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1. Introduction

In this paper, we prove the existence of asymmetric positive solutions in hollow thin symmetric domains for the
Emden–Fowler equation

−∆u = up, u > 0 inΩ, u = 0 on ∂Ω. (1.1)

HereΩ is a bounded domain in RN with N ≥ 2, 1 < p < ∞ when N = 2 and 1 < p < (N + 2)/(N − 2) when N ≥ 3. Let
G be a closed subgroup of the orthogonal group O(N) such that G ≠ {I}, where I is the unit matrix. We callΩ a G invariant
domain if g(Ω) = Ω for any g ∈ G. We call a solution u a G invariant solution if u(gx) = u(x) for any g ∈ G and x ∈ Ω . When
Ω is G invariant, (1.1) has a G invariant positive solution, which will be proved in Lemma 1.3. However, we are looking for a
positive solution without G invariance. Indeed, we shall prove that a least energy solution, which will be defined later on, is
not G invariant in a hollow thin domain. Let us give themost typical and simplest example of a hollow thin domain. Consider
two regular n polygons with different sizes which have the common center and each side of the small polygon is parallel to
a side of the large polygon and the distance between two polygons is small enough. LetΩ be a domain between these two
polygons. To set upΩ strictly, we define a scalar multiplication tA by

tA := {tx : x ∈ A},

for t > 0 and a subset A of RN . Let D be an interior of a regular n polygon in R2 with center origin. Then (1+ ε)D is a regular
polygon too. Remove D from (1 + ε)D and defineΩ := (1 + ε)D \ D. ThenΩ is a bounded symmetric domain enclosed by
boundaries of two polygons (1 + ε)D and D. If ε > 0 is small enough,Ω is a hollow thin domain. We consider the problem
below.
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Problem 1.1. LetΩ := (1+ ε)D \ Dwith a regular n polygon D. Does there exists a positive solution which is not invariant
under the rotation by angle 2π/n?

This problem is motivated by the works of Coffman [12], Byeon [6] and Li [23]. They consider an annulusΩ = A(a, b)

A(a, b) := {x ∈ RN
: a < |x| < b},

with 0 < a < b. They have proved that (1.1) has a nonradial positive solution if (b − a)/a is small enough, moreover, the
number of nonradial positive solutions diverges to infinity as (b− a)/a → 0. This result is due to Coffman [12] for N = 2, to
Li [23] forN ≥ 4 and to Byeon [6] forN = 3 (see also [10]). On the other hand, Dancer [14] has proved that if (b−a)/a is large
enough, then (1.1) has a unique positive solution and it is radially symmetric. For the results related to the annulus, we refer
the readers to the Refs. [3,9,8,15,16,18,24–30,34,36]. Moreover, Tanaka and Byeon [7] have studied the expanding annular
domain which is not an exact annulus. They have proved the existence of multibump solutions, and hence the number of
positive solutions diverges to infinity as the domain is expanding. For the related results to the multibump solutions, we
refer the readers to [1,5,17].

In the present paper, we concentrate on the existence of G non-invariant solutions in symmetric domains. The number
of positive solutions will be studied in a forthcoming paper. The result mentioned above on the annulus can be rewritten as
the existence of a G non-invariant positive solution, where G is taken as O(N). In Problem 1.1, we choose G as

G := {g(2jπ/n) : j = 0, 1, . . . , n − 1}, (1.2)

g(θ) :=


cos θ − sin θ
sin θ cos θ


. (1.3)

The answer of Problem 1.1 is yes for ε > 0 small enough. This result will be included in Theorem 1.2. A G non-invariant
solution will be obtained as a least energy solution. To show it, we define the Rayleigh quotient by

R(u) :=


Ω

|∇u|2dx
 

Ω

|u|p+1dx
−2/(p+1)

.

Moreover, we define the Nehari manifold by

N :=


u ∈ H1

0 (Ω) \ {0} :


Ω

(|∇u|2 − |u|p+1)dx = 0

.

Then the least energy R0 is defined by

R0 := inf{R(u) : u ∈ H1
0 (Ω) \ {0}} = inf{R(u) : u ∈ N }. (1.4)

Because of the Sobolev embedding theorem, the Rayleigh quotient R has a positive lower bound and hence R0 is well defined
and positive. For any u ∈ H1

0 (Ω)\{0}, there is a λ > 0 such that λu ∈ N . Moreover, R(λu) = R(u) for any λ > 0. These facts
imply that the second equation in (1.4) is valid.We call u a least energy solution if u ∈ N and R(u) = R0. Such a solution exists
and it solves (1.1) in the distribution sense (see [19] or [37]). Then it belongs to L∞(Ω)∩ W 2,q

loc (Ω) for all q < ∞ because of
the elliptic regularity theorem with the bootstrap argument. Accordingly, a least energy solution belongs to C1(Ω). If ∂Ω
is smooth, then any weak solution has a C2(Ω) regularity. A least energy solution is either positive or negative inΩ by the
strong maximum principle. We choose a positive solution as a least energy solution.

For a closed subgroup G of O(N), we call u a G invariant least energy solution if it minimizes the Rayleigh quotient R
among all G invariant functions in the Nehari manifold. The strict definition will be given after Lemma 1.3. We state some
known results related to G invariant least energy solutions in the following. Serra [33] considered the Hénon equation in a
ball, which is defined by (1.1) with up replaced by |x|αup, and proved the existence of a positive non-radial solution if N ≥ 4,
p = (N + 2)/(N − 2) is the critical exponent and α > 0 is large enough. This result was proved by using a G × O(N − 2)
invariant least energy solution, where G is defined by (1.2). Badiale and Serra [4] studied the Hénon equation in a ball and
proved that an O(n) × O(N − n) invariant least energy solution is not radial if N ≥ 4, p is in a certain range including
supercritical values and α > 0 is large enough. See also our paper [20] for more general nonlinear term in a subcritical
case. The author [21] studied the generalized Hénon equation in reflectionally symmetric or point symmetric domains and
proved that a least energy solution is neither reflectionally symmetric nor point symmetric. Wang [35] studied the equation
with the Neumann problem

−∆u + λu = up, u > 0 in B,
∂u
∂ν

= 0 on B,

where B is a ball and p is the critical exponent. It was proved that for a closed subgroup G of O(N), the minimum number of
the cardinal number of the orbit G(x) for x ∈ B \ {0} determines uniquely a range of λ such that a G invariant least energy
solution exists for λ in this range and does not exist for λ out of the range.

Akagi and the author [2] proved that a least energy solution is not G invariant for a suitable G when Ω is an annulus
A(a, b), a cylinder C(a, b, d) and a solid of revolution S1 ×D. The annulus A(a, b) has already been defined after Problem 1.1.
The cylinder C(a, b, d) is defined by

C(a, b, d) := AN−1(a, b)× (0, d),
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where AN−1(a, b) := {x ∈ RN−1
: a < |x| < b} is an N − 1 dimensional annulus. A solid of revolution S1 × D is defined by

S1 × D := {(r cos θ, r sin θ, z) : (r, z) ∈ D, θ ∈ [0, 2π ]}, (1.5)

where S1 is a circle and D is a bounded domain in R2 such that the infimum of r for (r, z) ∈ D is positive. Consider D as
an open set in the (x1, x3)-plane and revolve it about the x3-axis. Then we get S1 × D. In [2], we proved that whenΩ is an
annulus A(a, b) with (b − a)/a small enough, a least energy solution is nonradial. WhenΩ = C(a, b, d), we proved that a
least energy solution is not invariant under the rotation around x3-axis if b − a or d is small enough. When Ω = S1 × D,
we proved the same result if inf(r,z)∈D r > 0 is large enough. However, these results are based on the perturbation from a G
invariant least energy solution and the perturbation function is constructed by using the exact coordinate system. Therefore
thismethod cannot be applied tomore general domainΩ . As far aswe know, there are no paperswhich prove the symmetry
breaking of a least energy solution in a hollow thin symmetric domain except for the annulus, the cylinder and the solid of
revolution.

The purpose of this paper is to prove the symmetry breaking for any hollow thin symmetric domainΩ and for any closed
subgroup G of O(N). We shall extend Problem 1.1 to the higher dimensional regular polytopes. For a regular polytope D in
RN , we define the regular polytope group G(D) by the set of rotation matrices which transform D onto itself, i.e.,

G(D) := {g ∈ SO(N) : g(D) = D}, (1.6)

where SO(N) is a rotation group (special orthogonal group). Let An and Sn be the alternating group and the symmetric group,
respectively. It is known (see [13, pp. 45–50]) that in R3, G(D) ∼= A4 if D is a tetrahedron, G(D) ∼= S4 if D is a cube or an
octahedron and G(D) ∼= A5 if D is a dodecahedron or an icosahedron.

Theorem 1.2. Let D be a regular polytope with center origin in RN with N ≥ 2. Put Ω := (1+ε)D\D. If ε > 0 is small enough,
then a least energy solution of (1.1) is not invariant under the action of the regular polytope group G(D).

We defineG(D) := {g ∈ O(N) : g(D) = D}.

Even if we employG(D) instead of G(D), Theorem 1.2 is still valid. Indeed, by Theorem 1.2, a least energy solution is not G(D)
invariant. Then it is notG(D) invariant because G(D) ⊂ G(D).

We denote the usual Lebesgue space by Lq(Ω) and the Sobolev space byWm,q(Ω) for 1 ≤ q ≤ ∞ andm ∈ N. We define
G invariant function spaces,

Lq(Ω,G) := {u ∈ Lq(Ω) : u is G invariant},
H1

0 (Ω,G) := {u ∈ H1
0 (Ω) : u is G invariant},

N (G) := N ∩ H1
0 (Ω,G).

Before going to themain theorems, we show the existence of a G invariant positive solution. The next lemma is valid for any
domainΩ even if it has a hole or not.

Lemma 1.3. Let Ω be a G invariant bounded domain. Then (1.1) has a G invariant positive solution.

Proof. Put

RG := inf{R(u) : u ∈ H1
0 (Ω,G) \ {0}} = inf{R(u) : u ∈ N (G)}. (1.7)

Then RG is achieved at a point u ∈ N (G). Then u is a critical point of R(·) inH1
0 (Ω,G), i.e., R

′(u)v = 0 for v ∈ H1
0 (Ω,G), where

R′ denotes the Fréchet derivative of R. Then it becomes a critical point in H1
0 (Ω), i.e., R

′(u)v = 0 for all v ∈ H1
0 (Ω) because

of the principle of symmetric criticality by Palais [31]. Since u ∈ N (G) and R′(u) = 0, u is a solution of (1.1). Consequently,
we obtain a G invariant positive solution. �

We sketch our idea. We call u a G invariant least energy solution if u ∈ N (G) and R(u) = RG given by (1.7). To avoid
confusion, a usual least energy solution is called a global least energy solution. Let u be a G invariant least energy solution.
We shall construct a function v which satisfies R(v) < R(u). This inequality implies that R0 ≤ R(v) < R(u) = RG, where R0
(the global least energy) has been defined by (1.4). Therefore a global least energy solution cannot be G invariant.

To accomplish our argument, this paper is organized into five sections. In Section 2, we introduce some notation, which
will be needed in the paper. Moreover, we state main results and give examples ofΩ . In Section 3, we construct a function
v which has a lower energy than the G invariant least energy RG. In Section 4, we prove the main theorems.

2. Main results

In this section, we state the main results and give several examples ofΩ . We first define the fixed point set Fix(G) of G by

F = Fix(G) := {x ∈ RN
: gx = x for all g ∈ G}. (2.1)

Then F becomes a linear subspace of RN . Since G ≠ {I} with the unit matrix I by assumption, F cannot be the whole space
RN . However, it can occur that F = {0}. Indeed, when G = O(N) or {I,−I}, F is equal to {0}. Thus 0 ≤ dim F ≤ N − 1.
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Since G is a closed subgroup of O(N), it is compact. Then we can define

P(x) := max
g∈G

|gx − x| for x ∈ RN , (2.2)

which is continuous. Indeed, we have

Lemma 2.1.

|P(x)− P(y)| ≤ 2|x − y| for x, y ∈ RN .

Proof. This lemma has been proved in our paper [22], but we give a proof to make the paper self-contained. For g ∈ G, the
isometry of g implies that

|gx − x| ≤ |gx − gy| + |gy − y| + |y − x|
= |gy − y| + 2|x − y| ≤ P(y)+ 2|x − y|.

Taking the maximum on g ∈ G, we have P(x) ≤ P(y)+ 2|x − y|. Exchanging xwith y, we get the conclusion. �

We prepare some definitions and notation.

Definition 2.2. Let D be a bounded open set in RN .
(i) We define

ρ(D) := min
D

P(x) = min
x∈D

max
g∈G

|gx − x|. (2.3)

(ii) For a > 0, we define k(D, a) by the smallest positive integer kwhich satisfies

D ⊂

k
i=1

B(xi, a) with some x1, . . . , xk ∈ RN .

Here B(x, a) denotes the open ball in RN centered at xwith radius a.
(iii) Let λ1(D) denote the first eigenvalue of the problem

−∆u = λu, in D, u = 0, on ∂D.

Observe that P(x) > 0 if and only if x ∉ F , where F is defined by (2.1). Hence ρ(Ω) > 0 if and only ifΩ ∩ F = ∅. In this
case, we consider thatΩ has a hole. We state the main result.

Theorem 2.3. Let G be a closed subgroup of O(N) such that G ≠ {I}. LetΩ be aG invariant bounded domain such thatΩ∩F = ∅.
Put ρ0 := ρ(Ω)/4 and k0 := k(Ω, ρ0/2). If the inequality

(2p − 1)k0
p − 1

< ρ2
0λ1(Ω) (2.4)

holds, then a least energy solution is not G invariant. Therefore (1.1) has both a G invariant positive solution and a G non-invariant
positive solution.

Theorem 2.3 means that ifΩ has a hole and the first eigenvalue is large enough, then a least energy solution breaks its
symmetry. In particular, ifΩ is a hollow thin domain, then λ1(Ω) is large enough and the theorem is valid. We rewrite (2.4)
as

2p − 1
p − 1

k(Ω, ρ0/2) < ρ2
0λ1(Ω). (2.5)

By definition, k(Ω, ρ0/2) is nonincreasing with respect to ρ0. If ρ0 is large enough, the inequality above holds. For example,
in the annulus case A(a, b)with G = O(N), we compute ρ(A(a, b)) = 2a. Hence, if a is large and b = a + 1, then ρ0 is large
enough and λ1(Ω) is bounded away from zero. Then (2.5) holds. This means that ifΩ has a large hole, then a least energy
solution has no symmetry. The assumption that Ω has a large hole is equivalent to the condition that Ω is a hollow thin
domain. These are represented as the assumption that (b − a)/a is small enough in the annulus case A(a, b).

Hereafter we denote the Lebesgue measure of Ω by vol(Ω). If vol(Ω) → 0, then λ1(Ω) → ∞. This will be proved in
Lemma 4.2. Then we have the next corollary.

Corollary 2.4. Let G be a closed subgroup of O(N) such that G ≠ {I} and D a G invariant bounded domain such that D∩ F = ∅.
Then there is a δ > 0 such that if Ω is a G invariant subdomain of D satisfying vol(Ω) < δ, then a least energy solution is not G
invariant.

In the corollary above, D is fixed andΩ is a subset of D. Hence it does not seem to be applicable to an expanding annulus
A(a, a + 1) as a → ∞. However we use the scaling argument in Example 2.7 so that the corollary works well. We give
several examples ofΩ having G invariance.
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Example 2.5. Let D be a bounded open set in RN such that 0 ∉ D and D is point symmetric, i.e., x ∈ D implies −x ∈ D. IfΩ
is a point symmetric subdomain of D and vol(Ω) is small enough, then a least energy solution of (1.1) is not even. Indeed,
choose G := {I,−I}. Then Fix(G) = {0} and Corollary 2.4 ensures the result above.

Example 2.6. Let D be a bounded open set in RN such that 0 ∈ D and D is point symmetric. Put Dλ := λD \ D with λ > 1.
Then Dλ is also point symmetric and 0 ∉ Dλ. Define Ω := Dλ × (0, ε). Then Ω is a bounded domain in RN+1. We denote
the variable x in RN+1 by x = (x′, xN+1)with x′

= (x1, . . . , xN). If λ > 1 is large enough, then Dλ is not thin. However when
ε > 0 is small enough,Ω has a short height. For any λ > 0 fixed, if ε > 0 is small enough, then a least energy solution forΩ
is not even with respect to x′. Indeed, we choose G := {I, I ′}, where I is the (N +1)× (N +1) unit matrix and I ′ is a diagonal
matrix whose diagonal elements are −1, . . . ,−1, 1. Then Fix(G) is the xN+1 axis, which does not intersect Dλ. Even if λ > 0
is fixed large, we choose ε > 0 so small that vol(Ω) is small enough. Hence Corollary 2.4 works well.

Example 2.7. LetΩ be an annulus

Ω := {x ∈ RN
: a < |x| < b}.

If (b − a)/a is small enough, a least energy solution is not even and therefore it is not radially symmetric. Let us show this
result. We use a change of variables v(x) := a2/(p−1)u(ax). Then (1.1) is transformed into

−∆v = vp, v > 0 inΩ1, v = 0 on ∂Ω1, (2.6)

where

Ω1 := a−1Ω = {x ∈ RN
: 1 < |x| < b/a}.

When 0 < a < b, the convergence (b − a)/a → 0 is equivalent to b/a → 1. Then vol(Ω1) → 0. Example 2.5 ensures the
non-evenness of a least energy solution for (2.6), therefore for (1.1) as well.

Example 2.8. Put U := {x ∈ R3
: a < |x| < b} with 0 < a < b fixed arbitrarily. Let Ω := S1 × D be a solid of revolution

defined by (1.5) such thatΩ ⊂ U . Then there is a δ > 0 depending only on a, b such that if vol(Ω) < δ, then a least energy
solution is not rotationally invariant around the x3-axis.

Example 2.9. Let U be as in Example 2.8 with a > 0 small enough and b > 0 large enough. LetΩ be a cylinder

Ω := {(x1, x2, x3) : α2 < x21 + x22 < β2, |x3| < γ },

with α, β, γ > 0 and α < β . There exists a δ > 0 depending only on a and b such that ifΩ ⊂ U and (β2
− α2)γ < δ, then

a least energy solution is not even and not rotationally invariant around the x3-axis. Indeed, since vol(Ω) = 2π(β2
−α2)γ ,

Corollary 2.4 shows our claim.

Example 2.10. InR3, we choose a cubewith center origin, whose edges are parallel to the coordinate axes. Denote the union
of all edges by E. Let Ω be the ε-neighborhood of E. If ε > 0 is small enough, then a least energy solution is not even and
not invariant under the rotation by angle π/2 around each axis xi. It is easy to verify the non-evenness. Let us show the
non-invariance of the rotation by angle π/2 around the x3-axis. The argument below is applicable to any other axis. We
choose

G :=


g(jπ/2) 0

0 1


: j = 0, 1, 2, 3


,

where g(θ) is defined by (1.3). The fixed point set of G is the x3-axis, which does not intersect Ω . Therefore a least energy
solution is not G invariant if ε is small enough.

3. A function with lower energy

The purpose of this section is to construct a function having an energy lower than the G invariant least energy. To this
end, we prepare notation and several lemmas. Hereafter we assume that Ω is G invariant. Let C∞

0 (Ω,G) denote the set of
G invariant functions in C∞

0 (Ω). The next two lemmas have already been proved in our paper [22], however we give their
proofs for the reader’s convenience.

Lemma 3.1. C∞

0 (Ω,G) is dense in Lq(Ω,G) for 1 ≤ q < ∞.

Proof. Let u ∈ Lq(Ω,G). Put v(x) := 0 if x ∈ Ω and dist(x, ∂Ω) < ε and v(x) := u(x) if x ∈ Ω and dist(x, ∂Ω) ≥ ε. Here
dist(x, ∂Ω) denotes the distance from x to ∂Ω . Since Ω is G invariant, v lies in Lq(Ω,G) and ∥v − u∥q converges to 0 as
ε → 0. Hereafter ∥ · ∥q denotes the Lq(Ω) norm. Fix ε > 0. A usual mollifier by a radially symmetric function gives us an
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approximation of v. Indeed, let J ∈ C∞

0 (R
N) be a nonnegative radial function such that the support of J is in |x| < 1 and the

integral of J on RN is one. Put Jδ(x) := δ−N J(x/δ) and define

vδ(x) :=


RN

Jδ(x − y)v(y)dy,

which belongs to C∞

0 (Ω,G) for δ > 0 small enough and converges to v as δ → 0. The proof is complete. �

We define the L2(Ω) inner product and the H1
0 (Ω) inner product by

(u, v)L2 :=


Ω

uvdx, (u, v)H1
0

:=


Ω

∇u∇vdx.

Denote the orthogonal complement of L2(Ω,G) in L2(Ω) by L2(Ω,G)⊥ and that of H1
0 (Ω,G) in H1

0 (Ω) by H1
0 (Ω,G)

⊥, i.e.,

L2(Ω,G)⊥ := {u ∈ L2(Ω) : (u, v)L2 = 0 for all v ∈ L2(Ω,G)},

H1
0 (Ω,G)

⊥
:= {u ∈ H1

0 (Ω) : (u, v)H1
0

= 0 for all v ∈ H1
0 (Ω,G)}.

Lemma 3.2. The following assertions hold.

(i) H1
0 (Ω,G)

⊥
⊂ L2(Ω,G)⊥.

(ii) Let 1 ≤ p, q ≤ ∞ with 1/p + 1/q = 1. For u ∈ Lp(Ω) ∩ L2(Ω,G)⊥ and v ∈ Lq(Ω,G), it holds that
Ω

uvdx = 0.

Proof. Let u ∈ H1
0 (Ω,G)

⊥. Give f ∈ L2(Ω,G) arbitrarily. Choose v in H2
loc(Ω,G) ∩ H1

0 (Ω,G) satisfying

−∆v = f inΩ, v = 0 on ∂Ω.

Then we have

(u, f )L2 = (u,−∆v)L2 = (u, v)H1
0

= 0,

which shows that u belongs to L2(Ω,G)⊥. Thus (i) is proved.
We shall show (ii). Let p, q, u, v be as in (ii). Assume that q < ∞. By Lemma 3.1, we choose a sequence vk ∈ C∞

0 (Ω,G)
converging to v in Lq(Ω). Since u ∈ L2(Ω,G)⊥ and vk ∈ L2(Ω,G), it holds that

Ω

uvkdx = 0,

which leads to the conclusion as k → ∞. Let q = ∞. Since L∞(Ω,G) ⊂ L2(Ω,G), the assertion is trivial. �

The Rayleigh quotient R(u) belongs to C2(H1
0 (Ω)) in the sense of the Fréchet derivative. The second derivative R′′(u)vw

is a continuous bilinear form of v andw. We will not need the expression of R′′(u)vw but the formula of R′′(u)w2 only. It is
computed in the next lemma.

Lemma 3.3. Let u be a positive solution of (1.1). For w ∈ H1
0 (Ω), it holds that

R′′(u)w2
= 2


Ω

|∇w|
2dx


Ω

|∇u|2dx
−2/(p+1)

+ 2(p − 1)


Ω

∇u∇wdx
2 

Ω

|∇u|2dx
−(p+3)/(p+1)

− 2p

Ω

up−1w2dx


Ω

|∇u|2dx
−2/(p+1)

. (3.1)

Proof. For t ∈ R, we put

f (t) :=


Ω

|∇(u + tw)|2dx, g(t) :=


Ω

|u + tw|
p+1dx.

Then R(u + tw) = f (t)g(t)−2/(p+1). We compute

R′′(u + tw)w2
= f ′′(t)g(t)−2/(p+1)

−
4

p + 1
f ′(t)g(t)−(p+3)/(p+1)g ′(t)

+
2(p + 3)
(p + 1)2

f (t)g(t)−2(p+2)/(p+1)g ′(t)2 −
2

p + 1
f (t)g(t)−(p+3)/(p+1)g ′′(t). (3.2)
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Moreover, we have

f ′(0) = 2

Ω

∇u∇wdx, f ′′(0) = 2

Ω

|∇w|
2dx,

g ′(0) = (p + 1)

Ω

upwdx, g ′′(0) = p(p + 1)

Ω

up−1w2dx.

Substituting t = 0 into (3.2), we get

R′′(u)w2
= 2


Ω

|∇w|
2dx


Ω

up+1dx
−2/(p+1)

− 8

Ω

∇u∇wdx


Ω

up+1dx
−(p+3)/(p+1) 

Ω

upwdx

+ 2(p + 3)

Ω

|∇u|2dx


Ω

up+1dx
−2(p+2)/(p+1) 

Ω

upwdx
2

− 2p

Ω

|∇u|2dx


Ω

up+1dx
−(p+3)/(p+1) 

Ω

up−1w2dx. (3.3)

Recall that u is a positive solution of (1.1). Multiplying (1.1) by u orw and integrating it overΩ , we have
Ω

up+1dx =


Ω

|∇u|2dx,

Ω

upwdx =


Ω

∇u∇wdx.

Substituting these identities into (3.3), we obtain (3.1). �

The next proposition plays the most important role to prove the main theorems.

Proposition 3.4. Let Ω0 be a G invariant bounded domain in RN such that Ω ⊂ Ω0. Let u be a G invariant least energy solution
of (1.1) and φ be a function in W 1,∞(Ω0) ∩ H1

0 (Ω0,G)⊥. Put v := (1 + εφ)u. If φ satisfies
Ω

|∇φ|
2u2dx <

p − 1
2(2p − 1)


Ω

|∇u|2φ2dx, (3.4)

then R(v) < R(u) for ε > 0 small enough. Therefore, a global least energy solution is not G invariant.

Proof. Since φ ∈ W 1,∞(Ω0), the functions φu and v belong to H1
0 (Ω). Since u is a solution of (1.1), R′(u) vanishes. We apply

the Taylor theorem to get

R(v) = R(u + εφu) = R(u)+
ε2

2
R′′(u)(φu)2 + o(ε2) (3.5)

as ε → 0. Here o(ε2) denotes a remainder term satisfying o(ε2)/ε2 → 0 as ε → 0. We shall show that R′′(u)(φu)2 is
negative.

Multiplying (1.1) by φ2u and integrating it overΩ , we have
Ω


|∇u|2φ2

+ 2uφ∇u∇φ

dx =


Ω

up+1φ2dx. (3.6)

We use the Schwarz inequality to get

2|uφ∇u∇φ| ≤ 2|∇φ|
2u2

+
1
2
|∇u|2φ2.

Employing the inequality above with (3.4), we have
Ω

|∇φ|
2u2dx − 2(p − 1)


Ω

uφ∇u∇φdx < (p − 1)

Ω

|∇u|2φ2dx. (3.7)

Combining (3.6) with (3.7), we obtain
Ω

(|∇u|2φ2
+ 2uφ∇u∇φ + |∇φ|

2u2)dx < p

Ω

(|∇u|2φ2
+ 2uφ∇u∇φ)dx = p


Ω

up+1φ2dx,

or equivalently
Ω

|∇(φu)|2dx < p

Ω

up+1φ2dx. (3.8)
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Put u = 0 outside of Ω . Then u ∈ H1
0 (Ω0,G). Note that |∇u|2 ∈ L1(Ω0,G) and use Lemma 3.2 with Ω replaced by Ω0.

Then one finds that
Ω

|∇u|2φdx =


Ω0

|∇u|2φdx = 0.

By the usual bootstrap argument with the elliptic regularity theorem, u belongs to L∞(Ω). Since u ∈ L∞(Ω) ∩ H1
0 (Ω), it

holds that ∇(u2) = 2u∇u ∈ L2(Ω). Hence u2
∈ H1

0 (Ω,G). Therefore
Ω

u∇u∇φdx =
1
2


Ω0

∇(u2)∇φdx = 0.

Using two identities above, we get
Ω

∇u∇(φu)dx =


Ω

u∇u∇φdx +


Ω

|∇u|2φdx = 0.

Substitutew = φu into (3.1) and use the equation above. Then we have

R′′(u)(φu)2 = 2

Ω

|∇(φu)|2dx


Ω

|∇u|2dx
−2/(p+1)

− 2p

Ω

up+1φ2dx


Ω

|∇u|2dx
−2/(p+1)

.

This inequality with (3.8) implies that R′′(u)(φu)2 < 0. Then (3.5) ensures that R(v) < R(u) for ε > 0 small enough, and so
R0 ≤ R(v) < R(u) = RG, where R0 and RG have been defined by (1.4) and (1.7), respectively. Therefore a global least energy
solution cannot be G invariant. �

4. Proof of the main results

In this section, we shall show the main theorems. We first deal with Theorem 2.3.

Proof of Theorem 2.3. In view of Proposition 3.4, it is enough to construct a function φ satisfying the assumption of
Proposition 3.4. Let k0 and ρ0 be as in Theorem 2.3. Let u be a G invariant least energy solution. Put u = 0 outside of Ω .
Then u ∈ H1(RN ,G). Choose a point y0 ∈ RN satisfying

max
y∈RN


B(y,ρ0/2)

|∇u|2dx =


B(y0,ρ0/2)

|∇u|2dx.

By the definition of k0, there exist y1, . . . , yk0 ∈ RN such thatΩ is covered by the union of B(yi, ρ0/2)with 1 ≤ i ≤ k0. Then
we get

Ω

|∇u|2dx ≤ k0


B(y0,ρ0/2)

|∇u|2dx.

If B(y0, ρ0/2) does not intersect Ω , then the right hand side vanishes. This is impossible. Hence we can choose a point
x0 ∈ B(y0, ρ0/2) ∩Ω . Then it holds that

Ω

|∇u|2dx ≤ k0


B(x0,ρ0)

|∇u|2dx. (4.1)

By the definition of ρ0, there exists a g0 ∈ G such that |g0x0 − x0| ≥ 4ρ0. Put x1 := g0x0. Then we have

B(x0, 2ρ0) ∩ B(x1, 2ρ0) = ∅.

Define φ0(|x|) by

φ0(|x|) :=


1 when |x| ≤ ρ0,
(2ρ0 − |x|)/ρ0 when ρ0 ≤ |x| ≤ 2ρ0.

We define φ(x) by

φ(x) :=


φ0(|x − x0|) in B(x0, 2ρ0),
−φ0(|x − x1|) in B(x1, 2ρ0),
0 otherwise.

We put

Ω0 := {x ∈ RN
: dist(x,Ω) < 2ρ0},
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where dist(x,Ω) is the distance from x to Ω . Then clearly Ω ⊂ Ω0 and φ ∈ W 1,∞(Ω0) ∩ H1
0 (Ω0). We shall show that

φ ∈ H1
0 (Ω0,G)⊥. Let ψ be any function in H1

0 (Ω0,G). Note that φ0(|x|) is radial. Using the change of variables x = g0y, we
compute

B(x1,2ρ0)
∇φ∇ψdx = −


|x−x1|<2ρ0

∇φ0(|x − x1|)∇ψ(x)dx

= −


|g0y−g0x0|<2ρ0

∇φ0(|g0y − g0x0|)∇ψ(g0y)dy

= −


B(x0,2ρ0)

∇φ(y)∇ψ(y)dy.

This implies that
Ω0

∇φ∇ψdx = 0,

that is, φ ∈ H1
0 (Ω0,G)⊥.

Since λ1 = λ1(Ω) is the first eigenvalue of the Dirichlet Laplacian, it holds that
Ω

u2dx ≤
1
λ1


Ω

|∇u|2dx.

Since ∥∇φ∥∞ = ∥∇φ0∥∞ = 1/ρ0 by definition, we have
Ω

|∇φ|
2u2dx ≤

1
ρ2
0


Ω

u2dx ≤
1

λ1ρ
2
0


Ω

|∇u|2dx,

which with (4.1) yields
Ω

|∇φ|
2u2dx ≤

k0
λ1ρ

2
0


B(x0,ρ0)

|∇u|2dx.

Since |φ(x)| = 1 in B(x0, ρ0) ∪ B(x1, ρ0), we have
B(x0,ρ0)

|∇u|2dx =


B(x0,ρ0)

|∇u|2φ2dx ≤
1
2


Ω

|∇u|2φ2dx.

Combining the two inequalities above and using the assumption (2.4), we obtain
Ω

|∇φ|
2u2dx <

p − 1
2(2p − 1)


Ω

|∇u|2φ2dx.

Thus (3.4) holds. By Proposition 3.4, a least energy solution cannot be G invariant. The proof is complete. �

By the definitions of ρ(D) and k(D, a), we can prove easily the next lemma.

Lemma 4.1. Let Ω1 andΩ2 be bounded sets in RN . Then the following assertions hold.

(i) ρ(Ω2) ≤ ρ(Ω1) if Ω1 ⊂ Ω2.
(ii) k(Ω1, a) is nonincreasing with respect to a.
(iii) k(Ω1, a) ≤ k(Ω2, a) if Ω1 ⊂ Ω2.

To prove Corollary 2.4, we need the fact that λ1(Ω) → ∞ as vol(Ω) → 0. This result is well known, however we give a
proof for the reader’s convenience.

Lemma 4.2. If vol(Ω) → 0, then λ1(Ω) → ∞.

Proof. We use the isoperimetric inequality (see [11, p. 87, Theorem 2])

λ1(Ω) ≥ λ1(Br) if vol(Ω) = vol(Br)with a ball Br .

Here Br denotes a ball with radius r . Since λ1(Br) = r−2λ1(B1) and vol(Ω) = vol(Br) = ωN rN with ωN depending only on
N , we have

λ1(Ω) ≥ r−2λ1(B1) = λ1(B1)ω
2/N
N vol(Ω)−2/N .

This completes the proof. �
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Proof of Corollary 2.4. Let D be as in the corollary. Put ρ1 := ρ(D)/4 and k1 := k(D, ρ1/2) = k(D, ρ(D)/8). Let Ω be a G
invariant subdomain of D. By Lemma 4.2, if vol(Ω) is small enough, then

(2p − 1)k1
(p − 1)ρ2

1
< λ1(Ω). (4.2)

By Lemma 4.1, we have ρ(D) ≤ ρ(Ω) and

k(Ω, ρ(Ω)/8) ≤ k(D, ρ(Ω)/8) ≤ k(D, ρ(D)/8).

Then (4.2) implies that

2p − 1
p − 1

k(Ω, ρ(Ω)/8) < (ρ(Ω)/4)2λ1(Ω),

which is exactly (2.4). Theorem 2.3 gives a conclusion. �

We conclude this paper by proving Theorem 1.2.

Proof of Theorem 1.2. Let D be a regular polytope with center origin in RN and putΩ := (1+ε)D\D. Define G(D) by (1.6).
It is known that Fix(G(D)) = {0}. For the proof, see [32, p. 234, Exercise 6.5] or [22]. By Corollary 2.4, a least energy solution
is not G(D) invariant. �
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