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1. Introduction

In the present paper we study the non-commutative Lp-spaces associated with the hyperfinite factors of type IIIλ, where
0 < λ ≤ 1. In particular, we are interested in the decomposition of this space in terms of Lp-spaces of matrix algebras and
the construction of a very classical Schauder basis, namely theWalsh system.

Recall that the classical Walsh system is defined as follows. One firstly defines the Rademacher functions:

rj(x) = sign

sin

2jπx


, j ∈ N, x ∈ [0, 1].

The classical Walsh system, see e.g. [14], is defined as the sequence of functions given by

wn =


γi≠0

ri, where n =

∞
i=0

γi2i, γi ∈ {0, 1}. (1.1)

It is a classical result that the sequence (wn)n∈N forms a Schauder basis in the spaces Lp([0, 1], µ) for every 1 < p < ∞;
see [14, Theorem IV.15]. Here µ denotes the Lebesgue measure.

Proper non-commutative generalizations of the Walsh system have been found for the Lp-spaces associated with the
hyperfinite II1 and II∞ factors [4]. Also, related problems have been studied in [3,5], where non-commutative trigonometric
systems and non-commutative Vilenkin systems were constructed. Furthermore, in [18] a non-commutative Haar system
was built for hyperfinite type IIIλ factors, 0 < λ ≤ 1. The general existence of a basis in the non-commutative Lp-spaces
(1 ≤ p < ∞) associated with an arbitrary hyperfinite von Neumann algebra was proved in [11]. However, the proof is not
constructive.
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Here, we continue this line by constructing a Walsh system for the hyperfinite IIIλ-factors, where 0 < λ ≤ 1. We elab-
orate on the special commutative case Lp([0, 1], µα). Here, µα is the Lebesgue measure in case α =

1
2 . In case α ≠

1
2 , the

measure µα is a biased measure which is singular to the Lebesgue measure and appears naturally in the construction of IIIλ
factors; c.f. [15].

The structure of the paper is as follows. Section 2 recalls the necessary results on general non-commutative Lp-spaces. In
Section 3we introduce the hyperfinite IIIλ factors and fix notation. Section 4 contains ourmain result, which is the construc-
tion of a non-commutative Walsh system as a Schauder basis in the Lp-spaces associated with the hyperfinite IIIλ factors,
1 < p < ∞, 0 < λ < 1. In Section 5 we construct a Walsh system for the hyperfinite III1 factor. Finally, we make remarks
on the classical case in Section 6.

2. Preliminaries on non-commutative Lp-spaces

Let M be a von Neumann algebra with predual M∗. For ω ∈ M∗, x ∈ M, we write xω ∈ M∗ for the functional given by
(xω)(y) = ω(yx), y ∈ M. Similarly, ωx ∈ M∗ denotes the functional (ωx)(y) = ω(xy), y ∈ M.

2.1. Non-commutative Lp-spaces

Non-commutative Lp-spaces appear in different guises. Haagerup [7] as well as Connes and Hilsum [10] gave different,
but equivalent definitions of Lp-spaces associated with an arbitrary von Neumann algebra. In [16] Kosaki showed that for
a von Neumann algebra with a faithful, normal state, the Lp-spaces are isometrically isomorphic to complex interpolation
spaces between a von Neumann algebra and its predual. This is the point of view that is most suitable for our purposes. We
recall the necessary definitions and notation here.

For the details on the complex interpolation method, we refer the reader to [1]. Let M be a von Neumann algebra with
faithful, normal state ω. We consider the non-dotted part of the (commutative) diagram:

M∗ � r

ω →ω

$$JJJJJJJJJJ

M
, �

x→xω

::vvvvvvvvvv
� r

x→x
$$IIIIIIIIIII

� � ip //___ (M,M∗)[ 1p ]
� � //___ M∗.

M
, �

x→xω

::ttttttttttt

(2.1)

This turns the pair (M,M∗) into a compatible couple of Banach spaces [1, Section 2.3]. The complex interpolationmethod at
parameter 1

p gives by definition a Banach space (M,M∗)[ 1p ]
which is a subset ofM∗, where the inclusion is a norm-decreasing

map. Moreover, the complex interpolation method gives an embedding:

ip : M → (M,M∗)[ 1p ]
.

See also the dotted part of (2.1). It is proved in [16] that the Banach space (M,M∗)[ 1p ]
is isometrically isomorphic to the

non-commutative Lp-spaces associated with M as were defined by Haagerup and Connes/Hilsum. In particular, the con-
struction is up to an isometric isomorphism independent of the choice of ω. We simply set Lp(M) = (M,M∗)[ 1p ]

as the
non-commutative Lp-space associated with M. The norm on Lp(M)will be denoted by ∥ · ∥p.

Remark 2.1. We have an equality of Banach spaces L1(M) = M∗; see [1, Theorem 4.2.2]. By the same argument M is
isometrically isomorphic to L∞(M) via the embedding i∞.

Remark 2.2. The Lp-spaces we defined are also called Lp-spaces with respect to the left injection. If one changes both the
embeddings M ↩→ M∗ in (2.1) by x → ωx, the interpolated spaces are isometrically isomorphic to the present Lp-spaces
and we refer to this construction as Lp-spaces with respect to the right injection. Other injections have been given in [16].
However, the constructions in the present paper only work for the left injection and in slightly different form also for the
right injection.We comment on thiswhen it feels appropriate. Unless stated otherwise, every Lp-space should be understood
with respect to the left injection.

Suppose that N is a von Neumann subalgebra of M such that there exists a ω-preserving conditional expectation value
E : M → N [19, Definition IX.4.1]. Denote the inclusion by j : N → M. Let E′

: M∗ → N∗ : ω → ω|N be the restriction
map and also consider the extension map j′ : N∗ → M∗ : ω → ω ◦ E. Note that

(E(x)ω)(y) = ω(yE(x)) = ω(yx) = (xω)(y), x ∈ M, y ∈ N , (2.2)
(xω)(y) = ω(yx) = ω(E(y)x) = (xω)(E(y)), x ∈ N , y ∈ M. (2.3)
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It follows from (2.2) that the pair given byE andE′ forms amorphism in the category of compatible couples of Banach spaces
[1, Section 2.3] (which means by definition that i1N ◦E = E′

◦ i1M , where i1N and i1M denote the map i1 of (2.1) for respectively
N and M, see also Remark 2.1). By complex interpolation, we obtain a norm-decreasing map:

Ep
: Lp(M) → Lp(N ), 1 ≤ p ≤ ∞. (2.4)

It follows from (2.3) that the pair given by j and j′ forms a morphism in the category of compatible couples of Banach spaces
[1, Section 2.3]. Complex interpolation yields a norm-decreasing map:

jp : Lp(N ) → Lp(M).

In fact, jp is isometric, since

∥x∥p = ∥Ep
◦ jp(x)∥p ≤ ∥jp(x)∥p ≤ ∥x∥p, x ∈ Lp(N ).

Hence, we may identify Lp(N ) as a 1-complemented closed subspace of Lp(M).

Remark 2.3. Also left multiplication is compatible with respect to (2.1), i.e.

x(yω) = (xy)ω, x, y ∈ M.

Therefore, for every x ∈ M, we can interpolate left multiplication with x to give a bounded mapmp
x determined by

mp
x : Lp(M) → Lp(M) : ip(y) → ip(xy), y ∈ M. (2.5)

For x ∈ M and y ∈ Lp(M), we conveniently write xy formp
x(y).

2.2. Martingales

Let M be a von Neumann algebra with faithful, normal state ω as in Section 2.1. Let (Ms)s∈N be an increasing filtration
of von Neumann subalgebras of M such that their union is σ -weakly dense in M. Suppose that there exist ω-preserving
conditional expectation values Es : M → Ms. Define Ds = Es − Es−1. As explained, we get a sequence of 1-complemented
closed subspaces of Lp(M),

Lp(M0) ⊆ Lp(M1) ⊆ Lp(M2) ⊆ · · · ⊆ Lp(M),

with projections Ep
s : Lp(M) → Lp(Ms) and differences Dp

s = Ep
s − Ep

s−1.
An Lp-martingale with respect to (Ms)s∈N is a sequence (xs)s∈N with xs ∈ Lp(M) and Ep

s (xs+1) = xs. In particular xs ∈

Lp(Ms) and xs−xs−1 = Dp
s (xs). An Lp-martingale (xs)s∈N is finite if there is ann ∈ N such that for all s ≥ nwehaveDp

s (xs) = 0.
If x ∈ Lp(M), then the sequence (Ep

s (x))s∈N is an Lp-martingale. Such sequences are called bounded Lp-martingales. Note
that the original definition of bounded is different; see [9, Remark 6.1]. It follows that finite Lp-martingales are bounded.

The following theorem follows from the Burkholder–Gundy inequalities, as first proved in the present setting in [12]. The
theorem also appears in [9], where the notation is closer to ours.

Theorem 2.4 (Theorem 6.3 of [9]). Let 1 < p < ∞. There exists a constant Cp, such that for every finite Lp-martingale (xs)s∈N
and every choice of signs ϵs ∈ {−1, 1}, ∞

s=0

ϵsDp
s (xs)


p

≤ Cp

 ∞
s=0

Dp
s (xs)


p

.

It follows directly that the statement holds for every bounded Lp-martingale.

3. The setup: non-commutative Lp-spaces associated with the hyperfinite factors

In this section, we fix the notation for the rest of this paper. We introduce hyperfinite factors as the direct limit of matrix
algebras.

3.1. Hyperfinite factors

The results in this section can be found in [19,20]. Let N denote the natural numbers including 0.We define the following
matrix algebras:

Ns =

M2(C)⊗
s+1
2 for s ∈ 2N + 1,

M2(C)⊗
s
2


C 0
0 C


for s ∈ 2N.
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For s ∈ 2N + 1, we consider Ns as a subalgebra of Ns+1 by means of the embedding x → x⊗ 1. For s ∈ 2N, there is a natural
inclusion Ns ⊆ Ns+1. Fix 0 < α ≤

1
2 and let

A1 =


α 0
0 1 − α


, An = A⊗n

1 , n ∈ N.

Define a state ρs on Ns by setting

ρs(x) = Tr(xA
⌈
s+1
2 ⌉
), x ∈ Ns.

Here ⌈
s+1
2 ⌉ is the smallest integer that is greater than or equal to s+1

2 .
We let Rα be the von Neumann algebra given by the infinite tensor product of M2(C) equipped with the states ρ1; see

[20, Section XVIII.1]. Then, Rα is a type IIIλ factor where λ =
α

1−α in case 0 < α < 1
2 and Rα is factor of type II1 in case

α =
1
2 . We have natural injective ∗-homomorphisms

πs : Ns → Rα, s ∈ N.

Furthermore, there is a distinguished faithful normal state ρα on Rα , which is characterized by the property:

ρα(πs(x)) = ρs(x), s ∈ N, x ∈ Ns. (3.1)

Moreover, we have the following lemma, which is well known.

Lemma 3.1. For every s ∈ N the following holds:

(1) The embedding Ns → Ns+1 carries to the inclusion πs(Ns) ⊆ πs+1(Ns+1).
(2) The modular automorphism group σ ρα leaves πs(Ns) globally invariant, i.e. σ ρα (πs(Ns)) = πs(Ns).
(3) The union ∪s∈N πs(Ns) is σ -weakly dense in Rα .

For convenience of notation, wewill identifyNs with its image underπs, so thatNs is a vonNeumann subalgebra ofRα . By
(3.1) we see that ρs is the restriction of ρα to Ns. Property (2) of Lemma 3.1 implies that there is a ρα-preserving conditional
expectation value; c.f. [19, Theorem IX.4.2]. From now on, we use the following notation for this map:

Es : Rα → Ns. (3.2)

In addition, we set N−1 = C1, the one-dimensional subalgebra generated by the unit of Rα . We set E−1 : Rα → N−1 as
the corresponding ρα-preserving conditional expectation value, which in fact is given by the map ρα .

3.2. Lp-spaces associated with hyperfinite factors

It follows from the preliminaries in Section 2.1 that we get non-commutative Lp-spacesLp(Ns), with respect to the faith-
ful, normal state ρs, with s ∈ N. Similarly, we will use the notation Lp(Rα) for the Lp-space associated with Rα with respect
to ρα . As explained, we identify Lp(Ns) as a closed subspace of Lp(Ns+1). Similarly, we may identify Lp(Ns) as a closed
subspace of Lp(Rα) and we get a chain of closed subspaces,

Lp(N0) ⊆ Lp(N1) ⊆ Lp(N2) ⊆ · · · ⊆ Lp(Rα), 1 ≤ p ≤ ∞. (3.3)

As a vector space Ns is isomorphic to Lp(Ns) by means of the mapping ip; see (2.1). For x ∈ Ns, the norm of ip(x) ∈ Lp(Ns)
may be directly computed as

∥ip(x)∥p = Tr(|xA
1
p
s |

p)
1
p ;

see [18, Remark 3.1].
Interpolating the conditional expectation values Es, we find projections

Ep
s : Lp(Rα) → Lp(Ns).

We will need the following approximation result.

Proposition 3.2 (Theorem 8 of [6]). For 1 ≤ p < ∞ and x ∈ Lp(Rα),

∥x − Ep
s (x)∥p → 0, as s → ∞. (3.4)

In particular, for 1 ≤ p < ∞, the union ∪s∈N Lp(Ns) is dense in Lp(Rα).

4. Non-commutative Walsh system

Let X be a (complex) Banach space. Recall that a sequence x = (xi)i∈N in X is called a Schauder basis if for every x ∈ X
there are unique scalars αi ∈ C such that x =


∞

i=0 αixi. In fact, x will form a Schauder basis of X if and only if the linear
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span of xi, i ∈ N is dense in X and there is a constant C such that for every choice of scalars αi ∈ C and every n,m ∈ N with
n > m, m

i=0

αixi


X

≤ C

 n
i=0

αixi


X

. (4.1)

The constant C is also called the basis constant [17, Section 1.a].
In [4], a non-commutative Walsh system was given for the Lp-spaces associated with the hyperfinite II1-factor R 1

2
for

1 < p < ∞. Recall that the system is constructed as follows. Consider the matrices:

r (0,0) =


1 0
0 1


, r (1,0) =


1 0
0 −1


, r (0,1) =


0 1
1 0


, r (1,1) =


0 1

−1 0


. (4.2)

For n ∈ N we consider the binary decomposition n =


∞

i=0 γi2
i, where γi ∈ {0, 1}. We define

wn =

∞
i=0

r (γ2i,γ2i+1). (4.3)

The sequencew = (wn)n∈N is called theWalsh system. For α =
1
2 , the state ρ 1

2
is a trace and R 1

2
is the hyperfinite II1-factor.

In that case, it is well-known that Lp(R 1
2
) is isometrically isomorphic to the semi-finite Lp-spaces with respect to the trace

ρ 1
2
; see also [7, Section 2]. Recall that the latter space can be defined as the completion of R 1

2
with respect to the norm

∥x∥p = ρ 1
2
(|x|p)

1
p .

Theorem 4.1 (Proposition 5 of [4]). For 1 < p < ∞, the Walsh system w forms a Schauder basis in the semi-finite Lp-spaces
associated with the trace ρ 1

2
on R 1

2
.

In the present paper, we extend the result to the hyperfinite factors Rα . Considering the interpolation structure as
described in Section 2.1, we can consider the Walsh system w as a sequence in Lp(Rα) by means of the embedding ip;
see (2.1). We prove thatw is a Schauder basis in Lp(Rα) for 1 < p < ∞.

Remark 4.2. Note thatwe do not incorporate p explicitly in the notation of our basisw. To justify this, note that by definition
Lp(Rα) is as a set a subset of (Rα)∗, though their norms are different of course. Also Rα ≃ i∞(Rα) is identified as a subset
of (Rα)∗ by means of (2.1). As an element of (Rα)∗, the definition of w does not depend on p. The principle of this slight
abuse of notation is comparable to the fact that one does not distinguish a classical Walsh function (1.1) as an element of
Lp([0, 1], µ) for different p.

We fix some auxiliary notation. Let s ∈ N. Recall that Es : Rα → Ns was defined in (3.2). Put

Ds = Es − Es−1,

and set Us = Ds(Rα). Note that Us ⊆ Ns. Moreover,

Us = span

wn | 2s

≤ n < 2s+1
=


span{M2(C)⊗

s
2 ⊗ r (1,0)}, if s ∈ 2N,

span{M2(C)⊗
s−1
2 ⊗ r (0,1),M2(C)⊗

s−1
2 ⊗ r (1,1)}, if s ∈ 2N + 1.

Define the Rademacher matrices:

rs =



 s
2

i=1

1

⊗ r (1,0) ∈ Ns, if s ∈ 2N, s−1
2

i=1

1

⊗ r (0,1) ∈ Ns, if s ∈ 2N + 1.

In particular, rs ∈ Us.

Lemma 4.3. For n ∈ N and k ∈ N such that 2k
≤ n < 2k+1, we have

wn−2k = wnrk = ϵrkwn. (4.4)

Here, ϵ ∈ {−1, 1} is positive, unless k is odd and 2k
+ 2k−1

≤ n < 2k+1.
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Proof. Suppose that k ∈ 2N. Then,

wn =

 k
2 −1
i=0

r (γ2i,γ2i+1)

⊗ r (1,0) and rk =

 k
2 −1
i=0

1

⊗ r (1,0).

Hence, wnrk = rkwn =
 k

2 −1
i=0 r (γ2i,γ2i+1). Taking into account that the binary decomposition of n and n − 2k are the same

except for the k-th digit, we see thatwnrk = rkwn = wn−2k .
Now, consider the case k ∈ 2N + 1. If 2k

≤ n < 2k
+ 2k−1, then

wn =

 k−3
2

i=0

r (γ2i,γ2i+1)

⊗ r (0,1) and rk =

 k−3
2

i=0

1

⊗ r (0,1).

It follows again thatwnrk = rkwn = wn−2k . If 2
k
+ 2k−1

≤ n < 2k+1, then

wn =

 k−3
2

i=0

r (γ2i,γ2i+1)

⊗ r (1,1) and rk =

 k−3
2

i=0

1

⊗ r (0,1).

Using the fact that r (1,1)r (0,1) = −r (0,1)r (1,1) = r (1,0) we now getwnrk = −rkwn = wn−2k . �

Let Pn : ∪
∞

i=0 Ni → Rα be the projection determined by

Pn


m
i=0

αiwi


=

n
i=0

αiwi, m > n, αi ∈ C.

Note that directly after the next proposition we extend the domain of Pn to Rα , c.f. Remark 4.5.

Theorem 4.4. Fix x =
m

i=0 αiwi ∈ Rα with αi ∈ C. For every n < m:

wnPn(x) = E−1(wnx)+


i with γi=1

Di(wnx), (4.5)

where γi ∈ {0, 1} are such that n =


∞

i=0 γi2
i.

Proof. The proof proceeds by induction to n. For n = 0, note that the summation on the right hand side of (4.5) vanishes.
We find

w0P0(x) = α0w0 = E−1(w0x).

Now, suppose that (4.5) holds for all numbers strictly smaller than n. Let k be such that 2k
≤ n < 2k+1, so thatwn ∈ Uk.

Write n′
= n − 2k. Then, by (4.4) we find

wnPn(x) = wn

n
i=0

αiwi = wn′ rk

2k−1
i=0

αiwi

+ wn′ rk


n

i=2k
αiwi


. (4.6)

For the left summation on the right hand side, the appearance of the Rademacher rk ensures thatwn′ rk
2k−1

i=0 αiwi


∈ Uk.

Hence,

wn′ rk

2k−1
i=0

αiwi

 = Dk


wn′ rk


2k−1
i=0

αiwi


. (4.7)

By (4.4) we have rkwi ∉ Uk for 2k
≤ i < m. Thus, we can continue (4.7) to get

wn′ rk

2k−1
i=0

αiwi

 = Dk


wn′ rk


m
i=0
αiwi


= Dk(wnx). (4.8)

Next, consider the right summation on the right hand side of (4.6). Using (4.4), we find that

wn′ rk


n

i=2k
αiwi


= wn′


n′
i=0

βiwi


= wn′Pn′


n′
i=0

βiwi


,
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for certain βi ∈ C, where in fact βi = ±αi+2k , with the sign depending on n (the precise equality is irrelevant for the rest
of the proof). Since n′ < n, we continue this equation by induction. Taking into account the binary decomposition of n′

=

n − 2k, we find

wn′ rk


n

i=2k
αiwi


= E−1


wn′


n′
i=0

βiwi


+


s with γs=1,s≠k

Ds


wn′


n′
i=0

βiwi



= E−1


wn


n

i=2k
αiwi


+


s with γs=1,s≠k

Ds


wn


n

i=2k
αiwi


. (4.9)

Now, note that E−1(wnwi) ≠ 0 if and only if i = n. Furthermore, let i > n and let i =


∞

s=0 ϵs2
s, with ϵs ∈ {0, 1}. Looking

back at (4.3), we see thatwnwi ∈ Uj, where j is the largest number such that γj ≠ ϵj. Moreover, since i > n we have in fact
γj = 0 and ϵj = 1. Hence, for i > n, we have


s with γs=1,s≠k Ds(wnwi) = 0. Using these observations, we continue (4.9)

wn′ rk


n

i=2k
αiwi


= E−1


wn


m
i=0

αiwi


+


s with γs=1,s≠k

Ds


wn


m
i=0

αiwi


= E−1 (wnx)+


s with γs=1,s≠k

Ds (wnx) . (4.10)

It is now clear that filling in (4.8) and (4.10) into (4.6) yields the induction hypotheses. �

Remark 4.5. In particular, it follows that for a fixed n ∈ N the map Pn has a unique extension to Rα which is both bounded
and normal. We replace the notation Pn by its normal extension

Pn : Rα → Rα.

Note that we do not claim yet that the bound of Pn is uniform in n. In fact, this is true as we prove in the remainder of this
section.

Recall from Remark 2.3 that left multiplication of an element x ∈ Rα on Lp(Rα) can be obtained by complex interpola-
tion. We can also interpolate the maps Ds,Es, Ps to get maps

Dp
s : Lp(Rα) → Lp(Ns),

Ep
s : Lp(Rα) → Lp(Ns),

Pp
s : Lp(Rα) → Lp(Rα),

where 1 ≤ p ≤ ∞. Now, by functoriality of the complex interpolation method, we find the following corollary.

Corollary 4.6. Let 1 ≤ p ≤ ∞. For every x ∈ Lp(Rα), n ∈ N:

wnPp
n(x) = Ep

−1(wnx)+


s with γs≠0

Dp
s (wnx), (4.11)

where γs ∈ {0, 1} are such that n =


∞

s=0 γs2
s.

At this point it is useful to recall the definition of a Schauder decomposition.

Definition 4.7 (Section 1.g of [17]). Let X be a Banach space and let X = (Xs)s∈N be a sequence of closed subspaces of X.
Then, X is called a Schauder decomposition if every x ∈ X has a unique decomposition

x =

∞
s=0

xs, where xs ∈ Xs. (4.12)

Lemma 4.8 (Section 1.g of [17]). A sequence X = (Xs)s∈N of closed subspaces of X is a Schauder decomposition if the linear
span of ∪s∈N Xs is dense in X and furthermore, there is a constant C such that n

s=0

xs


X

≤ C

 m
s=0

xs


X

,

for every xs ∈ Xs and n < m.
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We also need the notion of an unconditional Schauder basis. Let X = (Xs)s∈N be a Schauder decomposition of X. For
A ⊆ N, consider the projection:

TA : X → X : x =

∞
s=0

xs →


s∈A

xs,

where, of course, we mean that xs ∈ Xs.

Lemma 4.9 (Proposition 1.c.6 and its Subsequent Remarks in [17]). The following are equivalent:

(1) For every A ⊆ N, the map TA is bounded.
(2) For every x ∈ X with x =


∞

s=0 xs, where xs ∈ Xs and for every choice ϵs ∈ {−1, 1}, s ∈ N, the sum


∞

s=0 ϵsxs, is
convergent.

Moreover, if these conditions are satisfied, then there is a constant C such that for every A ⊆ N, we have ∥TA∥ ≤ C.

If (Xs)s∈N satisfies the equivalent conditions of Lemma 4.9, then this sequence is called an unconditional Schauder
decomposition.

Note that (Ns)s∈N is an increasing filtration of von Neumann algebras such that its union is σ -weakly dense in Rα . More-
over, Rα is equipped with the faithful, normal state ρα . Therefore, Theorem 2.4 may be applied and we see that (2) of
Lemma 4.9 holds for the decomposition (Dp

s (L
p(Rα)))s∈N.

Proposition 4.10. Let 1 < p < ∞. Then, (Dp
s (L

p(Rα)))s∈N is an unconditional Schauder decomposition of Lp(Rα).

We are now in a position to prove the main theorem of this section.

Theorem 4.11. For 1 < p < ∞, the Walsh systemw forms a Schauder basis in Lp(Rα).

Proof. It follows from Proposition 3.2 that the linear span of the Walsh system is dense in Lp(Rα). We have to prove that
(4.1) with X = Lp(Rα) holds for a certain C . Equivalently, we must prove that the projections Pp

n are uniformly bounded
in n. Recall that by Theorem 4.4 for x ∈ Lp(Rα), n ∈ N:

Pp
n(x) = wnE

p
−1(wnx)+ wn


s with γs≠0

Dp
s (wnx), (4.13)

where γs ∈ {0, 1} are such that n =


∞

s=0 γs2
s. Now, left multiplication withwn is an isometric map on Lp(Rα). Hence,

∥Pp
n∥ =

Ep
−1 +


s with γs≠0

Dp
s

 ≤ ∥Ep
−1∥ +

 
s with γs≠0

Dp
s

 , (4.14)

Sincewe assumed that 1 < p < ∞, the decomposition (Dp
s (L

p(Rα)))s∈N is unconditional. Hence, it follows from Lemma 4.9
that the right hand side of (4.14) is uniformly bounded in n. �

Remark 4.12. We would like to emphasize that the fact that left multiplication is compatible with the left injection forms
an essential step in the Proof of Theorem 4.11. If one considers Lp-spaces with respect to the right injection, one can prove
that for 1 ≤ p ≤ ∞, x ∈ Lp(Rα) and n ∈ N:

Pp,♯
n (x)wn = Ep,♯

−1(xwn)+


s with γs≠0

Dp,♯
s (xwn), (4.15)

where γs ∈ {0, 1} are such that n =


∞

s=0 γs2
s. Here, the maps Dp,♯

s ,E
p,♯
s , P

p,♯
s are the interpolated maps of Ds,Es, Ps with

respect to the right injection. Completely analogously, one can now prove that w forms a Schauder basis in the right Lp-
spaces.

5. The Walsh basis in the hyperfinite factor of type III1

Here, we construct a Walsh basis in the Lp-spaces associated with the hyperfinite factor of type III1. The construction
follows the line of [18, Section 7]; however, the arguments are different as they rely on Section 4.

Consider arbitrary von Neumann algebrasN andM with faithful, normal states φ andψ . For themodular automorphism
group of φ ⊗ ψ , we have

σ
φ⊗ψ
t = σ

φ
t ⊗ σ

ψ
t , t ∈ R.
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Therefore, N ⊗ 1 is a von Neumann subalgebra of N ⊗ M that is globally invariant under σ φ⊗ψ . There exists a φ ⊗ ψ-
preserving conditional expectation value EN : N ⊗ M → N ⊗ 1, [19, Theorem IX.4.2]. Suppose that v = (vj)j∈N is a
sequence in M with v∗

j vj equal to a multiple of the identity. We define maps:

FN ,j(x) = (1 ⊗ vj)EN ((1 ⊗ v∗

j )x), x ∈ N ⊗ M.

Since FN ,j is the composition of left multiplications and EN , we can use the complex interpolation method to get a bounded
map:

Fp
N ,j : Lp(N ⊗ M) → Lp(N ⊗ 1) = Lp(N ). (5.1)

Similarly, we can consider a φ ⊗ψ-preserving conditional expectation value EM : N ⊗ M → 1 ⊗ M. If u = (ui)i∈N is a
sequence in N with u∗

i ui equal to a multiple of the identity, then we set

FM,i(x) = (ui ⊗ 1)EM((u∗

i ⊗ 1)x), x ∈ N ⊗ M.

Interpolating this map, yields a map Fp
M,i : Lp(N ⊗ M) → Lp(1 ⊗ M) = Lp(M).

The following theorem can be proved similarly as [18, Theorem 7.1]. For completeness and convenience of the reader,
we give the proof. Recall that the shell enumeration is an enumeration of N × N, which assigns to a pair (i, j) the number

ϕ(i, j) =


j2 + i if i ≤ j,
(i + 1)2 − j − 1 if i > j.

Theorem 5.1. Let 1 ≤ p ≤ ∞. Suppose that u = (ui)i∈N and v = (vj)j∈N are sequences of linearly independent unitaries in
N and M, respectively. Denote the corresponding projections by Fp

N ,j and Fp
M,i and suppose that (Fp

N ,j(L
p(N ⊗ M)))j∈N and

(Fp
M,i(L

p(N ⊗ M)))i∈N are Schauder decompositions of N ⊗ M. Then, u ⊗ v = (ui ⊗ vj)i,j∈N taken in the shell enumeration is
a Schauder basis for Lp(N ⊗ M).

Proof. Let z = u⊗ v and write z = (zk)k∈N. Let n,m ∈ N be such that n < m and consider the sum
m

i=0 αizi, where αi ∈ C.
Let l ∈ N be such that l2 ≤ n < (l + 1)2. There are two cases: either l2 ≤ n ≤ l2 + l or l2 + l < n < (l + 1)2. We treat the
first case, since the second case can be handled similarly. First, we compute n

k=0

αkzk


p

≤


l2−1
k=0

αkzk


p

+

 n
k=l2

αkzk


p

=

 
0≤i,j<l

αϕ(i,j)ui ⊗ vj


p

+


n−l2
i=0

αϕ(i,l)ui ⊗ vl


p

.

For the two terms on the right hand side, we find 
0≤i,j<l

αϕ(i,j)ui ⊗ vj


p

=

Pp
M,l−1P

p
N ,l−1


m

k=0

αkzk


p

,


n−l2
i=0

αϕ(i,l)ui ⊗ vl


p

=

Fp
M,lP

p
N ,n−l2


m

k=0

αkzk


p

,

where Pp
N ,s =

s
i=0 Fp

N ,i and Pp
M,s =

s
j=0 Fp

M,j. Since we assumed that the sequences (Fp
N ,j(L

p(N ⊗M)))j∈N and (Fp
M,i(L

p

(N ⊗ M)))i∈N are Schauder decompositions of Lp(N ⊗ M), the projections Pp
N ,s and Pp

M,s are uniformly bounded in s; c.f.
Lemma 4.8. It follows that there is a constant C such that relation (4.1) holds. �

Choose 0 < α, α′ < 1
2 such that Rα and Rα′ are factors of type IIIλ and IIIλ′ with log λ

log λ′ ∉ Q and λ =
α

1−α , λ
′
=

α′

1−α′ .
In that case, the tensor product Rα ⊗ Rα′ is isomorphic to the hyperfinite factor of type III1; see [2,8]. Consider the Walsh
basis w in Lp(Rα) and let w′ be the Walsh basis in Lp(Rα′). Let Fp

α,j(= Fp
Rα ,j) be the projection constructed in (5.1) and

similarly consider Fp
α′,i(= Fp

Rα′ ,j).

Proposition 5.2. Let 1 < p < ∞. The decomposition (Fp
α,j(L

p(Rα ⊗Rα′)))j∈N is a Schauder decomposition of Lp(Rα ⊗Rα′).
Similarly, (Fp

α′,j(L
p(Rα ⊗ Rα′)))j∈N is a Schauder decomposition of Lp(Rα ⊗ Rα′).
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Proof. We only proof the first statement, since the second one can be proved similarly. Set Pα,n =
n

j=0 Fα,j and Pp
α,n =n

j=0 Fp
α,j. In view of Lemma 4.8, we must prove that Pp

α,n is uniformly bounded in n.
Letm > n. Consider an element x =


0≤i,j≤m αi,jwi ⊗ w′

j with αi,j ∈ C. We find

Pα,n

 
0≤i,j≤m

αi,jwi ⊗ w′

j


=


0≤i≤m,0≤j≤n

αi,jwi ⊗ w′

j

= (ι⊗ Pn)

 
0≤i,j≤m

αi,jwi ⊗ w′

j


.

In particular, the normality of Pα,n implies that Pα,n = (ι⊗ Pn), where ι is the identity on Rα .
Note thatRα⊗Ns is a von Neumann subalgebra ofRα⊗Rα′ that is globally invariant under themodular automorphism

group of ρα ⊗ ρα′ . Let Eα,s : Rα ⊗ Rα′ → Rα ⊗ Ns be the associated ρα ⊗ ρα′-preserving conditional expectation value.
Consider also the ρα′-preserving conditional expectation value Es : Rα′ → Ns. Clearly, the uniqueness of (ρα ⊗ ρα′)-
preserving conditional expectations implies that

Eα,s = ι⊗ Es.

Recall that we defined Ds = Es − Es−1. Similarly, set Dα,s = Eα,s − Eα,s−1.
Now, we obtain the following equalities from Theorem 4.4:

(1 ⊗ w′

n)Pα,n(x) = (ι⊗ w′

n)(ι⊗ Pn)(x)

=


ι⊗


E−1 +


i with γi=1

Di

 
(1 ⊗ w′

n)x


=


Eα,−1 +


i with γi=1

Dα,i

 
(1 ⊗ w′

n)x

,

where n =


∞

i=0 γi2
i with γi ∈ {0, 1}. Interpolating this equation, and observing that left multiplication with (1 ⊗ w′

n) is
an isometric map on Lp(Rα ⊗ Rα′), we find that

∥Pp
α,n∥ =

Ep
α,−1 +


i with γi=1

Dp
α,i

 ≤ ∥Ep
α,−1∥ +

 
i with γi=1

Dp
α,i

 . (5.2)

By remarks similar to the ones preceding Proposition 4.10, it follows fromTheorem2.4 that the decompositionDp
α,i(L

p(Rα⊗

Rα′))i∈N is an unconditional Schauder decomposition of Lp(Rα ⊗ Rα′). Hence, Lemma 4.9 implies that the right hand side
of (5.2) is uniformly bounded in n. �

Proposition 5.2 implies that we may apply Theorem 5.1.

Theorem 5.3. Let 1 < p < ∞. The Walsh system w ⊗ w′
= (wi ⊗ w′

j)i,j∈N taken in the shell enumeration is a Schauder basis
in Lp(Rα ⊗ Rα′); the Lp-space associated with the hyperfinite III1 factor.

Remark 5.4. In general a tensor product of two Lp-spaces, each with unconditional decomposition, does not produce a Lp-
space where the tensor product of the given decompositions is unconditional. The simplest example is a couple of Schatten
classes with row and column decompositions.

6. Classical Lp-spaces

For s ∈ N, consider the diagonal subalgebra As ⊆ Ns. The weak closure of ∪s∈N As in Rα forms an abelian von Neumann
algebra Aα , which is isomorphic to L∞([0, 1], µα). Here, µα is the measure determined by

µα


k
2n
,
k + 1
2n


=

n−1
i=0

[(1 − γi)α + γi(1 − α)] ,

where 0 ≤ k < 2n and γi ∈ {0, 1} are such that k =
n−1

i=0 γi2
i; see [13, Section 12.3]. In particular, A 1

2
is isomorphic to

L∞([0, 1], µ), where µ is the Lebesgue measure.
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The modular automorphism group σ leaves ∪s∈N As and hence Aα invariant. From Section 2.1, it follows that Lp(Aα) is
a closed subspace of Lp(Rα). Moreover, there exists a conditional expectation value EAα : Rα → Aα . Since EAα projects
on the diagonal matrices, we find that it acts on the Walsh systemw by

EAα (wn) =

wn if n =

∞
i=0

γi2i with γ2i+1 = 0 for every i,

0 else.

Indeed, it follows from (4.3) that wn is diagonal if and only if the odd digits in the binary decomposition of n vanish. Let z
be the subsequence of w of vectors in the range of the projection EAα . Clearly, it follows from Theorem 4.11 that z forms
a Schauder basis in Lp(Aα) for 1 < p < ∞. Explicitly, this system is constructed as follows. Recall that we defined the
Rademacher matrices in (4.2). Set

zn =

∞
i=0

r (γi,0), n =

∞
i=0

γi2i, γi ∈ {0, 1}.

Then, z = (zn)n∈N.

Corollary 6.1. Let 1 < p < ∞. The system z forms a Schauder basis in Lp(Aα). Under the isomorphism Lp(Aα) ≃ Lp([0, 1],
µα), we obtain the classical Walsh system (1.1).
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