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a b s t r a c t

The Riemann problem for one dimensional generalized Chaplygin gas dynamics is
considered. Its two characteristic fields are genuinely nonlinear, but the nonclassical
solutions appear. The formation of mechanism for δ-shock is analyzed, that is the one-
shock curve and the two-shock curve do not intersect each other in the phase plane. The
Riemann solutions are constructed, and the generalized Rankine–Hugoniot conditions and
the δ-entropy condition are clarified. By the interaction of the delta-shock wave with
the elementary waves, the generalized Riemann problem for this system is presented.
Furthermore, by studying the limits of the solutions as perturbed parameter ε approaches
zero, one can observe that the Riemann solutions are stable for such perturbations of the
initial data. Some numerical simulations are given to illustrate our analysis.

Crown Copyright© 2013 Published by Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the Riemann problem for the Euler equations modeling isentropic compressible fluids
∂tρ + ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2

+ p) = 0, (1.1)

where the unknown variable ρ denotes the density of the mass, u the velocity. The system (1.1) with the equation of state

p = −sρ−α, 0 < α ≤ 1, s > 0 (1.2)

is called the generalized Chaplygin gas dynamics.
The existence of entropy solutions for the Cauchy problem associated with (1.1) was established in the case of polytropic

perfect gases

p = sργ , s > 0, γ > 1, (1.3)

first by Diperna [16], Ding, Chen and Luo [15], and Chen [4] based on the compensated compactness method, and then
motivated by a kinetic formulation of hyperbolic conservation laws, by Lions, Perthame, and Tadmor [31]. General pressure
laws p(ρ) were covered first by Chen and Lefloch [5,6]. Lu [34] used the theory of compensated compactness coupled
with some basic ideas of the kinetic formulation to establish an existence theorem. Recently, Chen and Perepelitsa [8]
established the vanishing viscosity limit of the Navier–Stokes equations to the isentropic Euler equations for one-
dimensional compressible fluid flow. For γ = 1, the system (1.1) is called the isothermal gas dynamics and the existence of
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a weak entropy solution to Cauchy problems of the systemwas obtained by Huang andWang [21], among others [36,32,12,
33,45,30].

The purpose of this paper is to deal with the Riemann problem and the generalized Riemann problem for system (1.1)
and (1.2), which has been advertised as a possible model for dark energy [17,10,41]. When s = 1, α = 1 in (1.2), (1.1)
is the isentropic Chaplygin gas, which were introduced by Chaplygin [3], Tsien [49] and von Karman [50] as a suitable
mathematical approximation for calculating the lifting force on a wing of an airplane in aerodynamics. Y. Brenier [1] studied
the one dimensional Riemann problems and obtained the solutions with concentration. Cheng and Yang [9] studied the
Riemann problem for the relativistic Chaplygin Euler equations. In addition, D. Serre [40] studied the interaction of pressure
waves for the 2-D isentropic irrotational Chaplygin gas. He constructively proved the existence of transonic solutions for two
cases: saddle and vortex of 2-D Riemann problem. Guo, Sheng and Zhang [18] considered the 2-D Riemann problem for the
Chaplygin gas. Lai, Sheng and Zheng [26] discussed simple waves for two-dimensional self-similar flow for the Chaplygin
gas and found a new type of discontinuity which is a discontinuity supported by a pressure delta function in course of
constructing the global solutions, also see [23] for related results.

In this paper, we pay more attention to the case 0 < α < 1 in (1.2), which substantial difference with Chaplygin gas
α = 1 lies in that its two characteristic fields are genuinely nonlinear, but nonclassical solutions also appear: delta-shock
wave type solution. In addition, the formation of mechanism for the singular solution may different from the case of the
pressureless fluids, see the analysis and numerical simulations presented by Chen and Liu in [7].

Delta-shockwave is a kind of nonclassical nonlinearwaves onwhich at least one of the state variables becomes a singular
measure. Korchinski [24] introduced the concept of the Dirac function into the classical weak solution when he studied the
Riemann problem for the following system

ut +


1
2
u2


x
= 0,

vt +


1
2
uv


x
= 0,

(1.4)

in his unpublished Ph.D. Thesis in 1977. Tan, Zhang and Zheng [48] considered the system
ut + (u2)x = 0,
vt + (uv)x = 0 (1.5)

and discovered that the form of Dirac delta functions supported on shocks was used as parts in their Riemann solutions for
certain initial data. There is another well-known example, i.e. the one-dimensional system of pressureless Euler equations

ρt + (ρu)x = 0,
(ρu)t + (ρu2)x = 0, (1.6)

which has been analyzed extensively since 1994; for example, see [7,20,27–29,44] and the references cited therein. Recently,
the weak asymptotic method was widely used to study the δ-shock wave type solution by Danilov and Shelkovich et al.
[14,37,42], and also see papers [38,47,22,13,19,52,51,35,43] for the related equations and results.

The organization of this paper is as follows. In Section 2, by characteristic analysis, the Riemann solutions to the
generalized Chaplygin gas dynamics are constructed and the existence of the nonclassical solutions: δ-shock waves, is
analyzed. The generalized Rankine–Hugoniot conditions and δ-entropy condition are clarified. In Section 3, we consider the
initial value problem with three constant states. With the help of the interaction of the δ-shock and elementary waves, the
global solutions are constructed. Moreover, we prove that the solutions of the perturbed initial value problem converge to
the corresponding Riemann solutions as ε approaches zero, which shows the stability of the Riemann solutions for the small
perturbation, and analyze the large time-asymptotic behaviors of the solutions. In Section 4,we present some representative
numerical results, produced by semidiscrete central-upwind schemes in [25], to investigate the interaction of δ-shock wave
and rarefaction waves.

2. Solutions to the Riemann problem

2.1. Elementary waves and some Riemann solutions

In this section, we will discuss Riemann solutions to Eqs. (1.1). Consider the Riemann problem of the generalized
Chaplygin gas equations (1.1) with Riemann initial data

(ρ, u)(x, 0) = (ρ±, u±), ±x > 0, (2.1)

where ρ± > 0 and u± are constants.
The Eqs. (1.1) can be written in matrix formρ

u


t
+


u ρ

p′(ρ)/ρ u

 ρ

u


x
= 0. (2.2)
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It is easy to see that the eigenvalues are

λ1 = u −
√
sαρ−

1+α
2 and λ2 = u +

√
sαρ−

1+α
2 , (2.3)

so that the system is strictly hyperbolic. The corresponding right-eigenvectors are

−→r1 =


1, −

c
ρ

T

and −→r2 =


1,

c
ρ

T

, (2.4)

where c =
√
sαρ−

1+α
2 . The first and second characteristic fields are genuinely nonlinearwith∇λ1 ·

−→r1 ≠ 0 and∇λ2 ·
−→r2 ≠ 0

for α ≠ 1, in which ∇ denotes the gradient with respect to (ρ, u). Therefore, in classical sense, the associated waves are
rarefaction waves or shocks.

The Riemann invariants along the characteristic fields are

ω = u −
2
√
sα

1 + α
ρ−

1+α
2 and z = u +

2
√
sα

1 + α
ρ−

1+α
2 . (2.5)

Since Eqs. (1.1) and the Riemann data are invariant under uniform stretching of coordinates

(x, t) −→ (κx, κt), κ is constant,

we consider the self-similar solutions of (1.1) and (2.1)

(ρ, u)(x, t) = (ρ, u)(ξ), ξ = x/t.

Then the Riemann problem is reduced to a boundary value problem of ordinary differential equations:
−ξρξ + (ρu)ξ = 0,
[6pt] − ξ(ρu)ξ + (ρu2

− sρ−α)ξ = 0, (2.6)

with

(ρ, u)(±∞) = (ρ±, u±).

For smooth solutions, Eqs. (2.6) can be rewritten as
−ξ + u ρ
p′(ρ)/ρ −ξ + u

 ρ

u


ξ

= 0. (2.7)

It follows from (2.7) that besides the constant solution (ρ > 0), it provides a rarefactionwavewhich is a continuous solution
of (2.7) in the form (ρ, u)(ξ). Given a state (ρ−, u−), the possible states (ρ, u) that can be connected to state (ρ−, u−) on
the right by a centered rarefaction wave in the 1-family are as follows:

R1(ρ−, u−) :


ξ = u −

√
sαρ−

1+α
2 ,

u −
2
√
sα

1 + α
ρ−

1+α
2 = u− −

2
√
sα

1 + α
ρ

−
1+α
2

− , ρ < ρ−.
(2.8)

Similarly, for a given right state (ρ+, u+), the rarefaction wave curve which are the sets of states that can be connected on
the left in the 2-family are as follows:

R2(ρ+, u+) :


ξ = u +

√
sαρ−

1+α
2 ,

u +
2
√
sα

1 + α
ρ−

1+α
2 = u+ +

2
√
sα

1 + α
ρ

−
1+α
2

+ , ρ < ρ+.
(2.9)

Given a state (ρ−, u−), we consider possible state (ρ, u) that can be connected to state (ρ, u) on the right by a shock
wave. For a bounded discontinuous solutions, the Rankine–Hugoniot condition holds

−σ [ρ] + [ρu] = 0,
−σ [ρu] + [ρu2

− sρ−α
] = 0, (2.10)

where and inwhat followswe use the notation [h] = hr−hℓ with hℓ and hr the values of function h on the left and right-hand
sides of the discontinuity curve, respectively, and σ is the velocity of the discontinuity.

By direct calculation, the Lax shock inequalities implies ρ > ρ−. So for a given left state (ρ−, u−), the possible state can
be connected to (ρ−, u−) on the right by one-shock wave are as follows:

S1(ρ−, u−) : u = u− −


1

ρρ−

[p]
[ρ]

1/2

(ρ − ρ−), ρ > ρ−. (2.11)
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Similarly, for a given right state (ρ+, u+), it is easy to get two-shock wave as follows:

S2(ρ+, u+) : u = u+ +


1

ρρ+

[p]
[ρ]

1/2

(ρ − ρ+), ρ > ρ+. (2.12)

Now, we consider the asymptote of the shock wave curves.

Lemma 2.1. The 1-shock wave curve S1(ρ−, u−) has a straight line u = u− as its asymptote, and the 2-shock wave curve

S2(ρ+, u+) has a straight line u = u+ as its asymptote, where u−
= u− −

√
sρ

−
1+α
2

− and u+
= u+ +

√
sρ

−
1+α
2

+ .

Proof. It is clear from (2.11) that

u(ρ) = u− −


1
ρ−


1 −

ρ−

ρ

1/2

(sρ−α
−

− sρ−α)1/2, ρ > ρ−,

which implies

lim
ρ→+∞

u(ρ) = u− −
√
sρ

−
1+α
2

− .

Similarly, for 2-shock wave curve, it is easy to obtain that

lim
ρ→+∞

u(ρ) = u+ +
√
sρ

−
1+α
2

+ .

We complete the proof. �

Let (ρ, u) be the intermediate state in the sense that (ρ−, u−) and (ρ, u) are connected by one-shock S1 and that (ρ, u)
and (ρ+, u+) are connected by two-shock S2, then it is clear from (2.11) and (2.12) that

u− − u+ =


1

ρρ−

[p]
[ρ]

1/2

(ρ − ρ−) +


1

ρρ+

[p]
[ρ]

1/2

(ρ − ρ+). (2.13)

If u−
≥ u+, then it follows from (2.13) that
1

ρρ−

[p]
[ρ]

1/2

(ρ − ρ−) +


1

ρρ+

[p]
[ρ]

1/2

(ρ − ρ+) ≥
√
sρ

−
1+α
2

− +
√
sρ

−
1+α
2

+ . (2.14)

Next, we proof that unless ρ → ∞, the inequality (2.14) does not hold.
In fact, we only need to obtain

1
ρρ−

[p]
[ρ]

1/2

(ρ − ρ−) <
√
sρ

−
1+α
2

− , (2.15)


1

ρρ+

[p]
[ρ]

1/2

(ρ − ρ+) <
√
sρ

−
1+α
2

+ (2.16)

for ρ 9 ∞ and the sign of equality holds in (2.14) as ρ → ∞.
For (2.15), it suffices to show

(ρ−α
−

− ρ−α)


1
ρ−

−
1
ρ

 1
2

< ρ
−

1+α
2

− , (2.17)

which yields

ρ−ρ−α
− ρ1−α

− ρ1−α
−

< 0. (2.18)

Setting β =
ρ

ρ−
> 1, for ρ > ρ−, we deduce from (2.18)

1 − β − βα < 0,

which is true for β > 1. A similar argument gives the same results for (2.16). In addition, it is easy to obtain from (2.17) that
the sign of equality holds in (2.14) as ρ → ∞.

Through the above analysis, it is clear from u+
≤ u− that 1-shock curve S1(ρ−, u−) does not intersect 2-shock curve

S2(ρ+, u+) and we must construct the solutions in nonclassical sense. Now, we summarize that the sets of states consist
of the rarefaction wave curve R and the shock wave curve S for a given left state (ρ−, u−). Starting from point A, which is
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Fig. 2.1. Curves of elementary waves.

Fig. 2.2. Analysis of characteristics for delta-shock waves.

(ρ−, u−) in the (u, ρ) phase plane, we draw four curves R1, R2, S1 and S2, where the R2 curve consists of right states (ρ, u),
which can be connected with A(ρ−, u−) by rarefaction waves defined as follows:

u +
2
√
sα

1 + α
ρ−

1+α
2 = u− +

2
√
sα

1 + α
ρ

−
1+α
2

− , ρ > ρ−, (2.19)

and the S2 curve consists of right states (ρ, u), connected with point A by shock wave, which is defined by

u = u− +


1

ρρ−

[p]
[ρ]

1/2

(ρ − ρ−), ρ < ρ−. (2.20)

In addition, we draw a Sδ curve, which is determined as follows

u+
= u +

√
sρ−

1+α
2 = u−

= u− −
√
sρ

−
1+α
2

− , ρ > 0. (2.21)

These curves divide the phase plane (ρ > 0) into five regions, as shown in Fig. 2.1.
Using these elementary waves: shocks and rarefaction waves, one can construct the solutions of (1.1) and (2.1) by the

analysis method in phase plane. According to the right state (ρ+, u+) in the different region, One can construct the unique
global Riemann solution connecting two constant states (ρ±, u±) as follows:

1. (ρ+, u+) ∈ I : R1 + R2, 2. (ρ+, u+) ∈ II : S1 + R2

3. (ρ+, u+) ∈ III : S1 + S2, 4. (ρ+, u+) ∈ IV : R1 + S2.

In addition, when (ρ+, u+) ∈ V, we need to seek a nonclassical solution.

2.2. Delta-shock wave type solution

It is obvious to construct the unique global Riemann solution that we need to consider the existence and uniqueness
of the nonclassical solutions. From the above discussion, we can obtain that the nonclassical solution may occur under the
condition u+

≤ u−. In this case, we have

λ+

1 = u+ − c+ < λ+

2 = u+ + c+ < λ−

1 = u− − c− < λ−

2 = u− + c−, (2.22)

which means that the characteristic lines from initial data will overlap in the domain Ω , shown in Fig. 2.2. So singularity
must happen in Ω . It is well known that the singularity is impossible to be a jumpwith finite amplitude, which implies that
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there is no solution that is piecewise smooth and bounded, Hence, the Riemann solutions with weighted δ-measure should
be constructed.

In what follows, we introduce a definition of a generalized solution [35,37,42] for system (1.1) with (1.2).
Suppose that Γ = {γi : i ∈ I} is a graph in the closed upper half-plane {(x, t) : x ∈ R, t ∈ [0, +∞)} ∈ R2 containing

smooth arc γi = {(x, t) : Si(x, t) = 0}, i ∈ I , and I is a finite set. Let I0 be subset of I such that an arc γi for i ∈ I0 starts from
the points of the x-axis; Γ0 = {x0k; i ∈ I0} is the set of initial points of arc γi, i ∈ I0.

Consider δ-shock wave type initial data (ρ0(x), u0(x)), where

ρ0(x) = ρ0(x) + e0δ(Γ0),

u0, ρ0 ∈ L∞(R × R+), e0δ(Γ0) =


i∈I e
0
i δ(x − x0i ) and e0i are constants for i ∈ I0.

In addition, according to [1] the pressure p = −sρ−α in (1.1), which is a non-linear terms with respect to ρ, is defined by

p0(x, t) = −sρ−α
0 , (2.23)

where the pressure should be noticed that the delta measure does not contribute.

Definition 2.2. A pair of distributions (ρ(x, t), u(x, t)) and a graph Γ , where ρ(x, t) has the form of the sum

ρ(x, t) = ρ(x, t) + e(x, t)δ(Γ ) and p(x, t) = −s(ρ(x, t))−α,

u, ρ ∈ L∞(R×R+) and e(x, t)δ(Γ ) =


i∈I ei(x, t)δ(γi), ei(x, t) ∈ C(Γ ) for i ∈ I , is called a generalized δ-shock wave type
solution of system (1.1) with the δ-shock wave type initial data (ρ0(x), u0(x)) if the integral identities

R+


R

ρφt + (ρu)φx

dxdt +


i∈I


γi

ei(x, t)
∂φ(x, t)

∂ℓ
dℓ +


R

ρ0(x)φ(x, 0)dx +


i∈I0

e0i φ(x0i , 0) = 0,
R+


R

ρuφt + (ρu2
+ p)φx


dxdt +


i∈I


γi

ei(x, t)uδ(x, t)
∂φ(x, t)

∂ℓ
dℓ

+


R

ρ0(x)u0(x)φ(x, 0)dx +


i∈I0

e0i u
0
δ(x

0
i )φ(x0i , 0) = 0, (2.24)

hold for all test functions φ(x, t) ∈ D(R × R+), where ∂φ(x,t)
∂ℓ

is the tangential derivative on the graph Γ ,

γi
dℓ is a line

integral over the arc γi, uδ(x, t) is the velocity of the δ-shock wave and

u0
δ(x

0
i ) = uδ(x0i , 0) = −

(Si)t
(Si)x


(x0i ,0)

, i ∈ I0.

Theorem 2.3. For the Cauchy problem (1.1) and (2.1), when u+
≤ u− (i.e., (ρ+, u+) ∈ V), (1.1) has a δ-shockwave type solution

u(x, t) = u− + [u]H(x − x(t))
ρ(x, t) = ρ− + [ρ]H(x − x(t)) + e(t)δ(x − x(t)),

which satisfies the integral identities (2.24) in the sense of Definition 2.2, whereΓ = {(x, t) : x = x(t) = σδt, t ≥ 0},ρ(x, t) =

ρ− + [ρ]H(x − x(t)),
Γ

e(x, t)
∂φ(x, t)

∂ℓ
=


∞

0
e(x, t)

dφ(x, t)
dt

dt,

and H(x) is the Heaviside function

H(x) =


0, for x < 0,
1, for x > 0.

In addition

e(t) =


ρ−ρ+[u]2 − [ρ][p] t, σδ =

[ρu] +
de
dt

[ρ]
, (2.25)

as ρ− ≠ ρ+ and

e(t) = (ρ−u− − ρ+u+)t, σδ =
1
2
(u− + u+), (2.26)

as ρ− = ρ+.
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Proof. We need to check that the constructed δ-measure solution satisfies the Definition 2.2 in the sense of distributions,
that is 

R+


R

ρφt + (ρu)φx

dxdt +


∞

0
e(t)

dφ(x(t), t)
dt

dt +


R

ρ0(x)φ(x, 0)dx = 0, (2.27)
R+


R

ρuφt + (ρu2
+ p)φx


dxdt +


∞

0
e(t)uδ

dφ(x(t), t)
dt

dt +


R

ρ0(x)u0(x)φ(x, 0)dx = 0 (2.28)

for all the test functions φ(x, t) ∈ D(R × R+) and uδ = σδ , where ρ0(x) = ρ− + [ρ]H(x) and u0(x) = u− + [u]H(x).
Denote by A the left-hand side of (2.27), we have

A =


∞

0

 x(t)

−∞

(ρ−φt + ρ−u−φx)dxdt +


∞

0


+∞

x(t)
(ρ+φt + ρ+u+φx)dxdt

+


∞

0
e(t)

dφ(x(t), t)
dt

dt +

 0

−∞

ρ−φ(x, 0)dx +


∞

0
ρ+φ(x, 0)dx. (2.29)

Without loss of generality, we assume σδ > 0, then the first term on the right-hand side of (2.29) equals
∞

0

 0

−∞

ρ−φtdxdt +


∞

0

 x(t)

0
ρ−φtdxdt +


∞

0

 x(t)

−∞

ρ−u−φxdxdt

= −

 0

−∞

ρ−φ(x, 0)dx +


∞

0

 x(t)

0
ρ−φtdxdt +


∞

0
ρ−u−φ(x(t), t)dt

= −

 0

−∞

ρ−φ(x, 0)dx +


∞

0
dx


∞

t(x)
ρ−φtdt +


∞

0

ρ−u−

σδ

φ(x, t(x))dx

= −

 0

−∞

ρ−φ(x, 0)dx +


∞

0


u−

σδ

− 1


ρ−φ(x, t(x))dx. (2.30)

The second term on the right-hand side of (2.29) equals
∞

0
dx

 t(x)

0
ρ+φtdt −


∞

0
ρ+u+φ(x(t), t)dt = −


∞

0
ρ+φ(x, 0)dx +


∞

0


1 −

u+

σδ


ρ+φ(x, t(x))dx. (2.31)

The third term on the right-hand side of (2.29) equals

(σδ[ρ] − [ρu]) tφ(x(t), t) |
+∞

0 −(σδ[ρ] − [ρu])


+∞

0
φ(x(t), t)dt = −

(σδ[ρ] − [ρu])
σδ


∞

0
φ(x, t(x))dx. (2.32)

From (2.29)–(2.32), we obtain

A = 0.

Similarly, we easily obtain (2.28). So, we complete the proof. �

Using Definition 2.2 and repeating the proof of Theorem 2.3 almost word-for-word, one can derive the generalized
Rankine–Hugoniot conditions for δ-shock wave type solutions of the system (1.1).

Theorem 2.4. Suppose that Ω ⊂ R×R+ is some region cut by a smooth curveΓ = {(x, t) : x = x(t)} into a left- and right-hand
partsΩ± = {(x, t) : ±(x−x(t)) > 0}, (ρ(x, t), u(x, t)),Γ is a generalized δ-shock wave type solution of system (1.1), functionsρ(x, t), u(x, t) are smooth in Ω±, and have one-side limits ρ±, u± on the curve Γ . Then the generalized Rankine–Hugoniot
conditions for δ-shocks

de(t)
dt

=

ẋ(t)[ρ] − [ρu]


|x=x(t),

d(e(t)ẋ(t))
dt

=

ẋ(t)[ρu] − [ρu2

+ p]

|x=x(t),

(2.33)

where e(t) .
= e(x(t), t) and ˙(·) =

d
dt (·).

In addition to the generalized Rankine–Hugoniot conditions (2.33), to guarantee uniqueness, the discontinuity must
satisfy

λ+

1 = u+ − c+ < λ+

2 = u+ + c+ < σδ < λ−

1 = u− − c− < λ−

2 = u− + c−, (2.34)
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where ρ± and u± are the respective left- and right-hand limit values of ρ(x, t), u(x, t) on the discontinuity curve. Condition
(2.34) is called as δ-entropy condition. It is overcompressive and means that all the characteristic lines on both sides of the
discontinuity are in-coming. A discontinuity satisfying (2.33) and (2.34) will be called a δ-shock wave to system (1.1).

So, we complete the construction of the Riemann solutions to system (1.1).

3. The interaction of δ-shock and elementary waves

To start off we consider the initial value problem with three pieces constant states

(ρ, u)(x, 0) =


(ρ−, u−), −∞ < x < 0,
(ρm, um), 0 < x < ε,
(ρ+, u+), x > ε,

(3.1)

where ε > 0 is arbitrarily small. The data (3.1) is a perturbation of the Riemann initial data (2.1). Our interest is to investigate
whether the Riemann solutions of (1.1) and (2.1) are the limits of the solutions of (1.1) and (3.1) as ε → 0. In this section,
we only consider the interaction of the δ-shock and elementary waves. For the interactions of elementary waves, we refer
the readers to the book of Smoller [46] and the monograph of Chang and Hsiao [2]. For a comprehensive survey, we can see
the books written by Dafermos [11] and Serre [39]. The above problem can be divided into four cases as follows:

δ-shock R1, δ-shock R2, δ-shock S1, δ-shock S2.

Before discussing the problem, we will consider some important properties about the shock curves and the rarefaction
wave curves in the following lemmas.

Lemma 3.1. If point B is the interaction point of one-shock curve S1 with the left state (ρA , uA) and two-shock curve S2 with the
right state (ρC , uC ), i.e., B = S1


S2, in addition ρA < ρB and ρC < ρB , then

λ1(A) > σ1(AB) > λ1(B), (3.2)
σ2(CB) > λ1(C) (3.3)

where λ1(A), λ1(B) and λ1(C) stand for the speed of characteristic of the one-rarefaction wave at points A, B and C, respectively;
σ1(AB) is the speed of one-shock wave with the left and the right states (ρA , uA) and (ρB , uB) and σ2(CB) is the speed of two-shock
wave with the left and the right states (ρB , uB) and (ρC , uC ), see Fig. 3.1.

Proof. First, we will proof the result

σ1(AB) > λ1(B). (3.4)

From (2.11), we have

σ1(AB) =
ρBuB − ρAuA

ρB − ρA

= uB +
ρA

ρB − ρA

(uB − uA). (3.5)

Combining (3.5) with (2.11) gives

σ1(AB) = uB −


ρA(pB − pA)

ρB(ρB − ρA)

 1
2

. (3.6)

It is clear from (2.8) that

λ1(B) = uB −
√
sαρ

−
1+α
2

B . (3.7)

Based on (3.6) and (3.7), the inequality (3.4) is equivalent to

−


ρA(pB − pA)

ρB(ρB − ρA)

−
1
2

> −
√
sαρ

1+α
2

B ,

i.e.,

sρA(ρ
−α
A

− ρ−α
B

)

ρB(ρB − ρA)
< sαρ−(1+α)

B
,

which becomes

ρA


ρB

ρA

α

− 1


< α(ρB − ρA).
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Fig. 3.1. The graphs of shocks S1 and S2 .

It is enough to obtain
ρB

ρA

α

− 1 < α


ρB

ρA

− 1


. (3.8)

Setting
ρB
ρA

= β > 1 for ρB > ρA , then (3.8) reduces

βα
− 1 < α(β − 1). (3.9)

Let f (β) = βα
− α(β − 1) − 1 and we obtain

f (1) = 0, f ′(β) = α(βα−1
− 1) < 0, for 0 < α < 1,

which implies

f (β) < 0, for β > 1.

So, we obtain the inequality (3.4). A similar argument gives λ1(A) > σ1(AB).
Now, we will proof (3.3). By (2.12), we have

σ2(CB) =
ρC uC − ρBuB

ρC − ρB

= uC +
ρB

ρC − ρB

(uC − uB). (3.10)

Combining (2.12) with (3.10) gives

σ2(CB) = uC −
ρB

ρC − ρB


pB − pC

ρBρC (ρB − ρC )

 1
2

(ρB − ρC )

= uC +


ρB

ρC

pB − pC

ρB − ρC

 1
2

. (3.11)

From (2.8), one can obtain

λ1(C) = uC −
√
sαρ

−
1+α
2

C . (3.12)

It is easy to obtain (3.3) from (3.11) and (3.12). Therefore, we complete the proof of the lemma. �

Lemma 3.2. For a given constant state =: (ρ+, u+), let R2 be two-rarefaction wave curve with (ρ+, u+) being the right
state, S2 two-shock curve with (ρ+, u+) being the right state and Sδ be a curve which passes through the state (ρ+, u+), then
(see Fig. 3.2)

(1) the curve R2 lies above the curve S2 for ρ > ρ+.
(2) the curve S2 lies above the curve Sδ for ρ > ρ+.

Proof. From (2.9) and (2.12), we have for ρ > ρ+

R2 : uR = u+ +
2
√
sα

1 + α
ρ

−
1+α
2

+ −
2
√
sα

1 + α
ρ−

1+α
2 ,

S2 : uS = u+ +


1

ρρ+

(p − p+)(ρ − ρ+)

 1
2

.
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Fig. 3.2. The locations of curves R2, S2 and Sδ .

We only need to prove uS − uR > 0 for ρ > ρ+, i.e.,
1

ρρ+

(p − p+)(ρ − ρ+)

 1
2

>
2
√
sα

1 + α


ρ

−
1+α
2

+ − ρ−
1+α
2


,

which is equivalent to

1
ρ


ρ−α

+
− ρ−α


ρ

ρ+

− 1


>
4α

(1 + α)2


ρ

−(1+α)
+ + ρ−(1+α)

− 2ρ
−

1+α
2

+ ρ−
1+α
2


. (3.13)

Multiplying by ρ1+α on both sides of (3.13) gives
ρ

ρ+

α

− 1


ρ

ρ+

− 1


>
4α

(1 + α)2


ρ

ρ+

1+α

+ 1 − 2


ρ

ρ+

 1+α
2

 . (3.14)

Setting ρ

ρ+
= β > 1 for ρ > ρ+, then (3.14) reduces


βα

− 1


β − 1


>
4α

(1 + α)2


β1+α

+ 1 − 2β
1+α
2


.

Denote

f (β) =

βα

− 1


β − 1

−

4α
(1 + α)2


β1+α

+ 1 − 2β
1+α
2


,

then

f ′(β) =
(1 − α)2

1 + α
βα

− αβα−1
− 1 +

4α
1 + α

β
α−1
2 , (3.15)

f ′′(β) = α(1 − α)βα−2

1 − α

1 + α
β + 1 −

2
1 + α

β
1−α
2


. (3.16)

Setting g(β) =


1−α
1+α

β + 1 −
2

1+α
β

1−α
2


gives

g(1) = 0, g ′(β) =
1 − α

1 + α


1 − β−

1+α
2


> 0, for 0 < α < 1,

which reduces g(β) > 0 for β > 1. Then one can obtain from (3.16) f ′′(β) > 0 for β > 1. In addition, it is clear from (3.15)
that f ′(1) = 0. So f ′(β) > 0 for β > 1, which implies f (β) > 0 with the fact f (1) = 0. So, the first statement (1) is true.

From (2.21), we have

Sδ : uδ = u+ +
√
sρ

−
1+α
2

+ −
√
sρ−

1+α
2 , ρ > 0. (3.17)

It suffices to prove uδ − uS > 0 for ρ > ρ+, i.e.,
1

ρρ+

(p − p+)(ρ − ρ+)

 1
2

<
√
s


ρ
−

1+α
2

+ − ρ−
1+α
2


,
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Fig. 3.3. Case 1.1, δ-shock R1 .

which is equivalent to

1
ρ


ρ−α

+
− ρ−α


ρ

ρ+

− 1


<


ρ

−(1+α)
+ + ρ−(1+α)

− 2ρ
−

1+α
2

+ ρ−
1+α
2


. (3.18)

Multiplying by ρ1+α on both sides of (3.18) gives
ρ

ρ+

α

− 1


ρ

ρ+

− 1


<


ρ

ρ+

1+α

+ 1 − 2


ρ

ρ+

 1+α
2

 . (3.19)

Setting β =
ρ

ρ+
> 1 for ρ > ρ+, (3.19) gives


βα

− 1


β − 1


<


β1+α

+ 1 − 2β
1+α
2


,

which reduces

βα
+ β − 2β

1+α
2 > 0. (3.20)

Obviously, the above inequality is true for β > 1 and 0 < α < 1, which gives the second statement (2). Then, the proof of
the lemma is completed. �

Now, we begin to discuss the interaction of δ-shock with elementary waves.
Case 1. δ-shock R1. Based on the fact whether the two-shock S2 with the right state (ρ+, u+) interacts the one-shock S1

with the left state (ρ−, u−)or not, the case canbedivided into two subcases: case 1.1: S1


S2 ≠ ∅ and case 1.2: S1


S2 = ∅,
that is to say R1( )


S2 ≠ ∅, where R1( ) is one-rarefaction wave curve with the left state (ρ−, u−).

Case 1.1, S1


S2 ≠ ∅. Denote by := (ρi, ui) the intersect state of S1 and S2, see Fig. 3.3.
The δ-shock O′A intersects with the rarefaction wave R1 at point A. When the rarefaction wave curve R1 intersects with

the curve Sδ and the intersection is denoted by the state (ρB , uB), it is easy to see from points A to B that the δ-entropy
condition is satisfied. The values of (ρB , uB) are determined byuB −

2
√
sα

1 + α
ρ

−
1+α
2

B = um −
2
√
sα

1 + α
ρ−

1+α
2

m
,

uB +
√
sρ

−
1+α
2

B = u− −
√
sρ

−
1+α
2

− .

Meanwhile, two shocks BDF and BCE are formed at the point B and a new one-rarefaction wave R′ occurs, which state
(ρ, u) is determined by

u = u− −


1

ρρ−

(ρ − ρ−)(p − p−)

 1
2

,

u = u +


1

ρρ
(ρ − ρ)(p − p)

 1
2

,

u −
2
√
sα

1 + α
ρ−

1+α
2 = um −

2
√
sα

1 + α
ρ

−
1+α
2

m ,

ρ+ ≤ ρ ≤ ρB .

(3.21)
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Fig. 3.4. Case 1.2, δ-shock R1 .

Based on (2.11), the one-shock curve BD is calculated by
dx
dt

= σBD,

x|t=tB
= xB ,

where

σBD =
ρu − ρ−u−

ρ − ρ−

and (ρ, u) is given by (3.21).
Similarly, the two-shock curve BC is determined by

dx
dt

= σBC ,

x|t=tB
= xB ,

where

σBC =
ρu − ρu
ρ − ρ

,

and (ρ, u) and (ρ, u) are given by (3.21).
With the help of Lemma 3.1, it is easy to obtain that the shock BDF can penetrate the rarefaction wave R′ and the shockBDE can penetrate the rarefaction wave R1.
Thus, as t → ∞, the solution can be described as

(ρ−, u−) + SDF + (ρi, ui) + SC E + (ρ+, u+),

and as ε → 0, the limit of the solution of (1.1) and (3.1) is the corresponding Riemann solution of (1.1) and (2.1).
Case 1.2 R1( )


S2 ≠ ∅. Denote by := (ρi, ui) the intersect state of R1 and S2, see Fig. 3.4. Unlike the above case 1.1,

the shock BD cannot penetrate the R′. The shock BCE can penetrate the R1 and can be determined by the above method and
omit it here.

Now, we consider the property of one-shock curve BD, which is determined by
dx
dt

= σBD,

x|t=tB
= xB ,

where

σBD =
ρu − ρ−u−

ρ − ρ−

and (ρ, u) is given by (3.21).
From (2.11), we have

σBD(ρ) = u− +
ρ

ρ − ρ−

(u − u−) = u− −


ρ

ρ−

p − p−

ρ − ρ−

 1
2

,

which implies

lim
ρ→ρ−

σBD(ρ) = u− −

p′(ρ−) = u− −

√
sαρ

−
1+α
2

− . (3.22)
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Fig. 3.5. Case 2, δ-shock R2 .

Fig. 3.6. Case 3, δ-shock S1 .

Fig. 3.7. Case 4, δ-shock S2 .

From the first identity of (2.8) and (3.22), we can conclude that the shock BD has the straight line ℓ :
dx
dt = ξℓ =

u− −
√
sαρ

−
1+α
2

− as its asymptote, which gives that the shock BD cannot penetrate the rarefaction wave R′. For large time,
i.e., as t → ∞, the solution can be expressed as

(ρ−, u−) + R′
+ (ρi, ui) + SC E + (ρ+, u+).

Case 2, δ-shock R2. By Lemma 3.2, the two-rarefaction wave curve R2 from the state (ρm, um) to the state (ρ+, u+) is
on the left-hand side of the curve Sδ , which implies that in the curse of interaction of the δ-shock and the R2, the δ-entropy
condition (2.34) is satisfied and the δ-shock can penetrate the R2, see Fig. 3.5.

Case 3, δ-shock S1. In this case, the δ-shock overtakes the one-shock at some time t , and after the time t , the δ-entropy
condition is satisfied, then a new δ-shock is formed, see Fig. 3.6.

Case 4, δ-shock S2. In this case, the δ-shock overtakes the two-shock at some time t , and after the time t , the δ-entropy
condition is satisfied, then a new δ-shock is formed, see Fig. 3.7.

So far, we have finished the discussion for the interactions of the δ-shock and the elementary waves and the global
solutions for the perturbed initial value problem (1.1) and (3.1) have been constructed. We summarize our results in the
following.

Theorem 3.3. There exists a unique generalized solution to the perturbed initial value problem (1.1) and (3.1). The limits of the
perturbed Riemann solution of (1.1) and (3.1) are exactly the corresponding Riemann solutions of (1.1) and (2.1). The Riemann
solutions of (1.1) and (2.1) are stable with respect to such small perturbations of the initial data.
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Fig. 4.1. Example 1. Left: the plots of density at times 0.05, 0.1 and 0.2, respectively. Right: the plots of velocity at corresponding times, respectively.

Fig. 4.2. Example 2. Left: the plot of density at time 0.02. Right: the plot of velocity at time 0.02.

4. Numerical simulations

In this section, wewill provide some corresponding numerical results, which are consistence with the above discussions.
In the following examples, we take α = 0.5 and s = 5.0 in (1.2). To investigate the interaction of δ-shock and elementary
waves, we use the semidiscrete central-upwind scheme [25] and the space step dx = 1/1000 and mesh ration λ = 0.10.

Example 1, we solve the Riemann problem for (1.1) and (1.2) and the Riemann initial data is

(ρ, u)(x, 0) =


(3.0, 4.0) for x < 0,
(1.0, −4.0) for x > 0.

The numerical results are shown in Fig. 4.1, which indicate the formation of a δ-shock and that the strength of δ-shock
increases dramatically as time process.

Example 2, to investigate the interaction of the δ-shock and one-family rarefaction wave, we compute the initial data

(ρ, u)(x, 0) =


(0.5, 5.5), for x < 0,
(0.25, −4.0), for 0 < x < 0.4,
(0.20, −2.9137), for x > 0.4.

(4.1)

Fig. 4.2 shows that at time 0.02 (less than tA ), the solution consists of a δ-shock and a one-family rarefaction wave, also
see Fig. 3.3. The numerical result at time 0.26 are shown in Fig. 4.3, which indicates that when tC < t < tD , the solution may
expressed as

(ρ−, u−) + SBD + R′
+ (ρi, ui) + SC E + (ρ+, u+).

At t = 0.9 > tD , the solution is changed into

(ρ−, u−) + SDF + (ρi, ui) + SC E + (ρ+, u+)
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Fig. 4.3. Example 2. Left: the plot of density at time 0.26. Right: the plot of velocity at time 0.26.

Fig. 4.4. Example 2. Left: the plot of density at time 0.90. Right: the plot of velocity at time 0.90.

Fig. 4.5. Example 3. Left: the plot of density at time 0.02. Right: the plot of velocity at time 0.02.

which is displayed in Fig. 4.4. Example 3, we consider the initial data

(ρ, u)(x, 0) =


(3.0, 2.5), for x < 0,
(0.25, −4.0), for 0 < x < 0.4,
(0.20, −2.9137), for x > 0.4

(4.2)

as further discussion about the interaction of a δ-shock and a one-family rarefactionwave, see Fig. 3.4. The numerical results
are shown in Figs. 4.5–4.6. Fig. 4.5 shows that at time t = 0.02 < tA , the solution is a δ-shock and a one-family rarefaction
wave. When t = 0.4 > tC , the solution is a shock, a rarefaction wave and a shock, which is shown in Fig. 4.6.
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Fig. 4.6. Example 3. Left: the plot of density at time 0.40. Right: the plot of velocity at time 0.40.
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