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1. Introduction

LetΩ ⊂ Rn be a bounded regular domain [10]. This paper deals with quasilinear elliptic equations of the form

− divA(x,∇u) = −divF(x) (1.1)

where F(x) ∈ L
r

p−1 (Ω,Rn) with max{1, p − 1} < r ≤ p, 1 < p < ∞, and A : Ω × Rn
→ Rn is a Carathéodory mapping

satisfying the following assumptions for fixed 0 < α ≤ β < ∞:
(i) the Lipschitz continuity

|A(x, ξ)− A(x, ζ )| ≤ β|ξ − ζ |p−1

(ii) the monotonicity inequality

⟨A(x, ξ)− A(x, ζ ), ξ − ζ ⟩ ≥ α|ξ − ζ |2(|ξ | + |ζ |)p−2

(iii) the homogeneity condition

A(x, λξ) = λ|λ|p−2A(x, ξ)

for almost every x ∈ Ω and all ξ, ζ ∈ Rn, λ ∈ R.
The obstacle problem is a classic topic in the theory of variational inequalities and free boundary problems. The problem

is to find the equilibriumposition of an elasticmembranewhose boundary is held fixed, andwhich is constrained to lie above
a given obstacle. The mathematical formulation of the problem is to seek minimizers of the Dirichlet energy functional,

I[u] =


Ω

|∇u(x)|pdx (1.2)
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in addition to satisfying Dirichlet boundary conditions corresponding to the fixed boundary of the membrane, the functions
u are in addition constrained to be greater than some given obstacle function, see [1,5,17,21]. As its generalization, the
theory of the obstacle problem is extended to other divergence form uniformly elliptic operators or degenerate elliptic
operators A and their associated energy functionals, see [7]. The double obstacle problem is a problem in the field of partial
differential equations with constraints limiting the solution from attaining too high and low values. It belongs to the class of
free boundary problems, which comprises the branch of partial differential equations with an unknown boundary-the free
boundary, is of great interest and has obtained many important results, see [13,14,16].

The theory of very weak solutions of (1.1) or minimizers of a variational integral (1.2) has been initiated by Iwaniec and
Sbordone [10]. Recall that a local minimizer of I is a function u ∈ W 1,p(Ω) such that I[u + φ] ≥ I[u] for each φ ∈ W 1,p

0 (Ω),
that is:

Ω


|∇u + ∇φ|

p
− |∇u|p


dx ≥ 0 (1.3)

for allφ ∈ C∞

0 (Ω). Note that | |ξ |
p
−|ζ |

p
| ≤ p|ξ−ζ |(|ξ |+|ζ |)p−1, it is clear that it is only necessary to assume u ∈ W 1,r(Ω)

with r ≥ max{1, p − 1} to ensure (1.3) is meaningful, see [10,8,19]. They pointed out the necessity to build up estimates
below the natural exponent p and gave the definition of very weak solutions of (1.1):

Definition 1.1 ([10]). Let F(x) ∈ L
r

p−1 (Ω)with max{1, p − 1} < r ≤ p. A very weak solution u of (1.1) is an element of the
Sobolev spaceW 1,r

loc (Ω) such that
Ω

⟨A(x,∇u),∇φ⟩dx =


Ω

⟨F ,∇φ⟩dx (1.4)

for all φ ∈ W 1, r
r−p+1 (Ω)with compact support.

The main tool they used is the Hodge decomposition and for equations of the form (1.1) they proved that if r is sufficiently
close to p, then a very weak solution is a weak solution. Later other authors used the same technique to obtain many results
under various conditions, see [2,4,12,18,20,22], and the key point was to use the Hodge decomposition in construction of a
test function. Especially, in the case when the right hand-side of (1.1) is not in divergence form, other methods, based on
the techniques of harmonic analysis, were established to construct test functions to deal with the regularity of very weak
solutions, see [11,3,6]. Based on the close relationship between A-harmonic equation and the obstacle problem, see [7], we
extend our study of very weak solutions to the double obstacle problems.

Suppose that θ ∈ W 1,r(Ω), and that ϕ,ψ : Ω → [−∞,+∞]. Let

K r,θ
ϕ,ψ (Ω) =


u ∈ W 1,r(Ω) : ϕ ≤ u ≤ ψ a.e.Ω, u − θ ∈ W 1,r

0 (Ω)

.

Here the function θ is called a boundary datum, and ϕ,ψ lower obstacle and upper obstacle, respectively.
Dealing with very weak solutions requires some estimates below the natural exponent. The key tool of the paper is the

following Hodge decomposition.

Lemma 1.2 ([10, Hodge Decomposition]). Let Ω ⊂ Rn be a regular domain andw ∈ W 1,r
0 (Ω), r > 1, and let −1 < ε < r −1.

Then there exist φ ∈ W
1, r

1+ε
0 (Ω) and a (divergence free) function H ∈ L

r
1+ε
0 (Ω) such that

|∇w|
ε
∇w = ∇φ + H.

Moreover

∥H∥ r
1+ε

≤ C |ε|∥∇w∥
1+ε
r

where C = C(r,Ω).

For all u, v ∈ K r,θ
ϕ,ψ (Ω), we apply the Hodge decomposition withw = u − v and ε = r − p yield that

|∇(v − u)|r−p
∇(v − u) = ∇φv,u + Hv,u (1.5)

where φv,u ∈ W
1, r

r−p+1
0 (Ω) and Hv,u ∈ L

r
r−p+1 (Ω) is divergence free, and satisfy the following estimates

∥Hv,u∥ r
r−p+1

≤ C(p − r)∥∇(v − u)∥r−p+1
r

∥∇φv,u∥ r
r−p+1

≤ C∥∇(v − u)∥r−p+1
r .

(1.6)

Notice that
φv,u = −φu,v, Hv,u = −Hu,v (1.7)

by the uniqueness of the Hodge decomposition.
Now we give the definition of very weak solutions to the K r,θ

ϕ,ψ -obstacle problem.
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Definition 1.3. A function u ∈ K r,θ
ϕ,ψ (Ω) is called a very weak solution to the K r,θ

ϕ,ψ -obstacle problem associated with
A-harmonic Eq. (1.1) if

Ω

⟨A(x,∇u), |∇(v − u)|r−p
∇(v − u)⟩dx ≥


Ω

⟨A(x,∇u),Hv,u⟩dx +


Ω

⟨F ,∇φv,u⟩dx (1.8)

whenever v ∈ K r,θ
ϕ,ψ (Ω) and Hv,u,∇φv,u come from (1.5).

Remark. (a) The term ‘‘very weak solution’’ means the Sobolev integrability exponent r of u can be below the natural
exponent p.

(b) If r = p, then by the uniqueness of the Hodge decomposition we have Hv,u = 0. So then the above definition about very
weak solution agrees with the usual weak solution, i.e., (1.8) is simplified into

Ω

⟨A(x,∇u)− F ,∇(v − u)⟩dx ≥ 0. (1.9)

Proceeding the proof similarly as [15] we know that the problem (1.9) admits a unique solution.

The study of very weak solutions of double obstacle problems has aroused deep concern recently. There have beenmany
results abut the regularity of very weak solutions of double obstacle problems, such as, higher integrability [22] and local
boundedness [20]. In this paper, we focus on the existence and uniqueness of very weak solutions, and then we derive
its property as the quasiminimizer of the r-Dirichlet integral and finally a convergence is established for varying obstacle
functions.

2. Main results

2.1. Uniqueness and existence

In this section, we prove the uniqueness and the existence of very weak solutions to the obstacle problem (1.8) if r is
sufficiently close to p. We prove the following

Theorem 2.1. There exists r0 = r0(r, p, α, β,Ω) > 0 such that for |p − r| < r0 and F ,G ∈ L
r

p−1 (Ω,Rn), each of the two
double obstacle problems

Ω

⟨A(x,∇u1), |∇(v − u1)|
r−p

∇(v − u1)⟩dx ≥


Ω

⟨A(x,∇u1),Hv,u1⟩dx +


Ω

⟨F ,∇φv,u1⟩dx (2.1)

and 
Ω

⟨A(x,∇u2), |∇(v − u2)|
r−p

∇(v − u2)⟩dx ≥


Ω

⟨A(x,∇u2),Hv,u2⟩dx +


Ω

⟨G,∇φv,u2⟩dx (2.2)

has a unique solution u1, u2 ∈ K r,θ
ϕ,ψ respectively provided θ ∈ W 1,p(Ω), and it holds

∥u1 − u2∥W1,r
0 (Ω)

≤ C∥F − G∥

1
p−1

L
r

p−1 (Ω,Rn)
(2.3)

where C = C(n, r, p, α, β,Ω).

Remark. The assumption θ ∈ W 1,p(Ω) is only needed to derive the result of the existence.

Proof. For u1, u2 ∈ K r,θ
ϕ,ψ , we have by applying (1.5)–(1.7) that

|∇(u1 − u2)|
r−p

∇(u1 − u2) = ∇φu1,u2 + Hu1,u2

|∇(u2 − u1)|
r−p

∇(u2 − u1) = ∇φu2,u1 + Hu2,u1

(2.4)

and

∥Hu1,u2∥ r
r−p+1

= ∥Hu2,u1∥ r
r−p+1

≤ C(p − r)∥∇(u1 − u2)∥
r−p+1
r

∥∇φu1,u2∥ r
r−p+1

= ∥∇φu2,u1∥ r
r−p+1

≤ C∥∇(u1 − u2)∥
r−p+1
r .

(2.5)
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Taking v = u2 and v = u1 in (2.1) and (2.2), respectively, implies that
Ω

⟨A(x,∇u1)− A(x,∇u2), |∇(u1 − u2)|
r−p

∇(u1 − u2)⟩dx

≤


Ω

⟨A(x,∇u1)− A(x,∇u2),Hu1,u2⟩dx +


Ω

⟨F − G,∇φu1,u2⟩dx. (2.6)

On the one hand, it follows from the monotonicity inequality (ii) that
Ω

⟨A(x,∇u1)− A(x,∇u2), |∇(u1 − u2)|
r−p

∇(u1 − u2)⟩dx ≥ α


Ω

|∇(u1 − u2)|
rdx = α∥∇(u1 − u2)∥

r
r . (2.7)

On the other hand, we have by the Lipschitz continuity (i), Hölder inequality, (2.4) and (2.5) that
Ω

⟨A(x,∇u1)− A(x,∇u2),Hu1,u2⟩dx ≤ β


Ω

|∇(u1 − u2)|
p−1

|Hu1,u2 |dx

≤ β∥∇(u1 − u2)∥
p−1
r ∥Hu1,u2∥ r

r−p+1

≤ βC(p − r)∥∇(u1 − u2)∥
r
r (2.8)

and 
Ω

⟨F − G,∇φu1,u2⟩dx

=


Ω

⟨F − G, |∇(u1 − u2)|
r−p

∇(u1 − u2)− Hu1,u2⟩dx

≤


Ω

|F − G| |Hu1,u2 |dx +


Ω

|F − G| |∇(u1 − u2)|
r−p+1dx

≤ ∥F − G∥ r
p−1

∥Hu1,u2∥ r
r−p+1

+ ∥F − G∥ r
p−1

∥∇(u1 − u2)∥
r−p+1
r

≤ C(p − r)∥F − G∥ r
p−1

∥∇(u1 − u2)∥
r−p+1
r + ∥F − G∥ r

p−1
∥∇(u1 − u2)∥

r−p+1
r . (2.9)

Inserting (2.7)–(2.9) into (2.6), we obtain
α − βC(p − r)


∥∇(u1 − u2)∥

p−1
r ≤


1 + C(p − r)


∥F − G∥ r

p−1
.

Choosing r0 such that for |p − r| < r0 we have α − βC(p − r) > 0, and therefore we have

∥∇(u1 − u2)∥
p−1
r ≤ C∥F − G∥ r

p−1

for |p − r| < r0. Since u1 − θ ∈ W 1,r
0 (Ω) and u2 − θ ∈ W 1,r

0 (Ω), we get u1 − u2 ∈ W 1,r
0 (Ω). Thus the Poincaré inequality

yields

∥u1 − u2∥Lr (Ω) ≤ C(n, r,Ω)∥∇(u1 − u2)∥Lr (Ω).

Combined the above two inequalities, (2.3) holds. Inequality (2.3) implies the uniqueness in Theorem 2.1.
It remains to prove existence. We prove it by an approximation argument. For F ∈ L

r
p−1 (Ω,Rn), let Fj ∈ L

p
p−1 (Ω,Rn) be

mappings converging to F in L
r

p−1 (Ω,Rn) and let uj ∈ K
p,θ
ϕ,ψ ⊂ K r,θ

ϕ,ψ be the unique solutions of the problem
Ω

⟨A(x,∇uj)− Fj,∇φv,uj⟩dx ≥ 0 (2.10)

whenever v ∈ K
p,θ
ϕ,ψ (Ω), by Remark (b). We use inequality (2.3) to get

∥uj − uk∥W1,r
0 (Ω)

≤ C∥Fj − Fk∥
1

p−1

L
r

p−1 (Ω,Rn)
(2.11)

which implies that uj is a Cauchy sequence inW 1,r
0 (Ω). Let u ∈ W 1,r

0 (Ω) be the limit of uj. Let k tends to ∞ in (2.11) yields

∥uj − u∥W1,r
0 (Ω)

≤ C∥Fj − F∥

1
p−1

L
r

p−1 (Ω,Rn)
. (2.12)
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Then, by (2.12) and the uniqueness of the Hodge decomposition, (2.10) yields that
Ω

⟨A(x,∇u)− F ,∇φv,u⟩dx ≥ 0 (2.13)

whenever v ∈ K
p,θ
ϕ,ψ (Ω).

Moreover, for allv ∈ K r,θ
ϕ,ψ (Ω), sincev−θ ∈ W 1,r

0 (Ω), then there exists φn ∈ C∞

0 (Ω) such that φn →v−θ inW 1,r(Ω).
Recall that θ ∈ W 1,p(Ω), we then have

φn + θ →v in W 1,r(Ω)

φn + θ ∈ W 1,p(Ω)

(φn + θ)− θ ∈ W 1,p
0 (Ω)

ϕ ≤ (φn + θ) ≤ ψ a.e.Ω when n sufficiently large.

So then taking v = (φn + θ) ∈ K
p,θ
ϕ,ψ (Ω) in (2.13) and taking n → ∞ yield

Ω

⟨A(x,∇u)− F ,∇φv,u⟩dx ≥ 0

wheneverv ∈ K r,θ
ϕ,ψ (Ω), which means that u is a very weak solution. The theorem follows. �

2.2. Quasiminimizers

In this paper, we study some properties of very weak solutions to the K r,θ
ϕ,ψ -obstacle problem associated with (1.1).

As a generalization of the weak solution to the single obstacle problem, we firstly prove that very weak solutions keep the
property as quasiminimizers to the r-Dirichlet integral in K r,θ

ϕ,ψ (Ω), that is:

Theorem 2.2. Suppose that u is a very weak solution to the K r,θ
ϕ,ψ -obstacle problem, then there exists r0 = r0(r, p, α, β) > 0

such that for |p − r| < r0 and for all v ∈ K r,θ
ϕ,ψ (Ω), it holds

Ω

|∇u|rdx ≤ C


Ω

|∇v|rdx +


Ω

|F |
r

p−1 dx


where C = C(r, p, α, β).

Proof. For u a very weak solution and all v ∈ K r,θ
ϕ,ψ (Ω), write

E(v, u) = |∇(v − u)|r−p
∇(v − u)+ |∇u|r−p

∇u.

According to the elementary inequality [9],

| |X |
−ε X − |Y |

−ε Y | ≤ 2ε
1 + ε

1 − ε
|X − Y |

1−ε, X, Y ∈ Rn, 0 ≤ ε < 1 (2.14)

and by applying (2.14) with

ε = p − r, X = ∇(v − u), Y = −∇u

we can derive that

|E(v, u)| ≤ 2p−r 1 + p − r
1 − p + r

|∇v|1−p+r . (2.15)

We then have by the definition (1.8) that
Ω

⟨A(x,∇u), |∇u|r−p
∇u⟩dx =


Ω

⟨A(x,∇u), E(v, u)⟩dx −


Ω

⟨A(x,∇u), |∇(v − u)|r−p
∇(v − u)⟩dx

≤


Ω

⟨A(x,∇u), E(v, u)⟩dx −


Ω

⟨A(x,∇u),Hv,u⟩dx −


Ω

⟨F ,∇φv,u⟩dx. (2.16)

On the one hand, the monotonicity inequality (ii) yields that
Ω

⟨A(x,∇u), |∇u|r−p
∇u⟩dx ≥ α


Ω

|∇u|rdx. (2.17)
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On the other hand, by using the Hölder inequality, we have from (2.15), (2.16) and (1.6) that
Ω

⟨A(x,∇u), E(v, u)⟩dx ≤ C(p, r, β)

Ω

|∇u|p−1
|∇v|1−p+rdx

≤ C∥∇u∥p−1
r ∥∇v∥r−p+1

r
Ω

⟨A(x,∇u),Hv,u⟩dx ≤ β


Ω

|∇u|p−1
|Hv,u|dx

≤ β∥∇u∥p−1
r ∥Hv,u∥ r

r−p+1

≤ C(p − r)∥∇u∥p−1
r ∥∇(v − u)∥r−p+1

r
Ω

⟨F ,∇φv,u⟩dx ≤


Ω

|F | |∇φv,u|dx

≤ ∥F∥ r
p−1

∥∇φv,u∥ r
r−p+1

≤ C∥F∥ r
p−1

∥∇(v − u)∥r−p+1
r .

Inserting the above inequalities and (2.17) into (2.16), we obtain
Ω

|∇u|rdx ≤ C∥∇u∥p−1
r ∥∇v∥r−p+1

r + C(p − r)∥∇u∥p−1
r ∥∇v∥r−p+1

r

+ C(p − r)∥∇u∥r
r + C∥F∥ r

p−1
∥∇v∥r−p+1

r + C∥F∥ r
p−1

∥∇u∥r−p+1
r

where C = C(r, p, α, β). Next we apply Young’s inequality

ab ≤ εat + ε−1/(t−1)bt/(t−1), ε > 0 and t > 1

yields that

∥∇u∥r
r ≤ ε∥∇u∥r

r + CC1(ε, r, p)∥∇v∥r
r + ε∥∇u∥r

r + (p − r)CC1(ε, r, p)∥∇v∥r
r

+ C(p − r)∥∇u∥r
r + ε∥F∥

r
p−1
r

p−1
+ CC1(ε, r, p)∥∇v∥r

r + ε∥∇u∥r
r + CC1(ε, r, p)∥F∥

r
p−1
r

p−1

= (3ε + C(p − r))∥∇u∥r
r + (ε + CC1(ε, r, p))∥F∥

r
p−1
r

p−1
+ (p − r + 2)CC1(ε, r, p)∥∇v∥r

r (2.18)

where C = C(r, p, α, β). Let ε small enough and choosing r0 such that for |p − r| < r0, we have (3ε + C(p − r)) < 1/2.
Therefore we obtain from (2.18) that

∥∇u∥r
r ≤ C


∥∇v∥r

r + ∥F∥

r
p−1
r

p−1


where C = C(r, p, α, β). The theorem follows. �

Remark. In otherwords, the theorem expresses that among all functions v having the same boundary values as u andwhich
is bounded by ϕ andψ as their obstacles, the solution u has the least r-Dirichlet integral. When r = p, the conclusion agrees
with the classic result, see [7].

2.3. Stability of very weak solutions

The last section presents the stability of very weak solutions about varying obstacle functions. Suppose that obstacle
sequences {ϕj} and {ψj}, converging to ϕ and ψ , respectively. We consider the sequence of sets

K r,θ
ϕj,ψj

(Ω) =


u ∈ W 1,r(Ω) : ϕj ≤ u ≤ ψj a.e.Ω, u − θ ∈ W 1,r

0 (Ω)


.

For such {ϕj}, {ψj} and F(x) ∈ L
r

p−1 (Ω), we apply Theorem 2.1 and obtain that there exists unique solution uj ∈ K r,θ
ϕj,ψj

to

the K r,θ
ϕj,ψj

-obstacle problem, i.e. it holds
Ω

⟨A(x,∇uj), |∇(v − uj)|
r−p

∇(v − uj)⟩dx ≥


Ω

⟨A(x,∇uj),Hv,uj⟩dx +


Ω

⟨F ,∇φv,uj⟩dx

whenever v ∈ K r,θ
ϕj,ψj

.
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To establish the convergence of solutions uj, we assume that the sequence ϕj converges to ϕ from below while ψj
converges to ψ from above.

Theorem 2.3. Under the hypotheses above, we obtain that uj → u in W 1,r(Ω) and the limit function u is a very weak solution
to the K r,θ

ϕ,ψ -obstacle problem.

Proof. For all v ∈ K r,θ
ϕ,ψ (Ω), since ϕj ≤ ϕ ≤ ψ ≤ ψj and v − θ ∈ W 1,r

0 (Ω), we get v ∈ K r,θ
ϕj,ψj

(Ω) for all j ∈ N. Fix

v0 ∈ K r,θ
ϕj,ψj

(Ω) and Theorem 2.2 implies that


Ω

|∇uj|
rdx ≤ C


Ω

|∇v0|
rdx +


Ω

|F |
r

p−1 dx


< ∞. (2.19)

Note that uj, θ ∈ W 1,r(Ω) and uj − θ ∈ W 1,r
0 (Ω), then it follows from the Poincaré inequality and (2.19) that

Ω

|uj|
rdx ≤ 2r


Ω


|uj − θ |r + |θ |r


dx

≤ C(n, r,Ω)

Ω

|∇(uj − θ)|rdx + 2r

Ω

|θ |rdx

< C


Ω

|∇uj|
rdx +


Ω


|θ |r + |∇θ |r


dx


< ∞. (2.20)

Combining (2.19) and (2.20), we obtain that {uj} is bounded in W 1,r(Ω). Then there exists a subsequence, still denoted by
{uj} and u ∈ W 1,r(Ω) such that

uj ⇀ u weakly inW 1,r(Ω)

uj → u in Lr(Ω)
uj → u a.e.Ω.

(2.21)

Moreover, since uj − θ ∈ W 1,r
0 (Ω), then u − θ ∈ W 1,r

0 (Ω) and ϕj ≤ uj ≤ ψj a.e.Ω yields ϕ ≤ u ≤ ψ a.e.Ω , so we have
u ∈ K r,θ

ϕ,ψ (Ω).
Next we are to extract a further subsequence such that

∇un → ∇u a.e.Ω (2.22)

then this immediately implies that

uj → u in W 1,r(Ω). (2.23)

To prove (2.22), firstly we observe from the Lipschitz condition (i) and (2.19), that
Ω

A(x,∇uj)− A(x,∇u)

· |∇(uj − u) |r−p

 r
r−1 dx ≤ β

r
r−1


Ω

| |∇(uj − u) |r−1
|

r
r−1 dx

= β
r

r−1


Ω

|∇(uj − u)|rdx

≤ C


Ω

|∇uj|
rdx +


Ω

|∇u|rdx


< ∞

which implies that
A(x,∇uj)− A(x,∇u)


· |∇(uj − u)|r−p

∈ L
r

r−1 (Ω).

Then since ∇uj ⇀ ∇u weakly in Lr(Ω), we obtain
Ω

⟨A(x,∇uj)− A(x,∇u), |∇(uj − u)|r−p(∇uj − ∇u)⟩dx

=


Ω

⟨

A(x,∇uj)− A(x,∇u)


· |∇(uj − u)|r−p,∇un − ∇u⟩dx −→ 0 (2.24)
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as j → ∞. On the other hand, the monotonicity assumption (ii) yields
Ω

⟨A(x,∇uj)− A(x,∇u), |∇(uj − u)|r−p(∇uj − ∇u)⟩dx

≥ α


Ω

|∇(uj − u)|r−p
· |∇uj − ∇u|2(|∇un| + |∇u|)p−2dx

≥ α


Ω

|∇(uj − u)|rdx

then we have that
Ω

|∇(uj − u)|rdx → 0.

Thus there exists a subsequence of {∇uj}, still denoted by {∇uj}, such that∇uj → ∇u a.e.Ω which implies that (2.23) holds.
Now we show that u is a very weak solution to the obstacle problem in K r,θ

ϕ,ψ . For all v ∈ K r,θ
ϕ,ψ (Ω), since uj is a solution

to the K r,θ
ϕj,ψj

-obstacle problem, we have
Ω

⟨A(x,∇uj)− F ,∇φv,uj⟩dx ≥ 0 (2.25)

then by (2.23) and the uniqueness of the Hodge decomposition, (2.25) yields that
Ω

⟨A(x,∇u)− F ,∇φv,u⟩dx ≥ 0.

We then obtain that u is a very weak solution by Definition 1.3. The theorem follows. �
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