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1. Introduction

In the present paper we study the non-commutative LP-spaces associated with the hyperfinite factors of type III;, where
0 < A < 1.In particular, we are interested in the decomposition of this space in terms of LP-spaces of matrix algebras and
the construction of a very classical Schauder basis, namely the Walsh system.

Recall that the classical Walsh system is defined as follows. One firstly defines the Rademacher functions:

rj(x) = sign (sin (¥rx)), jeN,xe[0,1].

The classical Walsh system, see e.g. [14], is defined as the sequence of functions given by

o0
wy = 1_[ ri, Wwheren = Z y,-z", yi € {0, 1}. (1.1)
Yi#0 i=0

It is a classical result that the sequence (wy)neny forms a Schauder basis in the spaces [P([0, 1], u) forevery 1 < p < o0;
see [14, Theorem IV.15]. Here 1« denotes the Lebesgue measure.

Proper non-commutative generalizations of the Walsh system have been found for the LP-spaces associated with the
hyperfinite II; and I, factors [4]. Also, related problems have been studied in [3,5], where non-commutative trigonometric
systems and non-commutative Vilenkin systems were constructed. Furthermore, in [18] a non-commutative Haar system
was built for hyperfinite type III, factors, 0 < A < 1. The general existence of a basis in the non-commutative L’-spaces
(1 < p < oo) associated with an arbitrary hyperfinite von Neumann algebra was proved in [11]. However, the proof is not
constructive.
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Here, we continue this line by constructing a Walsh system for the hyperfinite III, -factors, where 0 < A < 1. We elab-
1

orate on the special commutative case LP([0, 1], uq). Here, p, is the Lebesgue measure in case « = 5.In case o # % the
measure (L, is a biased measure which is singular to the Lebesgue measure and appears naturally in the construction of III;
factors; c.f. [15].

The structure of the paper is as follows. Section 2 recalls the necessary results on general non-commutative [P-spaces. In
Section 3 we introduce the hyperfinite III; factors and fix notation. Section 4 contains our main result, which is the construc-
tion of a non-commutative Walsh system as a Schauder basis in the [P-spaces associated with the hyperfinite III; factors,
1 <p < 00,0 <A < 1.InSection 5 we construct a Walsh system for the hyperfinite IlI; factor. Finally, we make remarks

on the classical case in Section 6.
2. Preliminaries on non-commutative LP-spaces

Let M be a von Neumann algebra with predual M,. For w € M,, x € M, we write xw € M, for the functional given by
(xw)(y) = w(yx),y € M. Similarly, wx € M, denotes the functional (wx)(y) = w(xy),y € M.

2.1. Non-commutative [P-spaces

Non-commutative [P-spaces appear in different guises. Haagerup [7] as well as Connes and Hilsum [10] gave different,
but equivalent definitions of LP-spaces associated with an arbitrary von Neumann algebra. In [16] Kosaki showed that for
a von Neumann algebra with a faithful, normal state, the [-spaces are isometrically isomorphic to complex interpolation
spaces between a von Neumann algebra and its predual. This is the point of view that is most suitable for our purposes. We
recall the necessary definitions and notation here.

For the details on the complex interpolation method, we refer the reader to [1]. Let M be a von Neumann algebra with
faithful, normal state w. We consider the non-dotted part of the (commutative) diagram:

My

M — i (Mv M*)[%](— — > M,.

(2.1)

X—=>X X—=>Xw

M
This turns the pair (M, M,) into a compatible couple of Banach spaces [1, Section 2.3]. The complex interpolation method at
parameter % gives by definition a Banach space (M, M*)[l] which is a subset of M, where the inclusion is a norm-decreasing
p
map. Moreover, the complex interpolation method gives an embedding:

P oM = (M, M)
p

See also the dotted part of (2.1). It is proved in [16] that the Banach space (M, M*)[l] is isometrically isomorphic to the
p

non-commutative LP-spaces associated with .M as were defined by Haagerup and Connes/Hilsum. In particular, the con-
struction is up to an isometric isomorphism independent of the choice of w. We simply set L (M) = (M, M.)1, as the
p

non-commutative LP-space associated with . The norm on «£” (M) will be denoted by || - ||,.

Remark 2.1. We have an equality of Banach spaces £!'(M) = M,; see [1, Theorem 4.2.2]. By the same argument M is
isometrically isomorphic to £L>° (M) via the embedding i*.

Remark 2.2. The [P-spaces we defined are also called [P-spaces with respect to the left injection. If one changes both the
embeddings M — M, in (2.1) by x — wx, the interpolated spaces are isometrically isomorphic to the present LP-spaces
and we refer to this construction as [’-spaces with respect to the right injection. Other injections have been given in [16].
However, the constructions in the present paper only work for the left injection and in slightly different form also for the
right injection. We comment on this when it feels appropriate. Unless stated otherwise, every L’-space should be understood
with respect to the left injection.

Suppose that  is a von Neumann subalgebra of M such that there exists a w-preserving conditional expectation value

E : M — N [19, Definition IX.4.1]. Denote the inclusion by j : & — M.LetE' : M, — N, : ® > w|y be the restriction
map and also consider the extension mapj’ : N, — M, : @ — w o E. Note that

E®o)y) = 0(E®X) = 0(yx) = xo)(¥), X € M,y €N, (2.2)

(x0)(¥) = 0(yx) = 0(E(y)x) = x0)(EQY)), X € N,y € M. (2.3)
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It follows from (2.2) that the pair given by E and E’ forms a morphism in the category of compatible couples of Banach spaces
[1, Section 2.3] (which means by definition that i}, o E = E' oi}, where i}, and i}, denote the map i' of (2.1) for respectively
N and M, see also Remark 2.1). By complex interpolation, we obtain a norm-decreasing map:

EP : LP(M) — LP(N), 1<p<oo. (2.4)

It follows from (2.3) that the pair given by j and j' forms a morphism in the category of compatible couples of Banach spaces
[1, Section 2.3]. Complex interpolation yields a norm-decreasing map:

i LP(N) = LP(M).
In fact, jP is isometric, since
Ixll, = IEP o &)l < [P ®)lp < 1IXllp,  x € LP(N).

Hence, we may identify £P (V) as a 1-complemented closed subspace of L£P (M).

Remark 2.3. Also left multiplication is compatible with respect to (2.1), i.e.
x(yw) = xXY)w, X,y € M.
Therefore, for every x € M, we can interpolate left multiplication with x to give a bounded map m? determined by
mb o LP(M) > LP(M) 1 Py) = P(xy), y€E M. (2.5)

Forx € M andy € £P(M), we conveniently write xy for m% (y).

2.2. Martingales

Let M be a von Neumann algebra with faithful, normal state w as in Section 2.1. Let (M;)sen be an increasing filtration
of von Neumann subalgebras of .M such that their union is o -weakly dense in .M. Suppose that there exist w-preserving
conditional expectation values E; : M — M;. Define D; = E; — E;_1. As explained, we get a sequence of 1-complemented
closed subspaces of £P (M),

LP(Mo) S LP(M1) S LP(M2) S -+ S LP(M),

with projections Ef : £LP (M) — LP(M;) and differences D} = E! — EP |
An [P-martingale with respect to (M;)scy is a sequence (X;)sen With x; € £P(M) and EF (x;11) = X,. In particular x; €
LP (M) and x,—x,_1 = DE (x,). An [P-martingale (x;)sey is finite if there isann € Nsuch thatforalls > nwe have Df (x;) = 0.
If x € LP(M), then the sequence (E? (x))scy is an [P-martingale. Such sequences are called bounded [P-martingales. Note
that the original definition of bounded is different; see [9, Remark 6.1]. It follows that finite [P-martingales are bounded.
The following theorem follows from the Burkholder-Gundy inequalities, as first proved in the present setting in [12]. The
theorem also appears in [9], where the notation is closer to ours.

Theorem 2.4 (Theorem 6.3 of [9]). Let 1 < p < oc. There exists a constant C,, such that for every finite LP-martingale (Xs)sen
and every choice of signs €; € {—1, 1},

Z €DP (x;) > DA (x)
s=0 s=0

<C,,

p

It follows directly that the statement holds for every bounded [P-martingale.

3. The setup: non-commutative LP-spaces associated with the hyperfinite factors

In this section, we fix the notation for the rest of this paper. We introduce hyperfinite factors as the direct limit of matrix
algebras.

3.1. Hyperfinite factors

The results in this section can be found in [19,20]. Let N denote the natural numbers including 0. We define the following
matrix algebras:

s+1

My(C)® 7 fors € 2N+ 1,
Ny = o c o
M,(C)®2 ® (0 (C> fors € 2N.
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Fors € 2N + 1, we consider ; as a subalgebra of #;, ; by means of the embedding x — x ® 1. For s € 2N, there is a natural
inclusion #; € N;11. Fix0 < o <  and let

o 0
A1=<0 1_a>, Ay =AF", neN.

Define a state p; on ; by setting
ps(X) = Tr(xAr%), X € M.

Here (%1 is the smallest integer that is greater than or equal to %

We let R, be the von Neumann algebra given by the infinite tensor product of M,(C) equipped with the states p1; see
[20, Section XVIIL1]. Then, R, is a type 11, factor where A = %~ incase0 < o < % and R, is factor of type II; in case

o= % We have natural injective x-homomorphisms
st Ns > Ry, SEN.
Furthermore, there is a distinguished faithful normal state p, on R, which is characterized by the property:
Pa(Ts(X)) = ps(X), SEN,X € M. (3.1)

Moreover, we have the following lemma, which is well known.

Lemma 3.1. For every s € N the following holds:

(1) The embedding Ny — N1 carries to the inclusion ws(Ns) C 711 (Nsy1).
(2) The modular automorphism group o ”* leaves mw;(N;) globally invariant, i.e. o (7ws(Ns)) = mws(Ns).
(3) The union Usey 15(Ns) is o -weakly dense in R,.

For convenience of notation, we will identify s with its image under 75, so that . is a von Neumann subalgebra of R,,. By
(3.1) we see that p; is the restriction of p, to ;. Property (2) of Lemma 3.1 implies that there is a p,-preserving conditional
expectation value; c.f. [19, Theorem IX.4.2]. From now on, we use the following notation for this map:

Es : Ry — N (3.2)

In addition, we set N_; = C1, the one-dimensional subalgebra generated by the unit of R,. We setE_; : R, — MN_7 as
the corresponding p,-preserving conditional expectation value, which in fact is given by the map p,.

3.2. [P-spaces associated with hyperfinite factors

It follows from the preliminaries in Section 2.1 that we get non-commutative [P-spaces £ (;), with respect to the faith-
ful, normal state ps, with s € N. Similarly, we will use the notation .£P (R, ) for the [P-space associated with R, with respect
to py. As explained, we identify £P(Ns) as a closed subspace of £P(Nsy1). Similarly, we may identify £P(N;) as a closed
subspace of £P(R,) and we get a chain of closed subspaces,

LP(No) S LP(N) S LP(N2) © -+ S LP(Ry), 1=p =< o00. (3.3)

As a vector space .N; is isomorphic to £P (V) by means of the mapping i¥; see (2.1). For x € ;, the norm of i (x) € L£P(N)
may be directly computed as

o1
1P )Nl = Tr(|xAS [P)?;

see [18, Remark 3.1].
Interpolating the conditional expectation values E;, we find projections

Ef : L2(Ra) — LP(N).
We will need the following approximation result.
Proposition 3.2 (Theorem 8 of [6]). For 1 < p < oo and x € LP(Ry,),
Ix—EPx) |, = 0, ass— oo. (3.4)

In particular, for 1 < p < o0, the union Ugey £P (Ns) is dense in LP(Ry).

4. Non-commutative Walsh system

Let X be a (complex) Banach space. Recall that a sequence X = (X;)icy in X is called a Schauder basis if for every x € X
there are unique scalars o; € C such that x = Zfzoo a;x;. In fact, x will form a Schauder basis of X if and only if the linear
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span of x;, i € Nis dense in X and there is a constant C such that for every choice of scalars «; € C and every n, m € N with
n>m,

<cC (4.1)

m n
E aiXi E aiXi
i=0 i=0

The constant C is also called the basis constant [17, Section 1.a].
In [4], a non-commutative Walsh system was given for the [P-spaces associated with the hyperfinite II;-factor K1 for
2

1 < p < oo. Recall that the system is constructed as follows. Consider the matrices:

10 1 0 0 1 0 1
0,00 _ (1,00 _ ©,1) _ 1,1 _
r = (O 1) , r = (O _1> s r = (1 0) s r = (_1 0) . (4.2)

For n € N we consider the binary decomposition n = Zf’jo 2!, where y; € {0, 1}. We define

X X

o0
Wy = ®r()/2i«y2i+l). (4.3)
i=0

The sequence w = (wy,)ney is called the Walsh system. For o« = % the state p; is a trace and R is the hyperfinite I1;-factor.
2 2

In that case, it is well-known that £P (R 1 ) is isometrically isomorphic to the semi-finite [’-spaces with respect to the trace

p1;see also [7, Section 2]. Recall that the latter space can be defined as the completion of R 1 with respect to the norm

1
Ixllp = p1 (Ix[P)?.

Theorem 4.1 (Proposition 5 of [4]). For 1 < p < oo, the Walsh system w forms a Schauder basis in the semi-finite LP-spaces
associated with the trace p 1on R 1

In the present paper, we extend the result to the hyperfinite factors R,. Considering the interpolation structure as
described in Section 2.1, we can consider the Walsh system w as a sequence in £P(R,) by means of the embedding i’;
see (2.1). We prove that w is a Schauder basis in £P(R,) for 1 < p < oo.

Remark 4.2. Note that we do not incorporate p explicitly in the notation of our basis w. To justify this, note that by definition
LP(Ry) is as a set a subset of (R )., though their norms are different of course. Also R, =~ i**(R,) is identified as a subset
of (Ry)+ by means of (2.1). As an element of (R, )., the definition of w does not depend on p. The principle of this slight
abuse of notation is comparable to the fact that one does not distinguish a classical Walsh function (1.1) as an element of
LP([0, 1], ) for different p.
We fix some auxiliary notation. Let s € N. Recall that E; : R, — ; was defined in (3.2). Put

Ds = Es — Es_q,
and set U; = D;(R,). Note that Us; < N;. Moreover,

Us = span {wy, | 2° <n <27}
span{M,(C)®3 @ r:9}, ifs € 2N,
span{Mz((C)@’% Qroh, MZ(C)@’% QrtD) ifse 2N+ 1.

Define the Rademacher matrices:

%
®1 Q119 e W, ifse 2N,
i=1
re =

s—1

2
®1 ®@r®Y e, ifse2N+1.

i=1
In particular, r; € Us.
Lemma4.3. For n € Nand k € N such that 2 < n < 21 we have
Wy ok = Wl = €MgWy. (4.4)

Here, € € {—1, 1} is positive, unless k is odd and 2¥ 4+ 2¥=1 < n < 2k+1,
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Proof. Suppose that k € 2N. Then,

k_4 k_q
2 2

wy = ®r(1’2ia)/2i+1) @r10 and 1 = ®1 @ ro,
i=0 i=0

k
Hence, wpry = rew, = ®f:01 r(2i-72i+1)_ Taking into account that the binary decomposition of n and n — 2 are the same
except for the k-th digit, we see that w,r, = rcw, = w,_yk.
Now, consider the case k € 2N + 1.1f 2 < n < 2K 4 2k then
k=3 k=3
2 2
wy, = ® r2nit) | @ @D apd g, = 1] @r@D,
i=0 i=0

3

It follows again that w,r, = rpwy, = wy_ok. If 28 + 251 < n < 2K+ then

k=3 k=3
N R
w, = ® r2iveis) | @ rD apd p, = ® 1] @ r@,
i=0 i=0
Using the fact that r-Dr©@D = O DD — (1.0 we now get wyr, = —rpw, = wy_pk. O

Let P, : UZ, N; — R, be the projection determined by
m n
P, <Zoc,»w,-) = Zaiwi, m>n,«a; € C.
i=0 i=0
Note that directly after the next proposition we extend the domain of P, to R, c.f. Remark 4.5.

Theorem 4.4. Fixx = Y I s ojw; € R, Witha; € C. Foreveryn < m:
wnPn(X) = ]E—1(wnx) + Z Di(wnx); (45)
i with y;=1
where y; € {0, 1} aresuch that n = Y 2, 2",

Proof. The proof proceeds by induction to n. For n = 0, note that the summation on the right hand side of (4.5) vanishes.
We find

wolPo(X) = apwp = E_q(woX).

Now, suppose that (4.5) holds for all numbers strictly smaller than n. Let k be such that 2¢ < n < 2¥+1 so that w, € U.
Write n’ = n — 2¥. Then, by (4.4) we find

n 2k_q n
wyPy(x) = wy, E oW = Wy T E oiw; | + wyrg E aw; | . (4.6)
i=0 i=0 i=2k

k_
For the left summation on the right hand side, the appearance of the Rademacher r, ensures that w1y (Ziz:o 1 aiw,») € Ug.
Hence,

2k—1 2k_q
Wy Tk Z Wi = ]D)k Wp/ Tk Wi . (47)
i=0 i=0
By (4.4) we have rw; & Uy for 2% < i < m. Thus, we can continue (4.7) to get
2k—1 m
Wy Tk Z aiw; | = Dy (wn’rk (Z aiwi>> = Dy (wnx). (4.8)
i=0 i=0

Next, consider the right summation on the right hand side of (4.6). Using (4.4), we find that

n n n
Wi Tk E aw; | = wy Biw;i | = wyPy E Biwi |,
i=2k i=0 i=0
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for certain §; € C, where in fact 8; = %o, ,«, with the sign depending on n (the precise equality is irrelevant for the rest
of the proof). Since n’ < n, we continue this equation by induction. Taking into account the binary decomposition of n’ =

n — 2, we find
n n’ n’
W T (Z aiwi> E_, (wn’ (Z ,3iwi>) + Z D (wn’ (Z ﬁiwz))
i=0 s with ys=1,s2k i=0
n n
E_q (w,, (Z oz,-wi)> + Z Ds (wn <Z aiwi>> . (4.9)
i=2k s with ys=1,s#k i=2k

i=2k
Now, note that E_;(w,w;) # 0if and only if i = n. Furthermore, leti > nand leti = Zfio €:2°, with ¢; € {0, 1}. Looking
back at (4.3), we see that w,w; € U;, where j is the largest number such that y; # ¢;. Moreover, since i > n we have in fact
y; = 0and ¢; = 1. Hence, fori > n, we have ) —15k Ds(w,w;) = 0. Using these observations, we continue (4.9)

s with ys
n m m
Wy Tk Z ajwi | = E_1 | w, Wi + Z Ds | wy Z Wi
i=2k i=0 s with ys=1,s#k i=0
=Eq(w)+ Y Di(w). (4.10)

s with ys=1,s#k

It is now clear that filling in (4.8) and (4.10) into (4.6) yields the induction hypotheses. O

Remark 4.5. In particular, it follows that for a fixed n € N the map P, has a unique extension to &R, which is both bounded
and normal. We replace the notation PP, by its normal extension

Pp: Ry = Ry

Note that we do not claim yet that the bound of P, is uniform in n. In fact, this is true as we prove in the remainder of this
section.

Recall from Remark 2.3 that left multiplication of an element x € R, on £P(R,) can be obtained by complex interpola-
tion. We can also interpolate the maps Dy, E, s to get maps

DY 1 LP(Ry) = LP(N),
EL : LP(Ra) = LP(N;),
PP 1 LP(Ry) — LP(Ra),

where 1 < p < oco. Now, by functoriality of the complex interpolation method, we find the following corollary.
Corollary 4.6. Let 1 < p < oo. Forevery x € £P(R,),n € N:

waPh(X) =B (wex) + Y DR(wn), (4.11)
s with ys#0

where y; € {0, 1} are such that n = )2 y52°.

At this point it is useful to recall the definition of a Schauder decomposition.

Definition 4.7 (Section 1.g of [17]). Let X be a Banach space and let X = (X)sen be a sequence of closed subspaces of X.
Then, X is called a Schauder decomposition if every x € X has a unique decomposition

o0
X = sz, where x; € Xs. (4.12)
s=0

Lemma 4.8 (Section 1.g of [17]). A sequence X = (X;)sen of closed subspaces of X is a Schauder decomposition if the linear
span of Usen X5 is dense in X and furthermore, there is a constant C such that

n
DX
s=0

foreveryx; € Xsandn < m.

m

>

s=0

<C
x

’

X
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We also need the notion of an unconditional Schauder basis. Let X = (X;)sen be a Schauder decomposition of X. For
A C N, consider the projection:

’H‘A:X—>X:x=ix50—>2xs,

s=0 seA

where, of course, we mean that x; € X;.

Lemma 4.9 (Proposition 1.c.6 and its Subsequent Remarks in [17]). The following are equivalent:

(1) Forevery A C N, the map T, is bounded.
(2) For every x € X withx = Z;’io Xs, Wwhere x; € X and for every choice e, € {—1, 1},s € N, the sum Z:io €5Xs, 1S
convergent.

Moreover, if these conditions are satisfied, then there is a constant C such that for every A C N, we have || T| < C.

If (Xs)sen satisfies the equivalent conditions of Lemma 4.9, then this sequence is called an unconditional Schauder
decomposition.

Note that (Ns)sen iS an increasing filtration of von Neumann algebras such that its union is o-weakly dense in R,,. More-
over, R, is equipped with the faithful, normal state p,. Therefore, Theorem 2.4 may be applied and we see that (2) of
Lemma 4.9 holds for the decomposition (D (£P (Ra)))sen-

Proposition 4.10. Let 1 < p < oo. Then, (D (LP(Rq)))sen is an unconditional Schauder decomposition of £P(Ry).

We are now in a position to prove the main theorem of this section.

Theorem 4.11. For 1 < p < oo, the Walsh system w forms a Schauder basis in £P(R,,).

Proof. It follows from Proposition 3.2 that the linear span of the Walsh system is dense in £” (R, ). We have to prove that
(4.1) with X = L£P(R4) holds for a certain C. Equivalently, we must prove that the projections P, are uniformly bounded
in n. Recall that by Theorem 4.4 for x € £LP(R,), n € N:

PP(x) = waE [ (weX) + wn Y DP(wp), (4.13)
s with ys#0

where y; € {0, 1} are such thatn = Z;’io ys2°. Now, left multiplication with wy, is an isometric map on £” (R, ). Hence,

E,+ Y D > o

s with ys#0 s with ys#0

IPhIl = < 1B, )l + , (4.14)

Since we assumed that 1 < p < oo, the decomposition (DY (£P(R4)))sen is unconditional. Hence, it follows from Lemma 4.9
that the right hand side of (4.14) is uniformly bounded inn. O

Remark 4.12. We would like to emphasize that the fact that left multiplication is compatible with the left injection forms
an essential step in the Proof of Theorem 4.11. If one considers LP-spaces with respect to the right injection, one can prove
thatfor 1 < p < o0,x € LP(Ry) andn € N:

PPA (0w, = EPf(xwa) + Y D2 (xy), (4.15)
s with ys#0

where y; € {0, 1} are such that n = "°° 1,25, Here, the maps D'*, EZ"*, P?** are the interpolated maps of Ds, B, P; with
respect to the right injection. Completely analogously, one can now prove that w forms a Schauder basis in the right LP-
spaces.

5. The Walsh basis in the hyperfinite factor of type III,

Here, we construct a Walsh basis in the [P-spaces associated with the hyperfinite factor of type Ill;. The construction
follows the line of [ 18, Section 7]; however, the arguments are different as they rely on Section 4.

Consider arbitrary von Neumann algebras " and M with faithful, normal states ¢ and . For the modular automorphism
group of ¢ ® ¥, we have

Gf)m/:at‘p@a‘/’, teR.
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Therefore, & ® 1 is a von Neumann subalgebra of &/ ® M that is globally invariant under o ?®¥. There exists a ¢ ® -
preserving conditional expectation value Ey : & ® M — N ® 1,[19, Theorem IX.4.2]. Suppose that v = (vj)jey is a
sequence in M with v]?" vj equal to a multiple of the identity. We define maps:

Fy i) =A@ Ey((1®v)x), Xx€N® M.
Since F v ; is the composition of left multiplications and E -, we can use the complex interpolation method to get a bounded
map:
it LN @ M) — LP(N @ 1) = LP(N). (5.1)

Similarly, we can consider a ¢ ® ¥-preserving conditional expectation value Ey : N @ M — 1 Q® M.Ifu = (U;)ien is a
sequence in N with u}u; equal to a multiple of the identity, then we set

Fu,i®) = U ® DE»((uf ® Dx), Xx€ N ® M.

Interpolating this map, yields a map Fﬁm TLP(N @ M) > LP(1Q® M) = LP(M).
The following theorem can be proved similarly as [18, Theorem 7.1]. For completeness and convenience of the reader,
we give the proof. Recall that the shell enumeration is an enumeration of N x N, which assigns to a pair (i, j) the number

P+ ifi <j,

w(l,J)Z{(i+1)2—j—1 if i > j.

Theorem 5.1. Let 1 < p < oo. Suppose that u = (u;)iey and v = (vj)jen are sequences of linearly independent unitaries in
N and M, respectively. Denote the corresponding projections by ]F’jw and F”M’i and suppose that (]szN,j(oC"(:N ® M)))jen and

(Fi{’i(ﬂ’(d\/ ® M)))ien are Schauder decompositions of N ® M. Then,u ® V= (u; ® vj); jen taken in the shell enumeration is
a Schauder basis for LP(N @ M).

Proof. Letz = u® v and write Z = (zx)ken. Let n, m € N be such that n < m and consider the sum 2?1:0 «;z;, where o; € C.
Let | € N be such that > < n < (I 4+ 1)2. There are two cases: either > <n < P +lor> +1 < n < (I+ 1)2 We treat the
first case, since the second case can be handled similarly. First, we compute

n
E lkZk E ok Zk
k=0 p

k=12

2-1

E [£9%4%
k=0
p

IA

n—12

Z Uy nli @ v
i=0
P

For the two terms on the right hand side, we find

m
Z Uiy Ui ® Vj Pit,l—lpif,l—l (Z akzk)
k=0
p

0<i,j<l

Z Uy(i Ui @ Vj

0<ij<I

p

)

n—I2

m
P
Dot ®u| = [F P (Z “’”)
i=0 k=0
p

where PY, - =30 (F andPh, (=Y | . Since we assumed that the sequences (F ;(LP(N ® M)))jen and (FF ;(LP

(N ® M)))jcy are Schauder decomposmons of LP(N ® M), the projections Pf,’v’s and Pﬁ{_s are uniformly bounded in s; c.f.
Lemma 4.8. It follows that there is a constant C such that relation (4.1) holds. O

3

p

Choose 0 < o, o < = such that R, and R are factors of type Il and IIl,; with logk gQand A = %, )M = 13—;/

In that case, the tensor product R ® Ry is isomorphic to the hyperfinite factor of type IlIl, see [2,8]. Consider the Walsh
basis w in £P(R,) and let w/ be the Walsh basis in £P(R,). Let ]FZJ(: ) be the projection constructed in (5.1) and

similarly consider }Fp ( R ,])

Ra.j

Proposition 5.2. Let 1 < p < oo. The decomposition (}F’;J(DC” (Ra ® Ry')))jen is a Schauder decomposition of £P(Ry @ Ry').
Similarly, (IFZ/J(OCP(RLX ® Re')))jen is a Schauder decomposition of LP(Ry @ Ry').



M. Caspers et al. / ]. Math. Anal. Appl. 408 (2013) 154-164 163

Proof. We only proof the first statement, since the second one can be proved similarly. Set P, , = Z;:o Fe j and Pﬂ,n =
> ito i, ;. In view of Lemma 4.8, we must prove that P, , is uniformly bounded in n.
o jw; ® wjf with ojj € C. We find

Letm > n. Consider an elementx = ) o_;

Py n ( Z o jw; ® w;) = Z o jw; @ w}

0<ij<m 0<i<m,0<j<n

(L®Pn)< > ai,jwf®wj>.

0<i,j<m

In particular, the normality of P, , implies that P, , = (¢t ® P,,), where ¢ is the identity on R,.

Note that R, ® H; is a von Neumann subalgebra of R, ® R, that is globally invariant under the modular automorphism
group of p, ® py. LetEy s 1 Ry @ Ry — Ra @ N be the associated p, ® p,/-preserving conditional expectation value.
Consider also the p,/-preserving conditional expectation value Es : R, — M;. Clearly, the uniqueness of (o, ® pu/)-
preserving conditional expectations implies that

Eos =1t ® Es.

Recall that we defined Dy = E; — E;_1. Similarly, set Dy s = Ey s — Eq s—1.
Now, we obtain the following equalities from Theorem 4.4:

(1 Q@ WPen(®) = (. ® w))(t @ Py)(x)

<t®<]E1+ > D,-))(u@w;)x)

i with y;=1

<]Eo(,l + Z Da,i) ((1 ® w;)x),

i with y;=1

where n = Z;’ZOO yi2t with y; € {0, 1}. Interpolating this equation, and observing that left multiplication with (1 ® wy) is
an isometric map on £P (R, ® R,), we find that

P50 =|Eh  + > Db < IEL I+ (52)

i with y;=1

> DL

i with yj=1

By remarks similar to the ones preceding Proposition 4.10, it follows from Theorem 2.4 that the decomposition ]D)Z_i(ﬂ’ (R ®
Ra))ien is an unconditional Schauder decomposition of LP (R, ® R.’). Hence, Lemma 4.9 implies that the right hand side
of (5.2) is uniformly bounded inn. O

Proposition 5.2 implies that we may apply Theorem 5.1.

Theorem 5.3. Let 1 < p < oco. The Walsh systemw Q W = (w; ® wj’)i,jeN taken in the shell enumeration is a Schauder basis
in LP(Ry ® Ry); the [P-space associated with the hyperfinite 111, factor.

Remark 5.4. In general a tensor product of two [P-spaces, each with unconditional decomposition, does not produce a L?-
space where the tensor product of the given decompositions is unconditional. The simplest example is a couple of Schatten
classes with row and column decompositions.

6. Classical L?-spaces
For s € N, consider the diagonal subalgebra 4; C ;. The weak closure of Uscy s in R, forms an abelian von Neumann

algebra 4., which is isomorphic to L*° ([0, 1], u.). Here, 1, is the measure determined by

n—1

k k+1
Mo ([2,1, 2n:|> = ,1:(![(1 —va+yi(l—a)],

where 0 < k < 2" and y; € {0, 1} are such that k = Z?:_ol ;2% see [13, Section 12.3]. In particular, A% is isomorphic to
L*°([0, 1], i), where u is the Lebesgue measure.
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The modular automorphism group o leaves Uscy 4, and hence 4, invariant. From Section 2.1, it follows that £P (A, ) is
a closed subspace of £P(R,). Moreover, there exists a conditional expectation value E,, : Ry — . Since E,,, projects
on the diagonal matrices, we find that it acts on the Walsh system w by

o0
w, ifn= 2! with y,;4, = 0 for every i,
E., (wy) = n ,Z.; Vi Y2i+1 ry

0 else.

Indeed, it follows from (4.3) that w, is diagonal if and only if the odd digits in the binary decomposition of n vanish. Let z
be the subsequence of w of vectors in the range of the projection E 4. Clearly, it follows from Theorem 4.11 that z forms
a Schauder basis in £P(A,) for 1 < p < oo. Explicitly, this system is constructed as follows. Recall that we defined the
Rademacher matrices in (4.2). Set

o0 o0
=@, n=3)"y2, yieo1).
i=0 i=0

Then, z = (zy)nen.

Corollary 6.1. Let 1 < p < oc. The system z forms a Schauder basis in £P (A, ). Under the isomorphism £P(A,) >~ L[P([0, 1],
Lo ), we obtain the classical Walsh system (1.1).
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