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a b s t r a c t

We consider the asymptotic behavior of weak solutions of the Navier–Stokes equations
in the half-space Rn

+
. We obtain the lower bound of the energy decay of the Navier–Stokes

flow, bymeans of the profile of the initial data. Indeed,we construct a class of the initial data
which causes the slow decay of the Navier–Stokes flow, with an explicit rate. Furthermore,
we investigate the asymptotic behavior of concentration in the frequency space.
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1. Introduction

In this paper, we consider an asymptotic behavior in L2 ofweak solutions of the Navier–Stokes equations in the half-space
Rn

+
: 

∂u
∂t

−1u + u · ∇u + ∇p = 0 in Rn
+

× (0,∞)

div u = 0 in Rn
+

× (0,∞)
u = 0 on ∂Rn

+
× (0,∞)

u(0) = a in Rn
+
,

(N–S)

where n ≥ 3,Rn
+

:= {x = (x1, . . . , xn) ∈ Rn
; xn > 0} denotes the upper half-space. Here, u = u(x, t) = (u1(x, t),

. . . , un(x, t)) and p = p(x, t) denote the unknown velocity vector and pressure of the fluid at point (x, t) ∈ Rn
+

× (0,∞),
respectively, while a = a(x) = (a1(x), . . . , an(x)) is the given initial velocity.

In his celebrated paper [11], Leray proposed the problemwhether or not weak solutions of (N–S) tend to zero in L2 as the
time goes to infinity. Masuda [12] first gave a partial answer to Leray’s problem and clarified that the energy inequality of
strong type plays an important role in L2 decay of weak solutions. Here, we mean by the energy inequality of strong type:

∥u(t)∥2
2 + 2

 t

s
∥∇u(τ )∥2

2 dτ ≤ ∥u(s)∥2
2 (1.1)

for almost all s ≥ 0, including s = 0, and for all t ≥ s. Leray called a weak solution with (1.1) a turbulent solution.
Schonbek [15] first obtained an explicit rate of the temporal energy decay for weak solutionswith large initial data in L1∩L2.
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Later on, the decay ratewas precisely investigated byKajikiya andMiyakawa [9], Schonbek [16], andWiegner [26].Moreover,
it was clarified that the asymptotic behavior of the linear Stokes flow is important for the study on the energy decay of the
nonlinear Navier–Stokes flow. On the other hand, Schonbek [16–18] observed that if a ∈ Lr ∩L2, for some 1 < r < 2 satisfies
the average


a(x) dx ≠ 0, then it holds that

C(1 + t)−
3
4 ≤ ∥u(t)∥L2(R3) ≤ C(1 + t)−

3
2


1
r −

1
2


.

Furthermore, she proved that if the initial data a fulfilled

a(x) dx = 0, in addition to


|x| |a(x)|2 dx < ∞, together with

some restrictions on the profile of the lower frequency part a, we have also that

∥u(t)∥L2(Rn) ≥ C(1 + t)−
n+2
4 , (1.2)

for n = 2, 3. See also Miyakawa and Schonbek [13].
In this direction, the author established more precise behavior of solutions of the lower bound in L2(Rn). Indeed,

introducing a class Km
α,δ(R

n), defined by

Km
α,δ(R

n) := {φ ∈ L2(Rn); |φ̂(ξ)| ≥ α|ξ |m, |ξ | ≤ δ}, m ≥ 0, α, δ > 0, (1.3)

he [14] proved that if a ∈ Km
α,δ(R

n) ∩ Lr(Rn)with 1 < r < 2, then the weak solution u(t) of (N–S) satisfies

∥u(t)∥L2(Rn) ≥ C(1 + t)−
n+2m

4 , (1.4)

for n = 2, 3, 4. We note that the set Km
α,δ(R

n) has a different character of the initial profile from that of [17,18,13], and that
in particular, our characterization covers the results of [16–18], when 0 ≤ m < 1.

In the half-space, there are many results for the upper bound of the temporal decay of the Stokes flow and the Navier–
Stokes flow. See, for instance, Borchers and Miyakawa [3], Fujigaki and Miyakawa [6,7], Bae and Choe [2], Bae [1], Choe and
Jin [5], and Han [8]. However, up to now, it seems that there are few results for the lower bound of the energy decay. In such a
situation, [6,7] obtained the same lower bound as (1.2) under some condition on initial data. Especially, in [7], it was clarified
that the strong solution u(t) of (N–S) satisfies ∥u(t)∥2 ≥ Ct−n/4 if and only if the Stokes flow v(t) satisfies ∥v(t)∥2 ≥ Ct−n/4.
As is mentioned in [7], it seems to be an interesting problem to characterize a class of the initial data which exhibits a lower
bound of the Stokes flow in the half-space Rn

+
.

In the present paper, focusing on the profile of initial data, we investigate the lower bound such as (1.4) forweak solutions
of (N–S) which satisfy the energy inequality of strong type (1.1) in the half-space Rn

+
. Our rate as in (1.4) improves the rate

given by [6] like (1.2). Furthermore, we give a positive answer to the question of [7] for the slow decay of the Stokes flow by
the concrete characterization of the initial data in Rn

+
which is similar to (1.3).

To study on the asymptotic behavior of the Navier–Stokes flow in the half-space, we first consider the Stokes flow and
establish the estimate from below in terms of the explicit solution formula given by Ukai [25]. In the whole space Rn, a
number of decay properties of lower bounds relies heavily on the Fourier transform, in [17,18,13,14], whose method is
difficult to be applicable to the other domains. However, in order to overcome such difficulty, we split the variables of the
initial data awith the following form:

a(x) = a′(x′)η(xn),

where x = (x′, xn) ∈ Rn and x′
:= (x1, . . . , xn−1) ∈ Rn−1. Moreover, under some restriction (see Assumption in Section 2)

on a′ and η, we notice that the property of a′ is dominant to the slow decay of the Stokes flow. By this form, the problem is
reduced to that on the lower dimensional whole space Rn−1. Conversely, we see that the 2-dimensional initial data can be
embedded in the 3-dimensional half-space R3

+
and also the whole space R3, where the slow decay properties are preserved.

In the same manner, for every n ∈ N, we find out a hierarchy structure between Rn and Rn+1 for the decay of the lower
bounds of solutions with respect to the initial data. On the other hand, instead of Km

α,δ(R
n) as in (1.3), we introduce a more

general profile on the lower frequency part on initial data such as

Tm
α,γ ,δ(R

n) := {φ ∈ L2(Rn); |φ̂(ξ)| ≥ α|ξn|
m, |ξn| ≤ γ , |ξ ′

| ≤ δ}, (1.5)

for m ≥ 0, α, γ , δ > 0, where ξ = (ξ ′, ξn) ∈ Rn and ξ ′
:= (ξ1, . . . , ξn−1) ∈ Rn−1. It should be noted that the class

Tm
α,γ ,δ(R

n) can be characterized in terms of the estimate from below of the low frequency ξ = (ξ ′, ξn) in the ξn direction. It
turns out that such a profile of initial data only in one direction to ξn dominates the asymptotic behavior in time from below
of the Stokes flow. We also note that by making use of Tm

α,γ ,δ(R
n), we can improve the previous result in [14] for the whole

space Rn. By the virtue of Ukai’s solution formula of the Stokes flow, the profile of initial data can be directly applicable to
the exact exponent of the decay in (1.4). If we takem = 0 in (1.4) and (1.5), then we obtain such a lower bound as:

∥u(t)∥2 ≥ Ct−
n
4 for large t. (1.6)

In addition, if |a′(ξ ′)| ≤ M for near ξ ′
= 0, it is easy to see that

∥u(t)∥2 ≤ C(1 + t)−
n
4 . (1.7)
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Therefore, (1.7) gives the optimal decay rate of the energy of the Navier–Stokes flow in the half-space Rn
+
for such a initial

data. Indeed, we construct an initial data which causes both (1.6) and (1.7), as an example in T 0
α,γ ,δ(R

n).
As an application of the lower bound of (1.4), we consider the asymptotic behavior of weak solutions of (N–S) in the

following sense:

lim
t→∞

∥Eλu(t)∥2

∥u(t)∥2
= 1, (1.8)

for λ > 0, where Eλ is the resolution of identity of the Stokes operator. In the whole space Rn, (1.8) corresponds to the
energy concentration phenomenon within the lower frequency region, since Eλu(ξ) = χ

{|ξ |≤
√
λ}û(ξ), where χ

{|ξ |≤
√
λ} is the

characteristic function on the set {ξ ; |ξ | ≤
√
λ}. Skalák [21–24] observed (1.8) and proved that the decay properties of

solutions determine a band of frequency λwhere (1.8) holds. On the other hand, in [14], giving the lower bound (1.4) with
the profile Km

α,δ(R
n) of initial data, we obtained (1.8) for all λ > 0. Furthermore, the explicit convergence rate of u(t) in

(1.8) was shown. In this paper, we derive (1.8) in terms of the class Tm
α,γ ,δ(R

n) in (1.5) for the half-space Rn
+
and give the

convergence rate of (1.8) for both t and λ > 0. In comparison with the problem in the whole space Rn, it is difficult to
see what (1.8) implies. In particular, the spectral resolution Eλ for the Stokes operator A should be characterized by some
quantities depending on the domain, or its eigenfunctions, which will be discussed in a forthcoming paper.

In Section 2, we shall give our main results. Section 3 is devoted to preparing some propositions related to the solution
formula of the Stokes flow. In Section 4, we give the lower bound of the Stokes flow with the class (1.5). Then we obtain
the lower bound of the Navier–Stokes flow in Section 5. In Section 6, we deal with the asymptotic behavior such as (1.8).
Furthermore, at the end of the present paper, we construct an example of the initial data which belongs to Tm

α,γ ,δ(R
n) for

each n ≥ 2.

2. Results

Before stating our results, we introduce the following notations. Let C∞

0,σ (R
n
+
) denote the set of all C∞-solenoidal vectors

φ with compact support in Rn
+
, i.e., div φ = 0 in Rn

+
. Lrσ (R

n
+
) is the closure of C∞

0,σ (R
n
+
) with respect to the Lr -norm

∥ · ∥r , 1 < r < ∞; (·, ·) is the duality pairing between Lr(Rn
+
) and Lr

′

(Rn
+
), where 1/r + 1/r ′

= 1, 1 ≤ r ≤ ∞. Lr(Rn
+
) and

Wm,r(Rn
+
) stand for the usual (vector-valued) Lebesgue Lr -space and Lr -Sobolev space over Rn

+
, respectively. LetWm,r

0 (Rn
+
)

be the closure inWm,r(Rn
+
) of the set C∞

0 (R
n
+
) of smooth functions with compact support in Rn

+
. In the special case r = 2, let

H1
0,σ (R

n
+
) denote the closure of C∞

0,σ (R
n
+
)with respect to the norm ∥φ∥H1 := ∥φ∥2 +∥∇φ∥2, where∇φ = (∂φi/∂xj)i,j=1,...,n.

When X is a Banach space, ∥ · ∥X denotes the norm on X . Cm([t1, t2]; X) and Lr(t1, t2; X) are the usual Banach spaces, where
m = 0, 1, . . . , and t1 and t2 are real numbers such that t1 < t2.

Let us define our weak solutions of (N–S):

Definition 2.1. Let a ∈ L2σ (R
n
+
). A measurable function u defined on Rn

+
× (0,∞) is called a weak solution of (N–S), if

(i) u ∈ L∞

0,∞; L2σ (R

n
+
)

∩ L2


0, T ;H1

0,σ (R
n
+
)

for all 0 < T < ∞,

(ii) the relation
∞

0


−


u(τ ),

∂φ

∂t
(τ )


+

∇u(τ ),∇φ(τ)


+

u · ∇u(τ ), φ(τ )


dτ =


a, φ(0)


(2.1)

holds for all φ ∈ C1

[0,∞);H1

0,σ (R
n
+
) ∩ Ln(Rn

+
)

vanishing near t = ∞.

It is well known that we can redefine anyweak solution u(t) of (N–S) on a set of measure zero of the time interval (0,∞)
so that u(t) is weakly continuous in t with values in L2σ (R

n
+
). Moreover, such a redefined weak solution u satisfies for each

0 ≤ s ≤ t t

s


−


u(τ ),

∂φ

∂t
(τ )


+

∇u(τ ),∇φ(τ)


+

u · ∇u(τ ), φ(τ )


dτ = −


u(t), φ(t)


+

u(s), φ(s)


(2.2)

for all φ ∈ C1

[s, t];H1

0,σ (R
n
+
) ∩ Ln(Rn

+
)

, see Serrin [19, Theorem 4, p.79].

Let us define the Stokes operator Ar in Lrσ (R
n
+
), 1 < r < ∞. We have the following Helmholtz decomposition:

Lr(Rn
+
) = Lrσ (R

n
+
)⊕ Gr(Rn

+
) (direct sum)

where Gr(Rn) = {∇p ∈ Lr(Rn
+
); p ∈ Lrloc(R

n
+)}, see Borchers and Miyakawa [3] and also Simader and Sohr [20]. Let P

denote the projection operator from Lr(Rn
+
) to Lrσ (R

n
+
). The Stokes operator Ar is defined by Ar := −P∆ with domain

D(Ar) := W 2,r(Rn
+
)∩W 1,r

0 (Rn
+
)∩ Lrσ (R

n
+
). Since A2 is a nonnegative self-adjoint operator on L2σ (R

n
+
), A2 admits the spectral

decomposition, i.e., there uniquely exists a resolution of identity {Eλ}λ≥0 such that

A =


∞

0
λ dEλ.

For simplicity, we abbreviate Ar to A when r is known from the context.
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In this paper we establish a lower bound of the energy decay of weak solutions with (1.1) and characterize the initial
data which causes such a slow decay. For this purpose, let us recall the definition of the set Tm

α,γ ,δ(R
n):

Tm
α,γ ,δ(R

n) := {φ ∈ L2(Rn); |φ̂(ξ)| ≥ α|ξn|
m, |ξn| ≤ γ , |ξ ′

| ≤ δ},

for m ≥ 0, α, γ , δ > 0. In this definition, it should be noted that the direction to ξn does not have a special meaning. We
may replace ξn by any one direction ξj for j = 1, . . . , n.

Hence we impose on the initial data a the following assumption:

Assumption. We consider the initial data with the following form:
(A1) a = (a′(x′, xn), 0) ∈ L2σ (R

n
+
).

(A2) a′(x′, xn) = (a1(x′)η(xn), . . . , an−1(x′)η(xn)) =: a′′(x′)η(xn) with η ∈ L2(R+) satisfy |η∗(ξn)| > C for almost all
|ξn| ≤ δ̃ for some C > 0 and δ̃ > 0, where η∗ denotes the odd extension with respect to xn, i.e.,

η∗(xn) :=


η(xn), xn > 0,
−η(−xn) xn < 0.

(A3) a′′
∈ Tm

α,γ ,δ(R
n−1) for somem ≥ 0 and α, γ , δ > 0.

Remark 2.1. As an example of the initial data which satisfies (A1) and (A2), it suffices to take a′′
∈ L2σ (R

n−1). Furthermore,
we can find such an η ∈ L2(R+) as in (A2), see also the Appendix.

Now our results read:

Theorem 2.1. Let n ≥ 3, and let r and m satisfy either (i) or (ii):
(i) 1 < r ≤ 2n/(n + 2), 0 ≤ m < 1,
(ii) 2n/(n + 2) < r < 2n/(n + 1), 0 ≤ m < 2n/r − n − 1.
If a ∈ Lr(Rn

+
)∩L2σ (R

n
+
) satisfies the assumptions (A1)–(A3) for some α, γ , δ > 0, then there exist T > 1 and a constant C > 0

such that every weak solution u(t) of (N–S) with (1.1) fulfills the estimate,

∥u(t)∥2 ≥ Ct−
n+2m

4 (2.3)

for all t ≥ T .

Remark 2.2. (i) We note that (2.3) improves the result in [7] when 0 ≤ m < 1.
(ii) The estimate (2.3) inspires us that the optimal decay rate for such an initial data seems to be n/4. Indeed, by taking

m = 0 in (2.3), we obtain

Ct−
n
4 ≤ ∥u(t)∥2 ≤ Cr(1 + t)−

n
2


1
r −

1
2


, t > T , (2.4)

for a ∈ Lr(Rn
+
)∩ L2(Rn

+
), 1 < r < 2. Letting r → 1 in (2.4) formally, wemay expect an exact estimate both from below

and above such that

Ct−
n
4 ≤ ∥u(t)∥2 ≤ C(1 + t)−

n
4 , t ≥ T .

However, up to now, we do not establish any uniform estimate with respect to 1 < r < 2 on the constant Cr in (2.4).
(iii) In addition to the case m = 0, if |a′′(ξ ′)| ≤ M for near ξ ′

= 0 and |η∗(ξn)| ≤ M for near ξn = 0 then we obtain the
optimal decay rate n/4 for such an initial data, since it holds that

Ct−
n
4 ≤ ∥u(t)∥2 ≤ C(1 + t)−

n
4 , t ≥ T .

As an application of Theorem 2.1, we can show the asymptotic behavior in terms of the frequency or spectrum.

Theorem 2.2. Let n = 3, 4. Let r > 1 and m ≥ 0 be

1 < r <
n

n − 1
, 0 ≤ m <

n
r

− n + 1.

If a ∈ Lr(Rn
+
) ∩ L2σ (R

2
+
) satisfies assumptions (A1)–(A3) for some α, γ , δ > 0, then for every weak solution u(t) of (N–S)

with (1.1) there exist T > 0 and C = C(n, r,m, α, γ , δ, a, T ) > 0 such that∥Eλu(t)∥2

∥u(t)∥2
− 1

 ≤
C
λ
t−(

n
r −n+1−m) (2.5)

holds for all λ > 0 and for all t ≥ T .

Remark 2.3. (i) Since λ appears in the denominator in the right hand side in (2.5), it takes much time for the energy of weak
solutions of (N–S) to concentrate onto the small λ. (ii) For n ≥ 5, Theorem 2.2 still hold for the strong solutionwith the small
initial data.
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3. Preliminaries

We first introduce some specific properties of solutions, v = (v′, vn), v′
= (v1, . . . , vn−1), of the Stokes equations:

∂v

∂t
−1v + ∇p = 0 in Rn

+
× (0,∞)

div v = 0 in Rn
+

× (0,∞)
v = 0 on ∂Rn

+
× (0,∞)

v(0) = a in Rn
+
.

(S)

Ukai [25] gave a explicit solution formula for (S). To state Ukai’s formula we prepare some notations. Let R = (R′, Rn) with
R′

= (R1, . . . , Rn−1) and S = (S1, . . . , Sn−1) denote the Riesz transform over Rn and Rn−1, respectively. Each Rj (resp. Sj) is
a bounded linear operator on Lr(Rn) (resp. Lr(Rn−1)), 1 < r < ∞. For a function f (x′, xn), we understand that Sj acts as a
convolution with respect to the variables x′, so Sj is regarded as a bounded operator on both Lr(Rn) and Lr(Rn

+
), 1 < r < ∞.

Let B = Br = −∆ be the Laplacian on Rn
+
with domain D(B) := W 2,r(Rn

+
) ∩ W 1,r

0 (Rn
+
). It is well known that −B generates

a bounded analytic semigroup {e−tB
}t≥0 on Lr(Rn

+
), 1 < r < ∞. More precisely, we have

e−tBf = et∆f ∗

Rn

+

, for f ∈ Lr(Rn
+
), 1 < r < ∞,

where et∆ is the usual heat operator on Rn and f ∗ denotes the odd extension with respect to variable xn, i.e.,

f ∗(x′, xn) :=


f (x′, xn), xn > 0,
−f (x′,−xn), xn < 0.

The solution formula of Ukai [25] is now read:

Proposition 3.1 (Ukai [25]). For a ∈ Lrσ (R
n
+
), 1 < r < ∞, the solution v = (v′, vn) of (S) is expressed as

vn(t) = Ue−tB
[an + S · a′

], v′(t) = e−tB
[a′

− San] + Svn

where U is the bounded operator on Lr(Rn
+
), indeed, Uf = R′

· S(R′
· S − Rn)ef


Rn

+

, which is also expressed with the Fourier

transform on Rn−1 as

Uf (ξ ′, xn) = |ξ ′
|

 xn

0
e−|ξ ′

|(xn−y) f̂ (ξ ′, y) dy.

Here, ef denotes the zero extension of f from Rn
+
over Rn:

ef (x′, xn) =


f (x′, xn) xn > 0
0 xn < 0. (3.1)

Remark 3.1. In this paper, we use the Fourier transform with the following form:

f̂ (ξ) := (2π)−
n
2


Rn

e−ix·ξ f (x) dx, i :=
√

−1.

Furthermore, we note that the symbols of Riesz’s operator Rj and Sj are

σ(Rj) = −iξj/|ξ |, j = 1, . . . , n,
σ (Sj) = −iξj/|ξ ′

|, j = 1, . . . , n − 1,

which have opposite signs of ones in [25,3].

See [25] for the proof.
Let a ∈ Lrσ (R

n
+
) and put e−tAa = v(t)with the solution v(t) of (S). From Proposition 3.1, deriving the resolvent estimate

of the Stokes operator A, Borchers and Miyakawa [3] gave the following propositions:

Proposition 3.2 (Borchers and Miyakawa [3]). The family {e−tA
}t≥0 defines a bounded analytic semigroup of class C0 on

Lrσ (R
n
+
), 1 < r < ∞.

Proposition 3.3 ([3]).
(i) The estimate

∥∇
2u∥r ≤ C∥Aru∥r , u ∈ D(Ar), 1 < r < ∞,

holds with C independent of u.
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(ii) D(A1/2
r ) = W 1,r

0 (Rn
+
) ∩ Lrσ (R

n
+
), 1 < r < ∞, and we have

∥∇u∥r ≤ C∥A1/2
r u∥r , u ∈ D(A1/2

r )

with C independent of u.
(iii) If u ∈ D(Aαr ), 1 < r < ∞, 0 < α < 1, and if 0 < 1/q = 1/r − 2α/n < 1, then u ∈ Lq(Rn

+
) and we have the estimate

∥u∥q ≤ C∥Aαr u∥r , u ∈ D(Aαr )

with the constant C independent of u.
Here ∇

2u represents the second derivatives of u.

As an application of Propositions 3.2 and 3.3, we have the Lr–Lq estimates for the Stokes semigroup.

Proposition 3.4 ([25,3]). Let a ∈ L2σ (R
n
+
) ∩ Lr(Rn

+
) for some 1 ≤ r < ∞. Then the estimate

∥e−tAa∥q ≤ Ct−
n
2


1
r −

1
q


∥a∥r

holds with C independent of a and t > 0, provided either (i) 1 < r ≤ q < ∞; or (ii) 1 ≤ r < q ≤ ∞.

4. Slow decay of the Stokes flow

In this section, we study on the decay of the Stokes flow in the whole space Rn and the half-space Rn
+
.

Lemma 4.1 (The Whole Space). Let n ≥ 2 and put v(t) = e−tAa with the Stokes semigroup e−tA on L2σ (R
n). If a ∈ L2σ (R

n)
∩ Tm

α,γ ,δ(R
n) for some m ≥ 0 and α, γ , δ > 0, then v(t) satisfies

∥v(t)∥2 ≥ Ct−
n+2m

4 for t ≥ 1, (4.1)

where C = C(n,m, α, γ , δ) > 0.

Proof. By Plancherel’s theorem and Fubini’s theorem, we have

∥v(t)∥2
2 = ∥v̂(t)∥2

2 ≥


|ξn|≤γ , |ξ ′|≤δ

e−2t|ξ |2
|â(ξ)|2 dξ

≥ α2


|ξn|≤γ , |ξ ′|≤δ

e−2t|ξ |2
|ξn|

2m dξ

= α2


|ξn|≤γ

e−2tξ2n |ξn|
2m dξn


|ξ ′|≤δ

e−2t|ξ ′
|
2
dξ ′


=: α2I1 · I2,

for all t ≥ 0. By changing variables we have

I1 = 2
 γ

0
e−2tξ2n ξ 2mn dξn

= 2
 √

tγ

0
e−2ρ2


ρ
√
t

2m dρ
√
t

≥ 2t−
2m+1

2

 γ

0
e−2ρ2ρ2m dρ

for all t ≥ 1. Similarly by polar coordinates ξ ′
= ϱω ∈ Rn−1, we have

I2 = (n − 1)ωn−1

 δ

0
e−2tϱ2ϱn−2 dϱ

= (n − 1)ωn−1

 √
tδ

0
e−2ρ2


ρ
√
t

n−2 dρ
√
t

≥ (n − 1)ωn−1t−
n−1
2

 δ

0
e−2ρ2ρn−2 dρ,

for all t ≥ 1, where ωn−1 is the volume of the unit ball in Rn−1.
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Therefore, we obtain (4.1) with a constant

C2
= 2α2(n − 1)ωn−1

 γ

0
e−2ρ2ρ2m dρ

 δ

0
e−2ρ2ρn−2 dρ


.

This completes the proof of Lemma 4.1. �

Remark 4.1. We note that Lemma 4.1 still holds, if we replace a ∈ L2σ (R
n) ∩ Tm

α,γ ,δ(R
n) and e−tA by a ∈ Tm

α,γ ,δ(R
n) and et∆

respectively.

Next we consider the decay of the Stokes flow in the half-space Rn
+
.

Theorem 4.2 (The Half-Space). Let n ≥ 3 and put v(t) = e−tAa. If a ∈ L2σ (R
n
+
) satisfies assumptions (A1)–(A3), then the Stokes

flow v(t) satisfies

∥v(t)∥2 ≥ Ct−
n+2m

4 for t ≥ 1 (4.2)

where C = C(n,m, α, γ , δ) > 0.
Proof. Since an ≡ 0 and div a = 0 in the sense of distribution D ′(Rn

+
), we see that S · a′

= 0. By the Fourier transform in x′

we have

div a(ξ ′, xn) =

n−1
j=1

∂jaj(ξ ′, xn) =

n−1
j=1

iξjâj(ξ ′, xn) = 0.

Hence we see that

S · a′(ξ ′, xn) =

n−1
j=1

−
iξj
|ξ ′|

âj(ξ ′, xn) = 0. (4.3)

Therefore, by Ukai’s explicit representation formula of the Stokes flow in the half-space Rn
+
, we have vn(t) ≡ 0 and

v′(t) = e−tBa′. Moreover, we can regard v(t) = (v′(t), 0) as a odd vector field on the whole space Rn with respect to
xn. Then we have

∥v(t)∥2
L2(Rn

+
)

= ∥v′(t)∥2
L2(Rn

+
)
=

1
2
∥v′(t)∥2

L2(Rn)

=
1
2


Rn

|v̂′(ξ , t)|2 dξ

=
1
2


Rn

e−2t|ξ |2
|(a′)∗(ξ ′, ξn)|

2 dξ

=
1
2


Rn

e−2t|ξ |2
|a′′(ξ ′)η∗(ξn)|

2 dξ

=
1
2


Rn−1

e−2t|ξ ′
|
2
|a′′(ξ ′)|2 dξ ′


R
e−2tξ2n |η∗(ξn)|

2 dξn


=:

1
2
I1 · I2. (4.4)

By Lemma 4.1 and Remark 4.1, we obtain with some C = C(n − 1,m, α, γ , δ) > 0

I1 ≥ Ct−
n−1+2m

2 for t ≥ 1. (4.5)

On the other hand, since η∗(ξn) ≥ C for |ξn| ≤ δ̃, by changing variables we have

I2 ≥


|ξn|≤δ̃

Ce−2tξ2n dξn

= 2C
 δ̃

0
e−2tξ2n dξn

= 2C
 √

t δ̃

0
e−2ρ2 dρ

√
t

≥ 2Ct−
1
2

 δ̃

0
e−2ρ2 dρ (4.6)

for all t ≥ 1. Hence, by (4.4)–(4.6) we obtain (4.2). �
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5. Slow decay of the Navier–Stokes flow

In this section, we study the decay of the Navier–Stokes flow and give the proof of Theorem 2.1. To estimate the nonlinear
term, we introduce the following lemma which was proved by [9,3].

Lemma 5.1 ([9,3]). Let λ > 0. Then

|(u · ∇v, Eλφ)| ≤ Cλ
n+2
4 ∥u∥2∥v∥2∥φ∥2 (5.1)

for all u, v ∈ H1
0,σ (R

n
+
) and φ ∈ C∞

0,σ (R
n
+
).

Proof. Since div u = 0, by integration by parts, the Gagliardo–Nirenberg inequality and Proposition 3.3, we have

|(u · ∇v, Eλφ)| = |(u · ∇Eλφ, v)|
≤ ∥uv∥1∥∇Eλφ∥∞

≤ C∥u∥2∥v∥2∥∇Eλφ∥
1/2
2n ∥∇

2Eλφ∥
1/2
2n

≤ C∥u∥2∥v∥2∥A1/2Eλφ∥
1/2
2n ∥AEλφ∥

1/2
2n . (5.2)

Here we note that Eλφ ∈


∞

m=1 D(A
m
2 ) ⊂ D(A2n) for any λ > 0.

Since 1/2n = 1/2 − (n − 1)/2n, by the embedding inequality, we obtainA 1
2 Eλφ

2
2n

≤ C
A 1

2 +
n−1
4 Eλφ

2
2

≤ C
 λ

0
ρ1+ n−1

2 d∥Eρφ∥
2
2 ≤ Cλ

n+1
2 ∥Eλφ∥

2
2. (5.3)

Similarly, we obtain

∥AEλφ∥
2
2n ≤ C

A1+ n−1
4 Eλφ

2
2

≤ Cλ
n+3
2 ∥Eλφ∥

2
2. (5.4)

Hence, (5.2)–(5.4) imply (5.1). This completes the proof of Lemma 5.1. �

Next we refer to an upper bound of the energy decay of weak solutions with (1.1). The same results were proved by,
for instance, Wiegner [26] in the whole space, and Borchers and Miyakawa [4] in exterior domains. However, we give the
complete proof for the reader’s convenience.

Lemma 5.2. Let 1 ≤ r < 2 and a ∈ Lr(Rn
+
) ∩ L2σ (R

n
+
). Then every weak solution u(t) of (N–S) with (1.1) satisfies ∥u(t)∥2

= O(t−
n
2 (

1
r −

1
2 )) as t → ∞.

Proof. Let u be a weak solution of (N–S) with u(0) = a and satisfy the energy inequality:

∥u(t)∥2
2 + 2

 t

s
∥∇u(τ )∥2

2 dτ ≤ ∥u(s)∥2
2 (5.5)

for almost all s ≥ 0, including s = 0, and for all t ≥ s. Let λ = λ(t) be a smooth positive function on (0,∞). From the
estimate

∥∇u(t)∥2
2 = ∥A1/2u(t)∥2

2 =


∞

0
ρ d∥Eρu(t)∥2

2

≥


∞

λ(t)
ρ d∥Eρu(t)∥2

2

≥
λ(t)
2


∥u(t)∥2

2 − ∥Eλ(t)u(t)∥2
2


(5.6)

for all t > 0, and the energy inequality (5.5), we obtain

∥u(t)∥2
2 +

 t

s
λ(τ)∥u(τ )∥2

2 dτ ≤ ∥u(s)∥2
2 +

 t

s
λ(τ)∥Eλ(τ)u(τ )∥2

2 dτ . (5.7)

To estimate ∥Eλ(t)u(t)∥2, for each ϕ ∈ C∞

0,σ (R
n
+
) we choose φ(τ) := e−(t−τ)AEλ(t)ϕ as a test function of (2.2), which is

legitimate since Eλ(t)ϕ ∈ D(A) ∩ Ln(Rn
+
), and obtain


Eλ(t)u(t), ϕ


=

Eλ(t)e−(t−s)Au(s), ϕ


−

 t

s


u(τ ) · ∇u(τ ), Eλ(t)e−(t−τ)Aϕ


dτ (5.8)
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for all t > s ≥ 0. Therefore, we have with s = 0 in (5.8)

∥Eλ(t)u(t)∥2 ≤ ∥e−tAa∥2 + Cλ(t)
n+2
4

 t

0
∥u(σ )∥2

2 dσ . (5.9)

Substituting (5.9) into (5.7), we have the following inequality for y(τ ) := ∥u(τ )∥2
2:

y(t)− g(t, s)+

 t

s
λ(τ)y(τ ) dτ ≤ y(s) (5.10)

for a.e. s ∈ (0, t), where we put

g(t, s) := 2
 t

s


λ(τ)∥e−τAa∥2

2 + Cλ(τ)
n
2 +2

 τ

0
∥u(σ )∥2

2 dσ
2


dτ . (5.11)

Now we want to apply Gronwall’s lemma to (5.10) with respect to s. We set h(s) :=
 t
s λ(τ)y(τ ) dτ , which is almost

everywhere differential in (0, t)with h′
∈ L∞((ε, t)) for small ε > 0. From (5.10) we have

h′(τ ) = −λ(τ)y(τ ) ≤ −λ(τ)[y(t)− g(t, τ )+ h(τ )]. (5.12)

Let H ≥ 0 be a solution of the equation H ′(τ ) = λ(τ)H(τ ). Multiplying (5.12) by H and then integrating over (s, t) yields
H(t)− H(s)


y(t) ≤ H(s)h(s)+

 t

s
H ′(τ )g(t, τ ) dτ , (5.13)

since h(t) = 0. Applying (5.10) to the second term of the right hand side in (5.13) and integrating by parts, we obtain

H(t)y(t) ≤ H(s)y(s)−

 t

s
H(τ )

∂g
∂τ
(t, τ ) dτ , (5.14)

since g(t, t) = 0. Now we choose λ(τ) = mτ−1,m > 0, so that H(τ ) = τm. Since (5.14) holds for almost every s > 0 and
since y(τ ) is bounded, takingm > 0 sufficiently large we can pass to the limit s → 0 in (5.14) to obtain

tm∥u(t)∥2
2 ≤ 2

 t

0
mτm−1

∥e−τAa∥2
2 dτ + C

 t

0
m

n
2 +2τm−

n
2 −2

 τ

0
∥u(σ )∥2

2 dσ .
2

dτ . (5.15)

Since ∥u(σ )∥2
2 ≤ ∥a∥2

2 by the energy inequality, the last term of (5.15) is O(t1−n/2). Hence we see that ∥u(t)∥2
2 ≤ Ct−α ,

where α = min{n(1/r − 1/2), n/2 − 1}. By the same argument, we finally obtain ∥u(t)∥2
2 ≤ Ct−n(1/r−1/2).

This completes the proof of Lemma 5.2. �

Lemma 5.3. Let 1 ≤ r < 2 and a ∈ Lr(Rn
+
) ∩ L2σ (R

n
+
). We put v(t) = e−tAa. Then every weak solution u(t) of (N–S)

with (1.1) satisfies

∥u(t)− v(t)∥2 =



O

t−

n
r −

n
4 −

1
2


, n


1
r

−
1
2


< 1,

O

t−

n+2
4


log t


, n


1
r

−
1
2


= 1,

O

t−

n+2
4


, n


1
r

−
1
2


> 1,

(5.16)

as t → ∞.

Proof. Letw(t) := u(t)− v(t). Since u(t) and v(t) satisfy strong energy inequality (1.1), we obtain

∥w(t)∥2
2 + 2

 t

s
∥∇w(τ)∥2

2 dτ

= ∥u(t)∥2
2 + ∥v(t)∥2

2 − 2

u(t), v(t)


+ 2

 t

s


∥∇u(τ )∥2

2 + ∥∇v(τ)∥2
2 − 2


∇u(τ ),∇v(τ)


dτ

≤ ∥u(s)∥2
2 + ∥v(s)∥2

2 − 2

u(t), v(t)


− 4

 t

s


∇u(τ ),∇v(τ)


dτ , (5.17)
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for almost every s > 0, and for all t ≥ s. We substitute φ(τ) = v(τ) for the test function in (2.2) and obtain


u(t), v(t)


=

u(s), v(s)


− 2

 t

s


∇u(τ ),∇v(τ)


dτ −

 t

s


u(τ ) · ∇u(τ ), v(τ )


dτ (5.18)

for all t ≥ s > 0, since dv/dt = −Av. Hence (5.17) and (5.18) yield

∥w(t)∥2
2 + 2

 t

s
∥∇w(τ)∥2

2 dτ ≤ ∥w(s)∥2
2 + 2

 t

s


u(τ ) · ∇u(τ ), v(τ )


dτ (5.19)

for almost every s > 0 and all t ≥ s. We estimate the last term in (5.19), Since (u · ∇v, v) = 0, by Proposition 3.4 and the
Hölder and the Young inequalities we haveu(τ ) · ∇u(τ ), v(τ )

 =
u(τ ) · ∇w(τ), v(τ )


≤ ∥u(τ )∥2∥∇w(τ)∥2∥v(τ)∥∞

≤ C∥u(τ )∥2∥∇w(τ)∥2 τ
−

n
2r ∥a∥r

≤
1
2
∥∇w(τ)∥2

2 + Cτ−
n
r ∥a∥2

r ∥u(τ )∥
2
2 (5.20)

for all τ > 0. The remaining argument is nearly the same as in the proof of Lemma 5.2. Let λ(t) be the same one in the proof
of Lemma 5.2. Similarly, choosing φ(τ) = e−(t−τ)AEλ(t)ϕ, ϕ ∈ C∞

0,σ (R
n
+
) as the test function in (2.2), we obtain

∥Eλ(t)w(t)∥2
2 ≤ Cλ(t)

n
2 +1

 t

0
∥u(σ )∥2

2 dσ
2

(5.21)

for all t > 0. Putting y(t) := ∥w(t)∥2
2 and

g(t, s) := C
 t

s
λ(τ)

n
2 +2

 τ

0
∥u(σ )∥2

2 dσ
2

dτ + C∥a∥2
r

 t

s
τ−

n
r ∥u(τ )∥2

2 dτ ,

finally we obtain with λ(t) = mt−1 for sufficient largem > 0,

tm∥w(t)∥2
2 ≤ Cm

n
2 +2

 t

0
τm−

n
2 −2

 τ

0
∥u(σ )∥2

2 dσ
2

dτ + C∥a∥2
r

 t

0
τm−

n
r ∥u(τ )∥2

2 dτ (5.22)

for t > 0.
Now we note that by Lemma 5.2 every weak solution of (N–S) with (1.1) satisfies

∥u(t)∥2
2 ≤ Ct−n


1
r −

1
2


,

if a ∈ Lr(Rn
+
) ∩ L2σ (R

n
+
), 1 ≤ r < 2.

First we consider the case n(1/r − 1/2) < 1. Since ∥u(t)∥2
2 ≤ Ct−n(1/r−1/2), (5.22) yields

∥w(t)∥2
2 ≤ Ct1+

n
2 −

2n
r .

We next consider the case n(1/r − 1/2) = 1. Since ∥u(t)∥2
2 ≤ C(1 + t)−1 we have

∥w(t)∥2
2 ≤ C


t−

n
2 −1log(1 + t)

2
+ t−

n
r log(1 + t)


≤ Ct−

n
2 −1log(1 + t)

2
for large t > 0.

Finallywe consider the case n(1/r−1/2) > 1. Since ∥u(t)∥2
2 ≤ C(1+t)−1−β for someβ > 0, and so


∞

0 ∥u(τ )∥2
2 dτ < ∞,

(5.22) gives

∥w(t)∥2
2 ≤ C


t−1− n

2 + t−
n
r


.

Since 1 + n/2 < n/r , we obtain the desired result. The proof of Lemma 5.3 is complete. �
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5.1. Completion of the proof of Theorem 2.1

Let v(t) = e−tAa. By Theorem 4.2 and Lemma 5.3, it suffices to show that

lim
t→∞

∥u(t)− v(t)∥2

∥v(t)∥2
= 0. (5.23)

Indeed, under the condition (5.23), there exists T ≥ 1 such that
∥u(t)− v(t)∥2

∥v(t)∥2
≤

1
2

for all t ≥ T . Hence, by the triangle inequality and Theorem 4.2 we have

∥u(t)∥2 ≥ ∥v(t)∥2 − ∥u(t)− v(t)∥2

= ∥v(t)∥2


1 −

∥u(t)− v(t)∥2

∥v(t)∥2


≥

1
2
∥v(t)∥2

≥ Ct−
n+2m

4

for all t ≥ T .
Now it remains to prove (5.23). First we consider the case 1 < r < 2n/(n+2). The assumption (i) implies n(1/r−1/2) >

1 and (n + 2m)/4 < (n + 2)/4. Hence, from Theorem 4.2 and Lemma 5.3 it follows that

∥u(t)− v(t)∥2

∥v(t)∥2
≤ C

t−
n+2
4

t−
n+2m

4
→ 0,

as t → ∞.
Next we consider the case r = 2n/(n + 2). Sincem < 1 and n(1/r − 1/2) = 1 by assumption (i), we have

∥u(t)− v(t)∥2

∥v(t)∥2
≤ C

t−
n+2
4 log t

t−
n+2m

4

≤ Ct−ε log t → 0,

as t → ∞, where ε := (1 − m)/2 > 0.
Finally we consider the case 2n/(n + 2) < r < 2n/(n + 1). Assumption (ii) implies n(1/r − 1/2) < 1 and (n + 2m)/4

< n/r − n/4 − 1/2. Hence, we obtain

∥u(t)− v(t)∥2

∥v(t)∥2
≤ C

t−

n
r −

n
4 −

1
2


t−

n+2m
4

→ 0,

as t → ∞. Since all constants which appear in the proof of Lemmas 5.2 and 5.3 are independent of u, we can choose T > 0
independently of u. The proof of Theorem 2.1 is complete. �

6. Proof of Theorem 2.2

In this section we consider the concentration phenomenon of the energy of weak solutions of (N–S). For this purpose,
the following lemmas play an important role in the proof.

Lemma 6.1. Let n ≥ 3 and let 1 < r ≤ n/(n − 1). If a ∈ Lr(Rn
+
) ∩ L2σ (R

n
+
), Then every weak solution u(t) of (N–S) lies in

Lr(Rn
+
) for all t ≥ 0.

Proof. For each ϕ ∈ C∞

0,σ (R
n
+
) and t > 0, we put φ(τ) := e−(t−τ)Aϕ. We substitute φ for the test function in (2.2) with s = 0

and obtain
u(t), ϕ


=

a, e−tAϕ


+

 t

0


u(τ ) · ∇u(τ ), φ(τ )


dτ . (6.1)

Since 2 < 2r ′/(r ′
+ 2) < 2n/(n + 2), By the Hölder and the Sobolev inequalities we haveu(τ ) · ∇u(τ ), e−(t−τ)Aϕ

 ≤ ∥e−(t−τ)Aϕ∥r ′∥u(τ )∥2r ′/(r ′+2)∥∇u(τ )∥2

≤ C∥ϕ∥r ′∥u(τ )∥
1−n/r ′

2 ∥u(τ )∥n/r ′

2n/(n+2)∥∇u(τ )∥2

≤ C∥ϕ∥r ′∥u(τ )∥
1−n/r ′

2 ∥∇u(τ )∥1+n/r ′

2 . (6.2)
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From energy inequality (1.1) with s = 0, we have the uniform estimate ∥u(t)∥2 ≤ ∥a∥2 for all t ≥ 0. Also by the Young
inequality we have t

0
∥∇u(τ )∥1+n/r ′

2 dτ ≤ t1/2−n/2r ′
 t

0
∥∇u(τ )∥2

2 dτ
1/2+n/2r ′

≤ t1/2−n/2r ′
∥a∥1+n/r ′

2 . (6.3)

Hence we obtain by (6.1)–(6.3)

∥u(t)∥r ≤ C

∥a∥r + t1/2−n/2r ′

∥a∥2
2


< ∞ (6.4)

for all t ≥ 0. The proof of Lemma 6.1 is complete. �

Lemma 6.2. Let n = 3, 4 and let r and m satisfy

1 < r <
n

n − 1
, 0 ≤ m <

n
r

− n + 1.

If a ∈ Lr(Rn
+
) ∩ L2σ (R

2
+
) satisfies the assumptions (A1)–(A3) for some α, γ , δ > 0, then for every weak solution u(t) of (N–S)

with (1.1) satisfies

∥∇u(t)∥2
2

∥u(t)∥2
2

= O

t−(

n
r −n+1−m)


(6.5)

as t → ∞.

Proof. By the well-known Leray’s structure theorem, every weak solution of (N–S) with (1.1) becomes a strong solution
after some definite time T which depends on u. Furthermore, it is shown by Kozono [10] that the strong solution of (N–
S) decays in the same way as the Stokes flow e−tAa as t → ∞. With the aid of Lemma 6.1, since a ∈ Lr(Rn

+
) ∩ L2σ (R

n
+
),

we have ∥∇u(t)∥2 = Ct−n(1/r−1/2)/2−1/2 for sufficiently large t . Here we should note that C depends on u and T . Hence by
Theorem 2.1, we obtain (6.5). �

6.1. Completion of the proof of Theorem 2.2

For each λ > 0, we have the estimate from below as

∥∇u(t)∥2
2 = ∥A1/2u(t)∥2

2 =


∞

0
ρ d∥Eρu(t)∥2

2

≥


∞

λ

ρ d∥Eρu(t)∥2
2

≥ λ


∞

λ

d∥Eρu(t)∥2
2 = λ


∥u(t)∥2

2 − ∥Eλu(t)∥2
2


. (6.6)

Dividing both sides of (6.6) by λ∥u(t)∥2
2, we obtain

1 −
∥Eλu(t)∥2

2

∥u(t)∥2
2

≤
1
λ

∥∇u(t)∥2
2

∥u(t)∥2
2
.

Hence by Lemma 6.2, there exist T > 0 and C > 0 such that∥Eλu(t)∥2
2

∥u(t)∥2
2

− 1
 ≤

C
λ
t−(

n
r −n+1−m)

for all t ≥ T , where C is independent of λ > 0. This completes the proof of Theorem 2.2. �
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Appendix. Example of initial data

We construct an example of the initial data which belongs to Tm
α,γ ,δ(R

n) for all dimension n ≥ 2. In this paper, we are
interested in the exponentm of Tm

α,γ ,δ(R
n) as in Theorems 2.1 and 2.2.

We first show the example of initial data by induction. Consider a′
∈ Tm

α,γ ,δ(R
n−1) for someα, γ , δ > 0 and takeη ∈ L2(R)

with |η̂(ξ)| ≥ C for all |ξ | ≤ δ̃ with some C > 0 and δ̃ > 0. Setting a(x′, xn) := a′(x′)η(xn), we have

|â(ξ)| = |a′(ξ ′)η̂(ξn)| ≥ Cα|ξn−1|
m

for all |ξ ′′
| ≤ δ, |ξn−1| ≤ γ and |ξn| ≤ δ̃, where ξ ′′

= (ξ1, . . . , ξn−1). Therefore, we see that a ∈ Tm
α′,γ ′,δ′

(Rn) for some
α′, γ ′, δ′ > 0.

Now it remains to show for n = 2. Moreover, we get the initial data when the dimension n is even. Let n = 2k for some
k ∈ N. For each 1 ≤ j ≤ k, we put

Mj :=


0 R2j

−R2j−1 0


where Rju(ξ) = −iξjû(ξ)/|ξ |, j = 1, . . . , n denotes the Riesz transform on Rn. Putting

a =

M1 · · · 0
...

. . .
...

0 · · · Mk



e−|x|2

...

e−|x|2

 ,
we see that

â(ξ) = Ce−|ξ |2/4


−i
ξ2

|ξ |
, i
ξ1

|ξ |
, . . . ,−i

ξ2k

|ξ |
, i
ξ2k−1

|ξ |


. (A.1)

Since iξ · â(ξ) = 0, we obtain div a = 0. On the other hand, for any fixed δ > 0, (A.1) yields

|â(ξ)| ≥ Ce−δ2/4

for all |ξ | ≤ δ. So it follows that a ∈ T 0
α,γ ,δ(R

n) ∩ L2σ (R
n
+
) for some α, γ , δ > 0. Moreover, we see that a ∈ Lr(Rn) for

1 < r < ∞.
Next we construct an example of η as in (A2). Take a Schwartz function ψ ∈ S (R) such that it is an even function and

|ψ̂(ξ)| ≥ C near ξ = 0. Set η = Hψ |R+
, where Hψ(ξ) = −i sgn ξ ψ̂(ξ) is the Hilbert transform. Since Hψ is an odd

function on R, we see that η∗(x) = Hψ(x) and |η∗(ξ)| ≥ C for |ξ | ≤ δ̃ with some δ̃ > 0. Furthermore, we have η ∈ Lr(R)
for 1 < r < ∞.
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