedding E ↪→ C([0,2π ],RN ), the functional Φ satisfies the bounded (PS)
condition, i.e. any bounded sequence {xn} in E with Φ ′(xn) → 0 as n → ∞ has a convergent subsequence (see [8]).

Indeed, for such a sequence {xn} in E , up to a subsequence if necessary, we can assume that xn ⇀ x in E and xn → x in
C([0,2π ],RN ), and furthermore, xn → x in L2([0,2π ],RN ). Since

〈
Φ ′(xn) − Φ ′(x), xn − x

〉 = 2π∫
0

|ẋn − ẋ|2 dt −
2π∫
0

((
A(t) + λ

)
(xn − x), xn − x

)
dt

−
2π∫
0

(
V ′

x(t, xn) − V ′
x(t, x), xn − x

)
dt,

and as n → ∞,〈
Φ ′(xn) − Φ ′(x), xn − x

〉 → 0,∣∣∣∣∣
2π∫
0

(
V ′

x(t, xn), xn − x
)

dt

∣∣∣∣∣ �
∥∥V ′

x(t, xn)
∥∥

2‖xn − x‖2 → 0,
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2π∫
0

(
V ′

x(t, x), xn − x
)

dt → 0,

2π∫
0

((
A(t) + λ

)
(xn − x), xn − x

)
dt → 0,

we see that

2π∫
0

|ẋn − ẋ|2 dt → 0, n → ∞

and then xn → x in E .

It suffices to use the above local compactness in describing the critical groups of Φ at an isolated critical point [2,8]. We
have

Proposition 2.4. Assume that V satisfies (V 1) and (V 2), k � 1. Then for λ ∈ (λk−1, λk), Cq(Φ,0) ∼= δq,�k−1 F. For λ = λk, if the trivial
solution x = 0 of (HS)λ is isolated, then

(1) Cq(Φ,0) ∼= δq,�k−1 F provided V (t, x) � 0 for |x| > 0 small;
(2) Cq(Φ,0) ∼= δq,�k F provided V (t, x) � 0 for |x| > 0 small.

Proof. For λ ∈ (λk−1, λk), 0 is a non-degenerate critical point of Φ with the Morse index μ(0) = �k−1. It follows that
Cq(Φ,0) ∼= δq,�k−1 F (see [2,8]).

Let λ = λk . Then 0 is a degenerate critical point of Φ with the Morse index μ(0) = �k−1 and nullity ν(0) = νk . We prove
the case (1). For k > 1, we want to verify that the functional Φ has a local linking structure [5,7] at 0 with respect to the
direct sum decomposition E = Ek−1 ⊕ E⊥

k−1 when V satisfies V (t, x) � 0 for |x| > 0 small. That is for some r > 0,

Φ(u) > 0, for u ∈ E⊥
k−1, 0 < ‖u‖ � r, Φ(u) � 0, for u ∈ Ek−1, ‖u‖ � r.

By the continuity of embedding E ↪→ C([0,2π ],RN ), when x ∈ Ek−1 and ‖x‖ � r with r > 0 small, ‖x‖C must be small,
therefore by (V 2) we have

Φ(x) = 1

2

2π∫
0

(|ẋ|2 − (
A(t)x, x

) − λk|x|2
)

dt −
2π∫
0

V (t, x)dt

� 1

2
(λk−1 − λk)‖x‖2

2 + o
(‖x‖2

2

)
� 0.

For x ∈ E⊥
k−1, we write x = y + z where y ∈ E(λk), z ∈ E⊥

k . Then

Φ(x) = 1

2

2π∫
0

(|ẋ|2 − (
A(t)x, x

) − λk|x|2
)

dt −
2π∫
0

V (t, x)dt

� 1

2
(λk+1 − λk)

2π∫
0

|z|2 dt −
2π∫
0

V (t, x)dt.

For y ∈ E(λk) and 0 < ‖y‖ � r with r > 0 small, we must have Φ(y) = − ∫ 2π
0 V (t, y)dt > 0 as otherwise we would have

that V (t, y(t)) ≡ 0 for all t ∈ [0,2π ] and then 0 is not isolated. Hence we get the conclusion that Φ(x) > 0 for 0 < ‖x‖ � r
with r > 0 small. We apply Proposition 2.2 in [13] to get the result of Cq(Φ,0).

When k = 1, �k−1 = 0, the above arguments show that 0 is a local minimizer of Φ and then Cq(Φ,0) ∼= δq,0F.
In the case (2), a similar way shows that Φ has a local linking structure at 0 with respect to the decomposition E :=

Ek ⊕ E⊥
k and then Proposition 2.2 in [13] is applied to get the result of Cq(Φ,0). The proof is complete. �



6 X. Li et al. / J. Math. Anal. Appl. 385 (2012) 1–11
3. Linking solutions with homological information

In this section we get one nontrivial 2π -periodic solution for (HS)λ by using the generalized linking arguments [11] and
then give the homological information via the homological linking [7]. We recall the abstract generalized linking theorem
which follows from [11,7,2].

Proposition 3.1. (See [11,7,2].) Let E be a real Banach space with E = X ⊕ Y and � = dim X is finite. Suppose that Φ ∈ C1(E,R),
satisfies (PS) and

(Φ1) there exist ρ > 0, α > 0 such that

Φ(u) � α, u ∈ Sρ = Y ∩ ∂ Bρ, (3.1)

where Bρ = {u ∈ E | ‖u‖ � ρ};
(Φ2) there exist R > ρ > 0, and e ∈ Y with ‖e‖ = 1 such that

Φ(u) < α, u ∈ ∂ Q , (3.2)

where Q = {u = v + se | ‖u‖ � R, v ∈ X, 0 � s � R}.

Then Φ has a critical point u∗ with Φ(u∗) = c∗ � α and

C�+1
(
Φ, u∗) 
= 0. (3.3)

We note here that under the framework of Proposition 3.1, Sρ and ∂ Q homotopically link with respect to the direct
sum decomposition E = X ⊕ Y . Sρ and ∂ Q also homologically linking [2,7]. The conclusion (3.3) follows from Theo-
rems 1.1′ and 1.5 of Chapter II in [2] (see also [7]) and c∗ can be characterized as c∗ := infγ ∈Γ supx∈|γ | Φ(x) where
Γ = {γ | singular � + 1 chains with ∂γ = ∂ Q }.

We will apply the above abstract result to get a nontrivial solutions for (HS)λ . We first verify (PS).

Lemma 3.2. Assume that V satisfies (V 1) and (V 3), then for any fixed λ ∈ R, the functional Φ satisfies the (PS) condition.

Proof. According to Remark 2.3, we only need to show that any sequence {xn} ⊂ E with∣∣Φ(xn)
∣∣ � C, n ∈ N, Φ ′(xn) → 0, n → ∞ (3.4)

is bounded, here and below we use C to denote various positive constants. The argument is standard (see [9,4]). Choosing
a positive number β ∈ (θ−1,2−1). We have for n large that

C + β‖xn‖ � Φ(xn) − β
〈
Φ ′(xn), xn

〉
.

According to (V 3),

V (t, x) � C |x|θ − C, x ∈ RN . (3.5)

Therefore,

C + β‖xn‖ �
(

1

2
− β

)
‖ẋn‖2

2 −
(

1

2
− β

)(
Λ + |λ|)‖xn‖2

2 + (θβ − 1)C‖xn‖θ
θ − C .

Where Λ = maxt∈[0,2π ] ‖A(t)‖RN . By the Hölder inequality and the Young inequality we get for any ε > 0 that

‖xn‖2
2 � (2π)

θ−2
θ ‖xn‖2

θ � 2π(θ − 2)

θ
ε

2
2−θ + 2

θ
ε‖xn‖θ

θ . (3.6)

Thus for a fixed ε > 0 small enough, we have by (3.6) that

C + β‖xn‖ �
(

1

2
− β

)
‖ẋn‖2

2 − Cε‖xn‖θ
θ + C(θβ − 1)‖xn‖θ

θ

�
(

1

2
− β

)
‖ẋn‖2

2 + 1

2
(θβ − 1)C‖xn‖θ

θ

� C
(‖ẋn‖2

2 + ‖xn‖2
2

) = C‖xn‖2.

Therefore {xn} is bounded in E . The proof is complete. �
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From the above arguments and the continuous embedding E ↪→ C([0,2π ],RN ), we see that the set of critical points of
Φ is uniformly bounded in E . Therefore we may assume that the potential V satisfies the growth condition∣∣V (t, x)

∣∣ � C
(
1 + |x|q), x ∈ RN (V)

for any fixed number q > θ . Otherwise, we can modify V in a similar way as in [11] to a new function satisfying the
required growth condition and then work on the problem with the modified potential (see [11] for details). We will use (V)
directly in the following estimates.

Lemma 3.3. Assume that V satisfies (V 1), (V 2) and (V 3) and k � 1. Then there exist constants ρ > 0, α > 0 such that for all
λ � λk+λk+1

2 , such that

Φ(x) � α, for x ∈ E⊥
k with ‖x‖ = ρ. (3.7)

Proof. By (V 1), (V 2) and (V ), for ε > 0, there is Cε > 0 such that

V (t, x) � 1

2
ε|x|2 + Cε |x|q.

For λ ∈ R, the operator Kλ defined, using the Riesz representation theorem, by

〈Kλx, y〉 =
2π∫
0

(x, y) + ((
A(t) + λ id

)
x, y

)
dt, x, y ∈ E

is compact. For λ∗ = λk+λk+1
2 , there is η > 0 such that

Ψλ∗(x) = 1

2

2π∫
0

|ẋ|2 − ((
A(t) + λ∗ id

)
x, x

)
dt � 1

2
η‖x‖2, x ∈ E+

λ∗ ,

where E+
λ is the positively definite invariant subspace of id−Kλ (see [8]). Since for all λ � λ∗ , E⊥

k ⊂ E+
λ∗ ⊂ E+

λ , we have that

Ψλ(x) = 1

2

2π∫
0

|ẋ|2 − ((
A(t) + λ id

)
x, x

)
dt � 1

2
η‖x‖2, x ∈ E⊥

k

and furthermore the constant η is independent of λ � λ∗ . Now for x ∈ E⊥
k , we have

Φ(x) = 1

2

2π∫
0

(|ẋ|2 − (
A(t)x, x

) − λ|x|2)dt −
2π∫
0

V (t, x)dt

� 1

2
η‖x‖2 − 1

2
ε

2π∫
0

|x|2 dt − Cε

2π∫
0

|x|q dt

� 1

2
(η − ε)‖x‖2 − Ĉε‖x‖q

� 1

4
η‖x‖2 − C∗‖x‖q,

when we take ε = η/2, where C∗ is independent of λ. Since q > 2 and the function g(r) = 1
4 ηr2 − C∗rq achieves its maxi-

mum

gmax = q − 2

2q

(
2−1η

) q
q−2 (qC∗)

2
2−q := α

on (0,∞) at ρ = (
η

2qC∗ )
1

q−2 , we see that

Φ(x) � α, for x ∈ E⊥
k with ‖x‖ = ρ.

The constant α is independent of λ � λ∗ . The proof is complete. �
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Lemma 3.4. Assume that V satisfies (V 1), (V 3) and k � 1. Then there exist R > 0, δ > 0 and σ ∈ R, all independent of λ, such that
when λ ∈ (λk − δ,λk + δ) and sup(t,x)∈[0,2π ]×RN V −(t, x) � δ,

Φ(x) � σ < α, for x ∈ ∂ Q , (3.8)

where Q = {x ∈ Ek ⊕ span{φk+1} | ‖x‖ � R, x = y + sφk+1, y ∈ Ek, s � 0} and φk+1 is a normalized eigenfunction of (LHS)
corresponding to λk+1 .

Proof. From (V 3) we deduce (3.5) with the positive constant C independent of λ. For x ∈ Vk := Ek ⊕ span{φk+1}, write
x = y + z, y ∈ Ek−1, z ∈ E(λk) ⊕ span{ϕk+1}. Then

Φ(x) � 1

2
(λk−1 − λ)‖y‖2

2 + 1

2
(λk+1 − λ)‖z‖2

2 − C‖u‖θ
θ + C . (3.9)

Since θ > 2 and Vk is finite dimensional, (3.9) shows there exists R > 0 independent of λ, such that

Φ(x) � 0, for x ∈ Vk with ‖x‖ = R. (3.10)

Now fixing such an R > 0 and assuming λ ∈ (λk−1, λk+1). Set M := sup(t,x)∈[0,2π ]×RN V −(t, x). For y ∈ Ek with ‖y‖ � R , we
write y = w + z, w ∈ Ek−1, z ∈ E(λk). Then we have that

Φ(y) = 1

2

2π∫
0

(| ẏ|2 − (
A(t)y, y

) − λ|y|2)dt −
2π∫
0

V (t, y)dt

� 1

2
(λk−1 − λ)‖w‖2

2 + 1

2
(λk − λ)‖z‖2

2 +
∫

{t∈[0,2π ]: V �0}
V −(t, y)dt

� 1

2
|λk − λ|R2 + 2π M. (3.11)

Notice that

∂ Q = {
x = y + sφk+1

∣∣ ‖x‖ = R, y ∈ Ek, s � 0
} ∪ {

y ∈ Ek
∣∣ ‖y‖ � R

}
, (3.12)

it follows from (3.10) and (3.11) that (3.8) holds by taking δ = α
R2+4π

and σ = α/2. The proof is complete. �
Now we are ready to get the following existence theorem by applying Proposition 3.1.

Theorem 3.5. Assume that V satisfies (V 1), (V 2) and (V 3) and k � 1. Then there exists δ > 0 such that when
sup(t,x)∈[0,2π ]×RN V −(t, x) � δ, for each λ ∈ (λk − δ,λk + δ), (HS)λ has a nontrivial 2π -periodic solution xλ with positive energy and
such that

C�k+1
(
Φ, xλ

)
� 0. (3.13)

Proof. By Lemmas 3.3 and 3.4, for each λ ∈ (λk − δ,λk + δ), the functional Φ verifies (Φ1) and (Φ2) with respect to the
decomposition E = Ek ⊕ E⊥

k and dim Ek = �k:

inf
x∈Sρ

Φ(x) � α >
α

2
� max

y∈∂ Q
Φ(y).

By Lemma 3.2, Φ verifies (PS). As R > ρ > 0, Sρ and ∂ Q homologically link, it follows from Proposition 3.1 that Φ has a
critical point xλ satisfying (3.13). The proof is finished. �

We close this section with some remarks. The existence of one nontrivial 2π -periodic solution of (HS)λ can be obtained
by applying directly the homotopic linking [11] in the way that Φ has a critical value cλ � α which can be characterized as

cλ := inf
h∈Γ

max
x∈Q

Φ
(
h(x)

)
where Γ := {h ∈ C(Q , E) | h = id on ∂ Q }. This critical value cλ has a uniform positive bound from below with respect to
all λ � λ∗ . The homological information for critical points obtained are completely new and will be used in proving the
main theorems. The existence results in Theorem 3.5 are also new and did not coincided with the results in [9,4] when A is
constant or zero since the construction of linking is rather different from that used in [9,4]. Indeed, under the assumptions
(V 1)–(V 3) in Theorem 3.5, for any fixed λ ∈ R, say, λ ∈ [λk−1, λk) with k � 2, one can construct a critical value of Φ via
a homotopic linking with respect to the direct sum decomposition E = Ek−1 ⊕ E⊥

k−1 and the existence results in [9,4] were obtained
in this way.
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4. Proofs of main results

In the final section we give the proofs of Theorems 1.1–1.3.

Proof of Theorem 1.1. By Theorem 2.2(1), (HS)λ has two nontrivial 2π -periodic solutions xi
λ (i = 1,2) with their Morse

indices satisfying

�k−1 � μ
(
xi
λ

)
� μ

(
xi
λ

) + ν
(
xi
λ

)
� �k, i = 1,2.

From the Gromoll–Meyer Theorem [2,3], we have that

Cq
(
Φ, xi

λ

) ∼= 0, q /∈ [�k−1, �k], i = 1,2. (4.1)

By Theorem 3.5 for the part λ ∈ (λk − δ,λk), (HS)λ has a nontrivial 2π -periodic solution xλ satisfying

C�k+1
(
Φ, xλ

)
� 0. (4.2)

From (4.1) and (4.2) we see that xλ 
= xi
λ (i = 1,2). The proof is complete. �

Proof of Theorem 1.2. With the same argument as above, it follows from Theorem 2.2(2) and Theorem 3.5 for the part
λ ∈ (λk, λk + δ). We omit the details. �

We remark here that the conclusions of Theorems 1.1 and 1.2 can also be proved by comparing the energies (see [12]).
Now we give

Proof of Theorem 1.3. By Theorem 3.5 for the part λ ∈ (λk − δ,λk], (HS)λ has a 2π -periodic solution xλ with its energy
Φ(xλ) � α > 0 and

C�k+1
(
Φ, xλ

)
� 0. (4.3)

By Proposition 2.4, we have that

Cq(Φ,0) ∼= δq,�k−1F. (4.4)

Under (V 1)–(V 3), for any fixed λ ∈ R, by Proposition 4.1 below, we have that

Cq(Φ,∞) ∼= 0, for q ∈ Z. (4.5)

Assume that (HS)λ has only two 2π -periodic solutions 0 and xλ . Choose a,b ∈ R such that a < 0 < b < Φ(xλ). Then by the
deformation and excision properties of singular homology (see [1,2]), we have

Cq(Φ,∞) ∼= Hq
(

E,Φa), Cq(Φ,0) ∼= Hq
(
Φb,Φa), Cq

(
Φ, xλ

) ∼= Hq
(

E,Φb).
From (4.5) and the exact sequence for the topological triple (E,Φb,Φa) we deduce that

Cq+1
(
Φ, xλ

) ∼= Cq(Φ,0), for q ∈ Z. (4.6)

There is a contradiction from (4.3) and (4.4) when we take q = �k in (4.6). The proof is complete. �
We recall that the notion Cq(Φ,∞) was introduced in [1] in describing the global homological information of the topo-

logical pair (E,Φa) where a � −1 such that the functional Φ possesses the deformation property and has no critical points
on Φa . Now we present a proof for (4.5). The idea is essentially from a famous paper [16] where (4.5) was first built to
obtain the existence of a third solution for superlinear elliptic problem via Morse theory.

Proposition 4.1. Assume that V satisfies (V 1)–(V 3). Then for any a fixed λ ∈ R, it holds

Cq(Φ,∞) ∼= 0, for q ∈ Z.

Proof. Given λ ∈ R. Denote B1 = {x ∈ E: ‖x‖ � 1}. For each x ∈ ∂ B1, ξ > 0, we have by (3.5) that

Φ(ξx) = 1

2
ξ2

2π∫
0

|ẋ|2 − (
(A(t) + λ)x, x

)
dt −

2π∫
0

V (t, ξx)dt

� 1

2
ξ2

2π∫
|ẋ|2 − (

(A(t) + λ)x, x
)

dt − Cξθ

2π∫
|x|θ dt + C .
0 0
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As θ > 2, we see that

Φ(ξx) → −∞, as ξ → +∞. (4.7)

For each x ∈ ∂ B1, ξ > 0, by (V 3), we have

d

dξ
Φ(ξx) = 〈

Φ ′(ξx), x
〉

= ξ

2π∫
0

|ẋ|2 − ((
A(t) + λ

)
x, x

)
dt −

2π∫
0

(
V ′

x(t, ξx), x
)

dt

= ξ−1

(
2Φ(ξx) + 2

2π∫
0

V (t, ξx)dt −
2π∫
0

(
V ′

x(t, ξx), ξx
)

dt

)

� 1

ξ

(
2Φ(ξx) +

∫
{t: |ξx(t)|�r̄}

2V (t, ξx) − (
V ′

x(t, ξx), ξx
)

dt

)

� 1

ξ

(
2Φ(ξx) + M

)
where

M := 2π max
t∈[0,2π ], |y|�r̄

(
2
∣∣V (t, y)

∣∣ + r̄
∣∣V ′

x(t, y)
∣∣).

Therefore, for any a fixed a < − M
2 , we get that

Φ(ξx) � a �⇒ d

dξ
Φ(ξx) < 0. (4.8)

Notice that Φ(0) = 0, it follows from (4.7) and (4.8) that for any x ∈ ∂ B1, there is a unique ω(x) > 0 such that

Φ
(
ω(x)x

) = a, x ∈ ∂ B1. (4.9)

By (4.9) and the implicit function theorem we have that ω ∈ C(∂ B1,R). Now define

h(x) =
{

1, if Φ(x) � a,

‖x‖−1ω(‖x‖−1x), if Φ(x) > a, x 
= 0.

Then h ∈ C(E \ {0},R). Define a map ψ : [0,1] × E \ {0} → E \ {0} by

ψ(σ , x) = (1 − σ)x + σh(x)x. (4.10)

Clearly, ψ is continuous, and for all x ∈ E \ {0} with Φ(x) > a, by (4.9)

Φ
(
ψ(1, x)

) = Φ
(
ω

(‖x‖−1x
)‖x‖−1x

) = a.

Therefore

ψ(1, x) ∈ Φa for all x ∈ E \ {0}, ψ(σ , x) = x for all σ ∈ [0,1], x ∈ Φa,

and so Φa is a strong deformation retract of E \ {0}. Hence

Cq(Φ,∞) := Hq
(

E,Φa) ∼= Hq
(

E, E \ {0}) ∼= Hq(B1, ∂ B1) ∼= 0, q ∈ Z

since ∂ B1 is contractible which follows from the fact that dim E = ∞. �
We close up the paper with further remarks for theorems in a special case N = 1. In this case, Theorem 1.3 states that

(HS)λ has at least three nontrivial 2π -periodic solutions. This result is also new and the existence of a third solution can be
obtained by further applying Morse theory. Moreover, in this case, Theorems 1.1 and 1.2 can be proved in the same way as
that of Theorem 1.3. We refer to [6,15] for the arguments and leave the details for the interested readers. In this paper we
have used some basic ideas and tools about Morse theory to which one refers to [2,8] and to [13,14] for a brief summary.
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