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a b s t r a c t

Assume 0 <| ρ |< 1 and m is a prime, let µρ be the self-similar measure defined by
µρ(A) =

1
m

m−1
j=0 µρ(ρ−1A − j), ∀ A ∈ B. We prove that L2(µρ) contains an orthonormal

basis of exponential functions if and only if ρ = ±1/mk for some k ∈ N.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let µ be a Borel probability measure on R. We say that µ is a spectral measure if there exists a discrete set Λ such that
EΛ := {e2πλxi

: λ ∈ Λ} forms an orthonormal basis of L2(µ). In this case, we call Λ a spectrum of µ and (µ, Λ) a spectral
pair, respectively.

Jorgenson and Pederson [4]studied the spectral property of general Cantor measures. They proved that the 1/k-Cantor
measureµ1/k onR is a spectralmeasure if k is even (Strichartz provided a simplified proof in [9]). This resultwas investigated
by Laba and Wang in more details in [5] and for the general Borel measures in [6].

Hu and Lau [3] further studied the spectral property of Bernoulli convolutions. They proved that the necessary and
sufficient condition that the Bernoulli convolution has an infinite orthonormal set EΛ of exponential functions is that the
contraction ratio ρ is the n-th root of a fraction p/q, where p is odd and q is even. Recently, Dai [1] proved that the Bernoulli
convolution has an orthonormal basis EΛ of exponential functions if and only if the contraction ratio ρ is the reciprocal of
an even integer.

Motivated by the above results,we study the spectral property of one dimensional self-similarmeasureswith consecutive
digits.

Let ρ be a real number such that 0 < |ρ| < 1, it is well known that for any positive integerm ≥ 2, there exists a unique
probability measure, denoted by µρ , such that

µρ(A) =
1
m

m−1
j=0

µρ(ρ−1(A) − j) (1.1)

for all Borel set A ∈ B. µρ is called a self-similar measure.
For the self-similar measure µρ defined in (1.1), our main theorem is as follows.
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Theorem 1.1. If m is a prime, then L2(µρ) contains an orthonormal basis of exponential functions only if ρ = ±
1
mk for some

k ∈ N.

This is an extension of the result of [1].
On the other hand, Dai etc. proved that L2(µ1/mk) contains an orthonormal basis of exponential functions for any k ∈ N

in [2]. It is easy to see that L2(µ−1/mk) also contains an orthonormal basis of exponential functions for any k ∈ N. Hence we
have the following.

Theorem A. If m is a prime, then L2(µρ) contains an orthonormal basis of exponential functions if and only if ρ = ±
1
mk for

some k ∈ N.

Remarks. Theorem 1.1 indicates that the main theorems of [3,1] also hold for −1 < ρ < 0. Our proof of Theorem 1.1
strongly depends on the structure of the zeros of µ̂ρ . The set of zeros of µ̂ρ will be very complicated if the digit set is
replaced by a non-consecutive digit set. So far, we do not know how to deal with the case of non-consecutive digits. Also,
some of our proofs do not work whenm is not a prime. For integral self-affine measures, Li studied the spectrality of a class
of planar self-affine measures with decomposable digit sets in [7] and with three non-consecutive digit set in [8].

If we only consider the existence of infinite orthonormal set of exponential functions, we have the following theorem
which is an extension of the result of [3].

Theorem 1.2. Assume m is a prime, then L2(µρ) contains an infinite orthonormal set of exponential functions if and only if
ρ = ±(q/p)1/r for some p, q, r ∈ N with the properties: p, q are co-prime and m|p.

Since EΛ forms an orthonormal set in L2(µρ) if and only if Et+Λ forms an orthonormal set in L2(µρ) for any fixed t ∈ Rd.
For simplicity we assume that 0 ∈ Λ throughout this paper.

Notations. We will use the following notations. Let Z be the set of all integers, let N be the set of all positive integers. For
any x, y ∈ Z and r ∈ N, we use x ≡ y(mod r) to denote x − y ∈ rZ.

For the iterated function system {Sj}m−1
j=0 with Sj(x) = ρ(x + j) and the associated µρ defined in (1.1), let µ̂ρ(t) =

e2πxtidµρ(x) be the Fourier transform of µρ . Define

Zρ = {t ∈ R : µ̂ρ(t) = 0}

to be the set of zeros of µ̂ρ(t). Let

O = {±(q/p)1/r : p, q, r ∈ N}.

It is clear that β ∈ O if and only if |β| is an algebraic rational with a minimal polynomial pxr − q for some p, q, r ∈ N.
Throughout this paper, we always use

EΛ = {e2πλxi
: λ ∈ Λ},

to denote an orthonormal set of exponential functions in L2(µρ), whereΛ is a subset of R containing 0. For thisΛ, we define

QΛ(t) =


λ∈Λ

|µ̂ρ(λ − t)|2.

We organize the paper as follows. Some preliminary lemmas are given in Section 2. Section 3 is devoted to prove
Theorem 1.2. While Theorem 1.1 is proven in Section 4.

2. Some preliminary lemmas

We first give some preliminary results associated with the self-similar measure µρ . Then we will use them to prove
Theorems 1.1 and 1.2 in Sections 3 and 4, respectively.

It is easy to prove the following.

Lemma 2.1. Let µ̂ρ(t) be the Fourier transform of the self-similar measure µρ defined in (1.1), then

µ̂ρ(t) =

n
k=1


1
m

m−1
j=0

(e2πρkti)j


µ̂ρ(ρnt) (2.1)

for all positive integers n > 0.

Lemma 2.2. Zρ = {
ℓ

mρk : k ∈ N, ℓ ∈ Z \ mZ}.
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Proof. Use (2.1), since µ̂ρ(ρnt) → 1 as n → +∞, µ̂ρ(λ) = 0 if and only if there exists a positive integer k > 0 so that

m−1
j=0

(e2πρkλi)j = 0.

Hence e2πρkλi
≠ 1, multiplying both sides by 1 − e2πρkλi, we see that the above equation is equivalent to

1 − (e2πρkλi)m = 0, e2πρkλi
≠ 1.

Hence µ̂ρ(λ) = 0 if and only if there exist integers ℓ ∈ Z and k ∈ N such that 2mπρkλ = 2ℓπ and ρkλ is not an integer, i.e.
λ =

ℓ

mρk with ℓ ∈ Z \ mZ and k ∈ N, the conclusion follows. �

Remark. It is possible that λ ∈ Zρ has another representation different from the one in Lemma 2.2. For example, if p = m
and ρ =

m−1
m , then 1

ρ
∈ Zρ , since 1

ρ
=

m−1
mρ2 .

Lemma 2.3. Let Λ be a subset of R containing 0, then EΛ is an orthonormal set of L2(µρ) if and only if (Λ − Λ) \ {0} ⊂ Zρ .
Equivalently, the following two conditions are satisfied:

(i) Λ = {0} ∪ {
ℓj

mρ
kj

: 1 ≤ j < N} with kj ∈ N, ℓj ∈ Z \ mZ, 0 < j < N, where N is a finite positive integer or the infinity.

(ii) There exist vs,t
mρrs,t ∈ Zρ with vs,t ∈ Z \ mZ such that

ℓs

mρks
−

ℓt

mρkt
=

vs,t

mρrs,t
, 1 ≤ s ≠ t < N. (2.2)

Proof. It is clear that EΛ is an orthonormal set in L2(µρ) if and only if µ̂ρ(λ1 − λ2) = 0 for any distinct λ1, λ2 ∈ Λ. Hence
(ii) follows from Lemma 2.2, and (i) follows from the assumption 0 ∈ Λ. �

Lemma 2.4. If L2(µρ) has an orthonormal set of exponential functions with at least m + 1 elements, then ρ−1 is a zero of an
integral polynomial.

Proof. Let EΛ be an orthonormal set with at leastm+ 1 elements. Then the N defined in Lemma 2.3 is at leastm+ 1. Hence
(2.2) holds for all 1 ≤ s < t ≤ m.

If ks = kt = rs,t for all 1 ≤ s < t ≤ m, then ℓs − ℓt = vs,t for all 1 ≤ s < t ≤ m. It is clear that there exist s and t such
that 0 ≤ s < t ≤ m and ℓs − ℓt ∈ mZ. Hence vs,t ∈ mZ, it contradicts Lemma 2.3(ii). Therefore, there is a pair (s, t) so that
at least two of ks, kt , rs,t are distinct, so ρ−1 is a zero of an integral polynomial by using (2.2). �

Lemma 2.5. Assumeβ ∈ O admits aminimal polynomial pβr
−(±1)rq = 0 and satisfies a1βk

+a2β j
= a3βu, where k, j, u ≥ 0

are nonnegative integers and a1, a2, a3 ∈ Z \ {0}. Then k ≡ j ≡ u(mod r).

Proof. Let k = k1r + s, j = j1r + t , u = u1r + v with 0 ≤ s, t, v < r . Since pβr
= (±1)rq, so β satisfies

b1βs
+ b2β t

= b3βv

for some integers b1, b2, b3 ≠ 0. Since pxr − (±1)rq is the minimal polynomial of β with order r , in view of 0 ≤ s, t, v < r ,
we see that s = t = v, the conclusion follows. �

3. Proof of Theorem 1.2

We first prove Theorem 1.2 for the case ρ ∈ O.

Proposition 3.1. Let pxr − q be the minimal polynomial of |ρ| for some p, q, r ∈ N, where p, q are co-prime. Then L2(µρ)
contains an infinite orthonormal set of exponential functions if and only if p,m have a common divisor larger than one.

Proof. Consider the necessity. Let EΛ be an infinite orthonormal set with 0 ∈ Λ, then Λ \ {0} ⊆ Zρ .
For any x ∈ Zρ , there exist u ∈ N and v ∈ Z \ mZ such that x =

v
m|ρ|u by Lemma 2.2. Furthermore, there exist integers

ℓ ≥ 0 and v0 ∈ Z so that v = plv0 with p - v0. Hence v
m|ρ|u =

qlv0
m|ρ|u+rl , p - v0 andm - plv0. Since Λ − Λ ⊆ {0} ∪ Zρ . Let k1 be

the smallest positive integer such that ℓ1
m|ρ|

k1
∈ Λ − Λ ⊆ {0} ∪ Zρ for some ℓ1 ∈ (Z \ pZ).

Let λ1, λ0 ∈ Λ be such that λ1 − λ0 =
ℓ1

m|ρ|
k1
.
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For any λ ∈ Λ, Lemma 2.3 implies that there exists a λ′
∈ Zρ such that ℓ1

mρk1
− (λ − λ0) = λ1 − λ = λ′. Write

λ = λ0 +
qsℓ

m|ρ|k+rs and λ′
=

qtv
m|ρ|u+rt with the properties: ℓ, v ∈ (Z \ pZ) \ mZ; k, u ∈ N; s, t ≥ 0. Then we have

ℓ1

m|ρ|k1
−

qsℓ
m|ρ|k+rs

=
qtv

m|ρ|u+rt
.

Therefore, Lemma 2.5 implies that k− k1 ≡ u− k1 ≡ 0 (mod r). Let k+ rs = nr + k1, u+ rt = u′r + k1, then the definition
of k1 implies n, u′

≥ 0. The above equality becomes

ℓ1 − qs−npnℓ = qt−u′

vpu
′

.

If n = 0, then λ = λ0 +
qsℓ

m|ρ|
k1
. If n > 0, note that p, q are co-prime, if u′ > 0, then the above equality implies p|ℓ1, a

contradiction. Hence u′
= 0, so the above equality implies qn|qsℓ. Hence λ can be written as the form λ = λ0 +

qnℓ′

m|ρ|
k1+rn =

pnℓ′

m|ρ|
k1

with ℓ′
∈ Z. Therefore, there exist non-zero integers zj such that

Λ = {λ0} ∪ {λj}
+∞

j=1 with λj = λ0 +
zj

m|ρ|k1
(j > 0). (3.1)

Lemma 2.3(ii) implies that zs−zt
m|ρ|

k1
∈ Zρ for all distinct s, t > 0. Choose s > t > 0 so that m|(zs − zt), let zs − zt = mz.

Then Lemma 2.2 implies that there exist us,t ∈ Z \ mZ, vs,t ∈ N such that

z
|ρ|k1

= λs − λt =
us,t

m|ρ|vs,t
.

Lemma 2.5 implies that vs,t − k1 = rξs,t for some integer ξs,t . Hence
q
p

ξs,t

=
us,t

mz
. (3.2)

The definition of k1 implies ξs,t ≥ 0. Note that m - us,t , we see that ξs,t > 0 and p,m have a common divisor larger than
one. The necessity follows.

We now prove the sufficiency. Suppose that p,m have a common divisor larger than one. Let m0 > 1 be the greatest
common divisor ofm and p. Since p, q are co-prime, som0, q are co-prime.

Let

Λ̂ = {0} ∪


qn

m|ρ|nr
: n ∈ N


.

Since m0, q are co-prime and m0 > 1 is the greatest common divisor of m and p, so neither qn

m nor qn(pk−1)
m is an integer for

all n, k ∈ N. Therefore, both qn

m|ρ|nr and

qn+k

m|ρ|nr+kr
−

qn

m|ρ|nr
=

qn(pk − 1)
m|ρ|nr

are zeros of µ̂ρ(t) for all n, k ∈ N by using Lemma 2.2. Hence (Λ̂ − Λ̂) \ {0} ⊂ Zρ , so EΛ̂ is an infinite orthonormal set in
L2(µρ) by Lemma 2.3. The sufficiency follows. �

To prove Theorem 1.2 for the case ρ ∉ O. We will suppose on the contrary that L2(µρ) has an infinite orthonormal set
of exponential functions for some ρ ∉ O, then obtain a contradiction.

Let EΛ be an infinite orthonormal set in L2(µρ), then Lemma 2.4 implies that ρ−1 is a zero of an integral polynomial. Let

g(x) = a0 + a1x + · · · + anxn (3.3)

be the minimal integral polynomial of ρ−1, where a0 > 0, a1, . . . , an are relative prime and an ≠ 0.
It is easy to see that the following lemma holds.

Lemma 3.2. If ρ−1 is a zero of an integral polynomial f (x) = d0 + d1x + · · · + dkxk, then a0|d0 and an|dk.

Lemma 3.3. Let EΛ be an orthonormal set in L2(µρ) and ρ ∉ O, let Λk =
Z\mZ
mρk ∩Λ, then {Λk}k>0 are disjoint and each one has

cardinality at most m − 1.
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Proof. For the disjointness of {Λk}k>0, suppose on the contrary,Λk∩Λr ≠ ∅ for some 0 < k < r . Then there exist s
mρk ∈ Λk

and t
mρr ∈ Λr so that s

mρk =
t

mρr . Hence

ρ = ±(|t/s|)
1

r−k ∈ O,

a contradiction.
For the cardinality of Λk. If Λk has at least m elements, let ℓj

mρk ∈ Λk, j = 1, 2, . . . ,m. Then there exist 1 ≤ j1 < j2 ≤ m
so that ℓj1 − ℓj2 = rm for a non-zero integer r . Hence Lemma 2.3 implies that

r
ρk

=
u

mρv

for some u ∈ Z \ mZ and v ∈ N. This means that v ≠ k and

ρ =

 u
mr

 1
v−k

(v > k) or ρ =

mr
u

 1
k−v

(v < k),

a contradiction to the assumption ρ ∉ O. �

Lemma 3.4. Assume ρ ∉ O. If L2(µρ) has an infinite orthonormal set of exponential functions, then ρ−1 has a minimal
polynomial g(x) as (3.3) with a0 = 1.

Proof. Lemma 2.4 implies that ρ−1 is a zero of an integral polynomial. Hence ρ−1 has a minimal polynomial g(x) as given
by (3.3). Since ρ ∉ O, it is easy to see that zρ−k

∉ Zρ for all z ∈ Z and k ∈ N.
Since L2(µρ) contains an infinite orthonormal set of exponential functions EΛ, Lemma 3.3 implies that there exist

infinitely many λj =
ℓj

mρ
kj

∈ Λ with 0 < kj < kj+1. Without loss of generality, we assume

Λ = {0} ∪


ℓj

mρkj
: 0 < k1 < k2 < · · ·


.

By Lemma 2.2, we can assume that ℓj
m ∉ Z. Lemma 2.3(ii) then implies that there exist vs,t ∈ Z \ mZ, rs,t ∈ N such that

ℓs

mρks
−

ℓt

mρkt
=

vs,t

mρrs,t
, ∀s ≠ t ∈ N. (3.4)

Since ρ ∉ O and ks ≠ kt when s ≠ t , it is easy to see that rs,t ≠ ks, kt when s ≠ t .

Claim. rs,j → +∞ as j → +∞ for all s ∈ N.

Proof of the Claim. For any given s, a ∈ N, if there are infinitely many j such that rs,j ≤ a, then there are infinitely many

identical rs,j’s. Hence there exist j2 > j1 > s so thatm|(vs,j1 −vs,j2) and rs,j1 = rs,j2 . This means that
ℓj1

mρ
kj1

−
ℓj2

mρ
kj2

=
vs,j2−vs,j1
mρ

rs,j1

and
vs,j2−vs,j1
mρ

rs,j1
is not a zero of µ̂ρ(t) by ρ ∉ O, a contradiction. Therefore, there are only finite j such that rs,j ≤ a, the claim

follows.

For any s ≥ 1, the claim implies that, we can choose a sufficiently large t so that kt , rs,t > ks. (3.4) implies that ρ−1 is a
zero of the integral polynomial

ℓs − ℓtxkt−ks − vs,txrs,t−ks .

Hence Lemma 3.2 implies

a0|ℓs, s = 1, 2, . . . . (3.5)

For any given s ≠ t ∈ N, since λs − λt = (λs − λu) − (λt − λu), so (3.4) implies
vs,t

mρrs,t
=

vs,u

mρrs,u
−

vt,u

mρrt,u

for all u ∈ N. By the above claim, we can choose a sufficiently large u so that rs,u, rt,u > rs,t . Hence ρ−1 is a zero of the
integral polynomial

vs,t − vs,uxrs,u−rs,t + vt,uxrt,u−rs,t .

Hence Lemma 3.2 implies

a0|vs,t , s ≠ t = 1, 2, . . . . (3.6)
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Therefore, (3.4)–(3.6) imply that Ea−1
0 Λ

is also an infinite orthonormal set in L2(µρ). Replace Λ by a−1
0 Λ, the above proof

implies that Ea−2
0 Λ

is an infinite orthonormal set in L2(µρ). Continuing in this way, it can be proven that Ea−n
0 Λ is an infinite

orthonormal set in L2(µρ) for all n > 0. It must implies that a0 = 1 necessary by using a0 ∈ N. The lemma is proven. �

For the minimal polynomial of ρ−1 defined in (3.3) with a0 = 1, we define an (n + 1) × (n + 1) invertible matrix

E =


1 0

−a In


, (3.7)

where In is the n × n identical matrix, a = (a1, . . . , an)t . For this matrix E, we define a sequence of (n + 1) × 1 vectors as
following:

α0
.
= (0, 1, 0, . . . , 0)t

and

αk+1
.
= (αk+1,0, αk+1,1, . . . , αk+1,n)

t
= E(αk,1, αk,2, . . . , αk,n, 0)t (3.8)

for k ≥ 0.

Lemma 3.5. Assume m is a prime, then
(i) αs,n = −anαs,0 for any integer s ≥ 0;
(ii) There is an integer ℓ > 0 so that αi+ℓ ≡ αi (mod m) for all i ≥ 0;
(iii) αk−n ≡ (αk−n,0, 0, . . . , 0, 1)t(mod m) when k = ℓj + 1 > n for some integer j, where αk−n,0 satisfies anαk−n,0 ≡

1(mod m).

Proof. (i) It follows directly from the definition.
(ii) Consider the residue class of Zn+1 modulom, we see that there exist integers i and ℓ > 0 so that αi+ℓ ≡ αi (mod m).

If i > 0, then

E(αi+ℓ−1,1, αi+ℓ−1,2, . . . , αi+ℓ−1,n, 0)t ≡ E(αi−1,1, αi−1,2, . . . , αi−1,n, 0)t (mod m).

It is easy to see that (αi+ℓ−1,1, αi+ℓ−1,2, . . . , αi+ℓ−1,n, 0)t ≡ (αi−1,1, αi−1,2, . . . , αi−1,n, 0)t (mod m). By the conclusion (i)
and the assumption thatm is a prime, we see that αi+ℓ−1,n ≡ αi−1,n (mod m) implies αi+ℓ−1,0 ≡ αi−1,0 (mod m). Therefore,
αi+ℓ−1 ≡ αi−1 (mod m). Continuing in this way implies the conclusion (ii).

(iii) The conclusion (ii) implies αk−1 ≡ α0 = (0, 1, 0, . . . , 0)t (mod m). Note

E−1
=


1 0
a In


,

(3.8) implies (αk−2,1, αk−2,2, . . . , αk−2,n, 0)t ≡ E−1(0, 1, 0, . . . , 0)t ≡ (0, 1, 0, . . . , 0)t (mod m). Since m, an are co-
prime, αk−2,n = anαk−2,0, so αk−2 ≡ (0, 0, 1, 0, . . . , 0)t (mod m) if n > 2. Continuing in this way proves
(αk−n,1, αk−n,2, . . . , αk−n,n, 0)t ≡ (0, 0, . . . , 0, 1)t (mod m). Note that m, an are co-prime, we see that the conclusion
anαk−n,0 ≡ 1(mod m) follows and so (iii) is proven. �

Proposition 3.6. If ρ ∉ O, m is a prime and EΛ is an orthonormal set in L2(µρ) with 0 ∈ Λ, then Λ is a finite set.

Proof. Assume on the contrary that Λ is an infinite set. Lemma 3.4 implies that ρ−1 has a minimal polynomial g(x) as (3.3)
with a0 = 1.

Sincem is a prime, the assumption of Lemma 3.5 holds,m, cj are co-prime.

Claim. There are infinitely many families of integers {c1, c2, c3, s, k} such that: ρ−1 is a zero of the integral polynomial f (x) =

c1 − c2xs − c3xk+n, k + n > s > 0, c1, c2, c3 ∈ Z \ mZ and, either c1 ≡ c2(mod m) and ℓ|s or c1 ≡ c3(mod m) and ℓ|(k + n),
where ℓ is defined in Lemma 3.5.

Proof of the Claim. By Lemma 3.3, there exist infinitely many ℓs
mρks ∈ Λ such that ℓs ∈ Z \ mZ and 0 < kj < kj+1. By (2.2)

in Lemma 2.3(ii), there exist vs,t ∈ Z \ mZ and rs,t ∈ N such that

ℓs

mρks
−

ℓt

mρkt
=

vs,t

mρrs,t
, s ≠ t ≥ 1. (3.9)

(a) It is easy to see that there is an i such that ℓi ≡ ℓs(mod m) for infinitely many s. By choosing a subclass of Λ, without
loss of generality, we can assume that ℓ1 ≡ ℓs(mod m) for all s > 1.

(b) For the ℓ defined in Lemma 3.5, there is an i such that ℓ|(kt − ki) for infinitely many t . By choosing a subclass of Λ,
without loss of generality, we can assume that ℓ|(kt − k1) for all t > 1.
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(c) By the claim in the proof of Lemma 3.4, we can choose a t0 such that r1.t > k1 for all t ≥ t0. Hence (3.9) implies that
ρ−1 is a zero of the integral polynomial ℓ1 − ℓtxkt−k1 − vs,txr1,t−k1 with ℓ|(kt − k1).

Since ρ ∉ O implies that either r1.t − k1 > kt − k1 > 0 or 0 < r1.t − k1 < kt − k1, the claim follows.
By Lemma 3.4, let g(x) = 1 + a1x + · · · + anxn be the minimal polynomial of ρ−1, then f (x) = g(x)h(x) for an integral

polynomial h(x) with order k.
For the above g(x), f (x) and h(x), we use the following notations. Let h(x) = b0 + b1x + · · · + bkxk, a = (1, a1, . . . , an)t ,

b = (b0, b1, . . . , bk)t . Let ej be the j-th column of the (k + n + 1) × (k + n + 1) identical matrix Ik+n+1.
Define a (k + n + 1) × (k + 1) matrix A = (ut,j)0≤t≤k+n,0≤j≤k by uj,j = 1 for 0 ≤ j ≤ k, uj+i,j = ai for 0 ≤ j ≤ k and

1 ≤ i ≤ n, and uj,t = 0 for other (j, t).
Then f (x) = g(x)h(x) if and only if Ab = c1e1 − c2es+1 − c3ek+n+1. Define (k + n + 1) × (k + n + 1) matrices:

E1 =


E 0
0 Ik


, . . . , Ej =

Ij−1 0 0
0 E 0
0 0 Ik−j+1


, . . . , Ek+1 =


Ik 0
0 E


,

where Ij is the j × j identical matrix, E is defined in (3.7).
It is clear that E(1, a1, . . . , an)t = (1, 0, . . . , 0)t . It follows that E1A reduces the first column of A to (1, 0, . . . , 0)t and

the other columns remain unchanged; E2E1A reduces the second column of E1A to (0, 1, 0, . . . , 0)t and the other columns
remain unchanged. Finally Ek+1 · · · E1A is the matrix with 1 on the diagonal and 0 elsewhere.

Furthermore, the last n+1 entries of Ek+1 · · · E1e1 generate the vectorαk+1 defined in Lemma3.5. Hence Ek+1Ek · · · E1e1 ≡

(v0, v1, . . . , vk−1, αk+1,0, αk+1,1, . . . , αk+1,n)
t(mod m) for some v0, v1, . . . , vk−1.

For es+1, we have

Ek+1 · · · E1es+1 =


Ek+1 · · · Es+1es+1, s ≤ k,
es+1, s > k. (3.10)

Hence the last n+ 1 entries of Ek+1 · · · E1es+1 generate the vector αk+1−s when s ≤ k and the vector (0, . . . , 0, 1, 0, . . . , 0)t
with the 1 at the s − k + 1-th entry when s > k.

Since f (x) = g(x)h(x), so the last n entries of Ek+1 · · · E1(c1e1 − c2es+1 − c3ek+n+1) are all zero. In the following, we will
consider the (n + 1) × 1 vector generated by the last n + 1 entries of Ek+1 · · · E1(c1e1 − c2es+1 − c3ek+n+1) by using the
above claim. Note that the last n + 1 entries of Ek+1 · · · E1Ab generates the vector(bk, 0, . . . , 0)t . Hence

c1αk+1 − c2αk+1−s − c3(0, . . . , 0, 1) = (bk, 0, . . . , 0)t , if s ≤ k,
c1αk+1 − c2(0, . . . , 0, 1, 0, . . . , 0)t − c3(0, . . . , 0, 1) = (bk, 0, . . . , 0)t , if s > k. (3.11)

Case 1. If ℓ|s and k + n > s > k. Then, use (3.10), the vector generated by the last n + 1 entries of Ek+1 · · · E1(c1e1 −

c2es+1−c3ek+n+1) is c1αk+1−(0, . . . , 0, c2, 0, . . . , 0, c3)t with the c2 at the s−k+1-th entry. Hence (3.11) implies c1αk+1 =

(bk, 0, . . . , 0, c2, 0, . . . , 0, c3)t , so c1 is a common divisor of bk, c2 and c3, soαk+1 = (bk/c1, 0, . . . , 0, c2/c1, 0, . . . , 0, c3/c1)t .
By the definition of αj, we have αs+1 = E(c2/c1, 0, . . . , 0, c3/c1, . . . , 0, )t . This contradicts αs+1 ≡ E(1, 0, . . . , 0)t(mod m),
since ℓ|s and c2, c3 ≢ 0(mod m).

Case 2. If ℓ|s, s ≤ k and c1 ≡ c2(mod m). Then the last n + 1 entries of Ek+1 · · · E1es+1 generate the vector αk+1−s
by using the definition of Ej and (3.10). Hence the last n + 1 entries of Ek+1 · · · E1(c1e1 − c2es+1) generate the vector
c1αk+1 − c2αk+1−s ≡ 0(mod m) by using Lemma 3.5(ii) and c1 ≡ c2(mod m).

Therefore, we have

Ek+1Ek · · · E1(c1e1 − c2es+1 − c3ek+n+1) ≡ (c1u0, . . . , c1us−1, 0, . . . , 0, −c3)t(mod m)

for some u0, u1, . . . , us−1. Since c3 ≢ 0(mod m), it contradicts to the conclusion that the last n entries of Ek+1 · · · E1(c1e1 −

c2es+1 − c3ek+n+1) are all zero.
Case 3. If ℓ|(k+ n) and c1 ≡ c3(mod m). Then Ek+1Ek · · · E1(c1e1) ≡ (v0, v1, . . . , vk−1c1αk+1,0, 0, . . . , 0, c1)t(mod m) for

some v0, v1, . . . , vk−1 by using Lemma 3.5(ii). Note Ek+1Ek · · · E1ek+n+1 = ek+n+1, we see

Ek+1Ek · · · E1(c1e1 − c3ek+n+1) ≡ (v0, v1, . . . , vk−1, c1αk+1,0, 0, . . . , 0)t(mod m).

Since the last n entries of Ek+1 · · · E1(c1e1 − c2es+1 − c3ek+n+1) are all zero, the above equality implies

Ek+1Ek · · · E1es+1 ≡ (w0, w1, . . . , wk, 0, 0, . . . , 0)t(mod m)

for some w0, w1, . . . , wk. If s ≤ k, (3.10) implies αk−s+1 ≡ (wk, 0, 0, . . . , 0)t(mod m), so Lemma 3.5(i) implies anwk =

anαk−s+1,0 = αk−s+1,n ≡ 0(mod m). Since f (x) = g(x)h(x), so an|c3. Since c3 ∈ Z \ mZ and m is a prime, so
αk−s+1 ≡ 0(mod m). Hence the definition of αj implies αj ≡ 0(mod m) for all sufficiently large j, a contradiction to
Lemma 3.5(ii). If s > k, (3.10) implies Ek+1Ek · · · E1es+1 = es+1, so the above equality implies that (wk, 0, 0, . . . , 0)t ≡

(0, . . . , 0, 1, 0, . . . , 0)t(mod m) with the 1 at the s − k + 1-th entry, This is obviously impossible.
Therefore, Λ is finite. �
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Proof of Theorem 1.2. The sufficiency follows from Proposition 3.1. For the necessity, Proposition 3.6 implies ρ ∈ O, then
the necessity follows from Proposition 3.1. �

4. Proof of Theorem 1.1

The idea of the following theorem comes from [1].

Theorem 4.1. If |ρ| = q/p with 1 < q < p being co-prime, then there exist constants a > 0, C0 > 0 so that

sup
t∈R

{|µ̂ρ(t)|(ln(2 + |t|))a} ≤ C0 < +∞.

Proof. Claim. There is a positive constant b < 1 such that: assume |ξ | > 1, then we can find an η such that |ρξ | ≥ |η| ≥

ρ2
|ξ |

ln q/ ln p and

|µ̂ρ(ξ)| ≤ b|µ̂ρ(η)|.

Proof of the Claim. For any real number x, let ⌈x⌉ be the number in (− 1
2 ,

1
2 ] such that x − ⌈x⌉ ∈ Z.

(a) If ⌈ρξ⌉ ∉ (− 1
2p ,

1
2p ), then |1 + exp{2π⌈ρξ⌉i}| ≤ |1 + exp{π

p i}| < 2. Use (2.1) and | exp{2π j⌈ρξ⌉i}| ≤ 1, we have

|µ̂ρ(ξ)| = |µ̂ρ(ρξ)| ·

 1m
m−1
j=0

(exp{2πρξ i})j
 = |µ̂ρ(ρξ)| ·

 1m
m−1
j=0

exp{2π j⌈ρξ⌉i}


≤ |µ̂ρ(ρξ)| ·

m − 2 + |1 + exp{2π⌈ρξ⌉i}|
m

≤ |µ̂ρ(ρξ)| ·

m − 2 +

1 + exp


π
p i


m
.

Let b =
m−2+|1−exp{ π

p i}|
m , η = ρξ , the claim holds.

(b) If ⌈ρξ⌉ ∈ (− 1
2p ,

1
2p ). Since |ξ | > 1, so |ρξ | > |ρ| ≥

1
p by |ρ| = q/p. Hence, we can write |ρξ | = ⌈ρξ⌉ +

t
k=s ekp

k

with ej ∈ {0, 1, . . . , p − 1}, es > 0, et > 0 and s ≥ 0. Hence

⌈ρs+2ξ⌉ =


(q/p)s+1

⌈ρξ⌉ + qs+1/p
t

k=s

ekpk−s


=


(q/p)s+1

⌈ρξ⌉ +
esqs+1

p


.

Since ⌈ρξ⌉ ∈ (− 1
2p ,

1
2p ) and 0 < (q/p)s+1 < 1, so (q/p)s+1

⌈ρξ⌉ ∈ (− 1
2p ,

1
2p ). Hence ⌈ρs+2ξ⌉ ∉ (− 1

2p ,
1
2p ) by using the

above equality. Therefore, similar to the above conclusion (a), we have

|µ̂ρ(ξ)| =

s+2
k=1


1
m

m−1
j=0

(exp{2πρkξ i})j


µ̂ρ(ρs+2ξ)


≤

 1m
m−1
j=0

(exp{2πρs+2ξ i})j| · |µ̂ρ(ρs+2ξ)


≤

m − 2 +

1 − exp


π
p i


m
|µ̂ρ(ρs+2ξ)|.

Since |ρξ | = ⌈|ρξ |⌉ +
t

k=s ekp
k
≥ esps − 1

p ≥ |ρ|ps, so s ≤ logp |ξ |. Hence |ρs+2ξ | ≥ |ξ |ρ2
|ρ|

logp |ξ |
= |ξ |ρ2

|ξ |
logp |ρ|

=

ρ2
|ξ |

ln q/ ln p. Let η = ρs+2ξ and b =
m−2+|1−exp{ π

p i}|
m , then we have

|µ̂ρ(ξ)| ≤ b|µ̂ρ(η)|, |ρξ | ≥ |η| ≥ ρ2
|ξ |

ln q/ ln p

the claim also holds. The proof of the claim is completed.
For any real number t with |t| > 1, the claim shows that, there exist an integer n and real numbers ξj with ξ0 = t ,

|ξn−1| > 1 ≥ |ξn| such that, |ρξj| ≥ |ξj+1| ≥ ρ2
|ξj|

ln q/ ln p and |µ̂ρ(ξj)| ≤ b|µ̂ρ(ξj+1)|.
The second inequality implies |µ̂ρ(t)| ≤ bn|µ̂ρ(ξn)|. While, the first inequality implies

1 ≥ |ξn| ≥ ρ2
|ξn−1|

ln q/ ln p
≥ ρ2+2(ln q/ ln p)

|ξn−2|
(ln q/ ln p)2

≥ · · · ≥ ρ2+2(ln q/ ln p)+···+2(ln q/ ln p)n−1
|ξ0|

(ln q/ ln p)n

≥ ρ2 ln p/(ln p−ln q)
|t|(ln q/ ln p)n

= p−2
|t|(ln q/ ln p)n
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by using the equality x
1

− ln x = e−1 for 0 < x < 1. Hence

ln p2 ≥ ln |t| · (ln q/ ln p)n = ln |t| · bn ln(ln q/ ln p)/ ln b,

so

(ln p2)ln b/ ln(ln q/ ln p)
≥ (ln |t|)ln b/ ln(ln q/ ln p)

· bn, ∀|t| > 1.

Let a = ln b/ ln(ln q/ ln p), then a > 0 and

|µ̂ρ(t)|(ln(2 + |t|))a ≤ bn|µ̂ρ(ξn)|(ln(2 + |t|))a = (ln |t|)ln b/ ln(ln q/ ln p)
· bn|µ̂ρ(ξn)|


ln(2 + |t|)

ln |t|

a

≤ (ln p2)ln b/ ln(ln q/ ln p)
|µ̂ρ(ξn)|


ln(2 + |t|)

ln |t|

a

, ∀|t| > 1.

Since

sup
|t|≥2


ln(2 + |t|)

ln |t|

a
< +∞, sup

|t|≤2
{|µ̂ρ(t)|(ln(2 + |t|))a} < +∞,

so

sup
t∈R

{|µ̂ρ(t)|(ln(2 + |t|))a} < +∞

by using the fact |µ̂ρ(ξ)| ≤ 1. The theorem is proven. �

Lemma 4.2. Assume |ρ| admits the minimal polynomial pxr − q, where p, q are co-prime and r ∈ N. If EΛ is an orthonormal
basis of L2(µρ), then

Λ − Λ ⊆ {0} ∪


k≥0

Z \ mZ
m|ρ|1+kr


,

(Λ − Λ) ∩


Z \ mZ
m|ρ|


≠ ∅.

Proof. Since EΛ is an orthonormal basis of L2(µρ), so Λ − Λ ⊆ Zρ . By Lemmas 2.2 and 2.3, we can choose the smallest
positive integer k0 so that (Λ − Λ) ∩

Z\mZ
m|ρ|

k0
≠ ∅. Hence there exist λ1, λ0 ∈ Λ such that

λ1 − λ0 =
mz + s
m|ρ|k0

, 1 ≤ s < m. (4.1)

For any λ ∈ Λ \ {λ0, λ1}, Lemma 2.3 shows that λ − λj =
mzj+sj
m|ρ|

nj with 1 ≤ sj < m. The definition of k0 shows that nj ≥ k0.
Hence

mz0 + s0
m|ρ|n0

−
mz1 + s1
m|ρ|n1

= λ1 − λ0 =
mz + s
m|ρ|k0

for some integers z0, z1, z, s0, s1, s, n0, n1 with nj ≥ k0 and 1 ≤ sj < m. Hence Lemma 2.4 shows r|(nj − k0), j = 0, 1.
Therefore, λ = λ0 +

mz0+s0
m|ρ|

k0+rk for some k ≥ 0.

Now, for any γ ∈ Λ different from λ, the above results show that γ has the form: γ = λ0 +
mz+s

m|ρ|
k0+rn and satisfies

γ − λ =
mz + s

m|ρ|k0+rn
−

mz0 + s0
m|ρ|k0+rk

=
mz ′

+ s′

m|ρ|N

for some integers z ′, s′ and N with 1 ≤ s′ < m (since γ − λ ∈ Zρ). Hence Lemma 2.4 shows r|(N − k0). Therefore,
λ − γ ∈ [


k≥0

Z\mZ
m|ρ|

k0+kr ]. Hence

(Λ − Λ) \ {0} ⊆


k≥0

Z \ mZ
m|ρ|k0+kr

.

Noting (4.1), we see that, in order to prove the lemma, we need only prove k0 = 1. Assume k0 > 1 on the contrary.
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Let Λ̃ = ρk0−1(Λ − λ0). The definition of k0 and Λ shows that EΛ̃ is also an orthonormal set of L2(µρ). For any
λ = λ0 +

mz+s
m|ρ|

k0+rk ∈ Λ, let λ̃ = ρk0−1(λ − λ0) and t̃ = (t − λ0)ρ
k0−1, then (2.1) implies

µ̂ρ(t − λ) =

k0−1
k=1


1
m

m−1
j=0

(exp{2πρk(t − λ)i})j


µ̂ρ(t̃ − λ̃).

Hence
λ∈Λ

|µ̂ρ(t − λ)|2 =


λ̃∈Λ̃

|µ̂ρ(t̃ − λ̃)|2 ·


k0−1
k=1


1
m

m−1
j=0

(exp{2πρk(t − λ)i})j


2

.

It is easy to see that there exist a t ∈ R and a λ ∈ Λ so that |
k0−1

k=1 [
1
m

m−1
j=0 (exp{2πρk(t −λ)i})j]| < 1 and µ̂ρ(t̃ − λ̃) ≠ 0.

Hence
λ∈Λ

|µ̂ρ(t − λ)|2 <

λ̃∈Λ̃

|µ̂ρ(t̃ − λ̃)|2 ≤ 1,

where the last inequality follows from Parseval’s identity and the fact that EΛ̃ is also an orthonormal set of L2(µρ).
Therefore, EΛ is not an orthonormal basis of L2(µρ) by using Parseval’s identity. A contradiction, hence k0 = 1. The proof

completes. �

Now, we prove Theorem 1.1 by using the conclusions proven in the above part. Assume Λ is a spectrum of µρ . It is easy
to see that Λ is infinite, so Theorem 1.2 shows that |ρ| = (

q
p )

1
r , admit a minimal polynomial pxr − q such that p > q > 0

are co-prime andm|p. We first prove r = 1, then prove q = 1.
As an extension of [3, Theorem 4.4], we have the following.

Proposition 4.3. If µρ is a spectral measure, then ρ is a rational.
Proof. By Theorem 1.2, |ρ| has a minimal polynomial as pxr − q. Assume r > 1, on the contrary. Define µρk with k ∈ N to
be the self-similar measure satisfying

µρk(A) =
1
m

m−1
j=0

µρk(ρ−1(A) − j).

Let Λ be a spectrum of µρ , use Lemma 4.2, we see that

(Λ − Λ) \ {0} ⊆


k≥0

Z \ mZ
m|ρ|1+kr

.

Hence

ρ−r+1(Λ − Λ) \ {0} ⊆


k≥1

Z \ mZ
m|ρ|kr

= Zρr . (4.2)

Since |
1
m

m−1
j=0 (exp{2πρkti})j| ≤ 1, N + r − 1 ⊃ {r + 1} ∪ (rN) by using r > 1, so

|µ̂ρ(t)| =

+∞
k=1

 1m
m−1
j=0

(exp{2πρkti})j


=

+∞
k=1

 1m
m−1
j=0

(exp{2πρk+r−1ρ1−r ti})j


≤

 1m
m−1
j=0

(exp{2πρ2ti})j
 +∞
n=1

 1m
m−1
j=0

(exp{2πρnrρ1−r ti})j


=

 1m
m−1
j=0

(exp{2πρ2ti})j
 · |µ̂ρr (ρ1−r t)|.

Choose a λ0 ∈ Λ and a t0 ∈ R so that |
1
m

m−1
j=0 (exp{2πρ2(t0 − λ0)i})j| < 1 and |µ̂ρr (ρ1−r(t0 − λ0))| > 0. Since EΛ is an

orthonormal basis of L2(µρ), so the above inequality and Parseval’s identity imply

1 =


λ∈Λ

|µ̂ρ(t0 − λ)|2 <

λ∈Λ

|µ̂ρr (ρ1−r t0 − ρ1−rλ)|2 =


γ∈ρ1−rΛ

|µ̂ρr (ρ1−r t0 − γ )|2 ≤ 1,
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a contradiction, where the last inequality ‘‘≤’’ follows from (4.2) which implies that Eρ1−rΛ is an orthonormal set of
L2(µρr ).

Therefore, r = 1, the proposition follows. �

Lemma 4.4. If Λ is a spectrum of µρ and |ρ| = q/p with gcd(q,m) = 1. Then

(Λ − Λ) \ {0} ⊂


k≥0

pk(Z \ mZ)

m|ρ|
.

Proof. We first prove a weaker conclusion:

(Λ − λ0) \ {0} ⊂


k≥0

pk(Z \ mZ)

m|ρ|ı
(4.3)

for some positive integer ı and λ0 ∈ Λ.
For any a ∈ Zρ , it can be written as a =

ℓ

m|ρ|k
for some k ∈ N, ℓ ∈ Z \ mZ. We can find a nonnegative integer n ≥ 0 so

that ℓ = pnℓ1 with ℓ1 ∈ (Z \ pZ) \ mZ, then a =
qnℓ1

m|ρ|k+n with qnℓ1 ∈ (Z \ pZ) \ mZ by using the assumption gcd(p, q) = 1
and gcd(q,m) = 1. For any λ ∈ Λ \ {λ0}, we have λ − λ0 ∈ Zρ . Hence

Λ \ {λ0} ⊂ λ0 + Zρ ⊂ λ0 +


ℓ

m|ρ|k
: k ∈ N, ℓ ∈ (Z \ pZ) \ mZ


. (4.4)

Since (Λ − Λ) \ {0} ⊂ Zρ , let ı be the smallest positive integer such that there is a λ1 ∈ Λ so that λ1 − λ0 =
ℓ1

m|ρ|ı ∈ Zρ

for some ℓ1 ∈ (Z \ pZ) \ mZ.
For any λ ∈ Λ \ {λ0, λ1}, by (4.4), we have λ−λ0 =

ℓ2
m|ρ|n ∈ Λ with n ∈ N, ℓ2 ∈ (Z \ pZ) \mZ. Furthermore, Lemma 2.3

and the above (4.4) imply that there exists v
m|ρ|u ∈ Zρ with v ∈ (Z \ pZ) \ mZ such that

ℓ1

m|ρ|ı
−

ℓ2

m|ρ|n
= λ1 − λ =

v

m|ρ|u
. (4.5)

Let n = t + ı, u = s + ı. The definition of ı implies that either t = 0 or t > 0. If t = 0, i.e. n = ı, then λ − λ0 belongs to
the right hand side of (4.3). Assume t > 0, i.e. n > ı. (4.5) implies

ℓ1 −
ℓ2pt

qt
=

vps

qs
.

If s > 0, since p, q are co-prime, so p|ℓ1, a contradiction, hence s ≤ 0. If s < 0, then the above equality shows p|s|
|q|s|+tv,

also a contradiction. Hence s = 0, the above equality implies that qt |ℓ2, so λ − λ0 =
ptℓ3
m|ρ|ı for some ℓ3 ∈ (Z \ pZ) \ mZ.

Therefore, (4.3) holds for some ı ∈ N.
Assume ı > 1. Note that we have assumed gcd(q,m) = 1. For any distinct λ, λ′

∈ Λ, the above equality shows
λ − λ′

=
psx−pt y
m|ρ|ı for some integers x, y ∈ Z \ pZ and t ≥ s ≥ 0. Since λ − λ′

∈ Zρ , so

λ − λ′
=

ps(x − pt−sy)
m|ρ|ı

=
v

m|ρ|ı+n
(4.6)

for some v ∈ Z \ mZ and n > −ı. We can find k ≥ 0 so that v = pk(mu + w′) with p - (mu + w′) and 1 ≤ w′ < m.
Since |ρ| = q/p and p, q are co-prime, the second equality of (4.6) shows k + n ≥ s ≥ 0. Noting gcd(q,m) = 1, we see that
qk(mu + w′) belongs to Z \ mZ. Hence

|ρ|(λ − λ′) =
pk(mu + w′)

m|ρ|ı+n−1
=

qk(mu + w′)

m|ρ|ı+n+k−1
∈ Zρ

by using gcd(q,m) = 1, k + n ≥ s ≥ 0 and ı > 1.
Therefore, ρ(Λ − Λ) ⊆ Zρ ∪ {0}, i.e. EρΛ is an orthonormal set of L2(µρ) when ı > 1. Since Λ is a spectrum, Parseval’s

identity implies

1 =


λ∈Λ

|µ̂ρ(t − λ)|2 =


γ∈ρΛ

 1m
m−1
j=0

(exp{2π i(ρt − γ )})

 · |µ̂ρ(ρt − γ )|2.
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It is easy to see that there exist t ∈ R and γ ∈ ρΛ so that |
1
m

m−1
j=0 (exp{2π i(ρt − γ )})| · |µ̂ρ(ρt − γ )|2 < |µ̂ρ(ρt − γ )|2.

Hence, by |
1
m

m−1
j=0 (exp{2π i(ρt − γ )})| ≤ 1, we have

1 =


λ∈Λ

|µ̂ρ(t − λ)|2 <

γ∈ρΛ

|µ̂ρ(ρt − γ )|2 ≤ 1,

a contradiction, where the last inequality follows from the proven fact that EρΛ is an orthonormal set of L2(µρ). Therefore,
ı = 1.

By (4.3) and (4.6) and ı = 1, we see that, for any two different λ, λ′
∈ Λ, the v and n in (4.6) satisfy n ≥ 0 and qn|v. Hence

λ − λ′ belongs to the set pn(Z\mZ)

m|ρ|
with n ≥ 0. The lemma follows. �

The following theorem describes the structure of a spectrum.

Theorem 4.5. If Λ is a spectrum of µρ and |ρ| = q/p with m|p and gcd(p, q) = 1, then there exist spectrums Γk ⊂ Z and
integers zk such that Λ =

m−1
k=0 (λ0 +

k+mzk
m|ρ|

+ |ρ|
−1Γk) with λ0 ∈ Λ and 0 ∈ Γk. Furthermore, the union is a disjoint union.

Proof. Use the notations in Lemma 4.4. Let

B =


k ∈ {0, 1, . . . ,m − 1} :


λ0 +

k + mZ
m|ρ|


∩ Λ ≠ ∅


.

Using Lemmas 4.2 and 4.4, there are integers zk, for all k ∈ B, such thatmzk + k
m|ρ|

 = min
mz + k

m|ρ|

 : z ∈ Z, λ0 +
k

m|ρ|
+

mz
m|ρ|

∈ Λ


(4.7)

and

Λ =


k∈B


λ0 +

mzk + k
m|ρ|

+
mZ
m|ρ|


∩ Λ


by noting that Lemma 4.4 implies Λ − λ0 ⊂

Z
m|ρ|

. Furthermore, the above union is disjoint.
Let

Γk = Z ∩


|ρ|Λ − |ρ|λ0 −

k + mzk
m


, k ∈ B,

then

Λ =


k∈B


λ0 +

k + mzk
m|ρ|

+ |ρ|
−1Γk


, Γk ⊂ Z.

We will prove that EΓk is an orthonormal basis of L2(µρ) for each k ∈ B and B = {0, 1, . . . ,m − 1}.
For any k ∈ B, let z, ℓ ∈ Γk be distinct. Let

a = λ0 +
mzk + k
m|ρ|

+
mz
m|ρ|

, b = λ0 +
mzk + k
m|ρ|

+
mℓ

m|ρ|
.

Then a, b belong to Λ, so a− b =
mt+s
m|ρ|n for some integers t, s, n such that 0 < s < m and n > 0, hence z − ℓ = |ρ|(a− b) =

mt+s
m|ρ|n−1 . Noting |ρ| = q/p, we see thatm|pn−1(mt + s), so n > 1 by using 0 < s < m. Hence z − ℓ ∈ Zρ by Lemma 2.2. This
means that EΓk is an orthonormal set of L2(µρ) for all k ∈ B by Lemma 2.3.

Since
m−1
k=0

exp

2π

(j1 − j2)k
m

i


=


0, j1 ≠ j2
m, j1 = j2

(4.8)

for any j1, j2 ∈ {0, 1, . . . ,m − 1}, so

m−1
k=0

 1m
m−1
j=0


exp


2π


ρt − ρλ0 −
k
m


i
j


2

=
1
m2

m−1
k=0

m−1
j1=0

m−1
j2=0

exp

2π(j1 − j2)


ρt − ρλ0 −

k
m


i


=
1
m2

m−1
j1=0

m−1
j2=0

exp{2π(j1 − j2)(ρt − ρλ0)i}
m−1
k=0

exp

2π

(j2 − j1)k
m

i


=
1
m2

m−1
j1=0

m = 1
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for all t . Hence, by Γk ⊆ Z, we have

1 =


λ∈Λ

|µ̂(t − λ)||2 =


λ∈Λ

|µ̂ρ(ρt − ρλ)||2

 1m
m−1
j=0

(exp{2π(ρt − ρλ)i})j

2

=


k∈B


γ∈Γk

µ̂ρ


ρt − ρλ0 −

k + mzk
m

− γ

 

2  1m

m−1
j=0


exp


2π


ρt − ρλ0 −
k + mzk

m
− γ


i
j


2

=


k∈B


γ∈Γk

µ̂ρ


ρt − ρλ0 −

k + mzk
m

− γ

 

2  1m

m−1
j=0


exp


2π


ρt − ρλ0 −
k
m


i
j


2

≤


k∈B

 1m
m−1
j=0


exp


2π


ρt − ρλ0 −
k
m


i
j


2

≤

m−1
k=0

 1m
m−1
j=0


exp


2π


ρt − ρλ0 −
k
m


i
j


2

= 1

for all t . Therefore, the above two inequalities are equalities. The first one means that Γj is a spectrum of L2(µρ) for each
j ∈ B. The second one means that B = {0, 1, . . . ,m − 1}.

While the conclusion 0 ∈ Γk follows from the assumption λ0 +
mzk+k
m|ρ|

∈ Λ. The theorem is proven. �

Repeated application of Theorem 4.4 shows, there exist spectrums Γk1,...,kn containing zero such that

Λ =

m−1
k1=0

m−1
k2=0

· · ·

m−1
kn=0


λ0 +

k1 + mzk1
m|ρ|

+
k2 + mzk1,k2

m|ρ|2
+ · · · +

kn + mzk1,...,kn
m|ρ|n

+ |ρ|
−nΓk1,...,kn


(4.9)

and the union is a disjoint union, where integers zk1,...,kj (j = 1, 2, . . . , n) are chosen to satisfy λ0 +
k1+mzk1

m|ρ|
+

k2+mzk1,k2
m|ρ|2

+

· · · +
kj+mzk1,...,kj

m|ρ|j
∈ Λ for j = 1, 2, . . . , n.

First, by (4.9) and Lemma 4.4, we have |ρ|
−nΓk1,...,kn ⊆ Λ − Λ ⊆

Z
m|ρ|

. Since |ρ| = q/p and p, q are co-prime, we see
Γk1,...,kn ⊆ qn Z

m|ρ|
and

kn + mzk1,...,kn
m|ρ|n

∈ |ρ|
1−nΓk1,...,kn−1 ⊆

pn−1Z
m|ρ|

. (4.10)

Second, as we have assumed (4.7) for the case n = 1, repeated application of Theorem 4.4 shows that we can choose
zk1,...,kj so that

k1+mzk1
m|ρ|

+
k2+mzk1,k2

m|ρ|2
+· · ·+

kn+mzk1,...,kn
m|ρ|n has the minimal absolute value in the set

k1+mzk1
m|ρ|

+
k2+mzk1,k2

m|ρ|2
+· · ·+

kn+mzk1,...,kn
m|ρ|n + |ρ|

−nΓk1,...,kn . This implies that zk1,...,kj = 0 whenever kj = 0.

For any given sequence {kj}j of {0, 1, . . . ,m − 1}, denote an = λ0 +
k1+mzk1

m|ρ|
+

k2+mzk1,k2
m|ρ|2

+ · · · +
kn+mzk1,...,kn

m|ρ|n , then
|an| ≥ |an−1|.

Claim. There exists a constant c ∈ N so that |an| ≥ pn−c whenever kn ≠ 0.

Proof of the Claim. If an, an−1 have the same sign, then |an| = |an−1| + |
kn+mzk1,...,kn

m|ρ|n | by using |an| ≥ |an−1|. Using (4.10)

implies an − an−1 =
kn+mzk1,...,kn

m|ρ|n ∈
pn−1Z
m|ρ|

is non-zero, so |an| ≥
pn−1

m|ρ|
. Otherwise, an, an−1 have different signs. Since

|an| ≥ |an−1|, so |an| ≥
1
2 |

kn+mzk1,...,kn
m|ρ|n |. Using (4.10) implies

kn+mzk1,...,kn
m|ρ|n ∈

pn−1Z
m|ρ|

is non-zero, so |an| ≥
pn−1

2m|ρ|
. The claim

is proven.
For any λ ∈ Λ \ {λ0}, we can find an integer n0 so that |λ| < pn0−c , hence the above claim shows that λ does not belong

to the set λ0 +
k1+mzk1

m|ρ|
+

k2+mzk1,k2
m|ρ|2

+ · · · +
kn+mzk1,...,kn

m|ρ|n + |ρ|
−nΓk1,...,kn for any n ≥ n0 with kn ≠ 0. On the other hand,

however, (4.9) shows that λ ∈ λ0 +
k1+mzk1

m|ρ|
+

k2+mzk1,k2
m|ρ|2

+ · · · +
kn+mzk1,...,kn

m|ρ|n + |ρ|
−nΓk1,...,kn for some n. Hence λ can be

written as the form λ0 +
k1+mzk1

m|ρ|
+

k2+mzk1,k2
m|ρ|2

+ · · · +
kn+mzk1,...,kn

m|ρ|n for some n.

Therefore, we have proven the following theorem.
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Theorem 4.6. If µρ is a spectral measure with spectrum Λ and |ρ| = q/p with gcd(q,m) = 1, then m|p and Λ has the form

Λ =


λ0 +

k1 + mzk1
m|ρ|

+
k2 + mzk1,k2

m|ρ|2
+ · · · +

kn + mzk1,...,kn
m|ρ|n

: kj = 0, 1, . . . ,m − 1; n > 0


(4.11)

such that |λ0 +
k1+mzk1

m|ρ|
+

k2+mzk1,k2
m|ρ|2

+ · · · +
kn+mzk1,...,kn

m|ρ|n | ≥ pn−c if kn ≠ 0 and this sequence of absolute values increases as n
increases for any given sequence {kj}j of {0, 1, . . . ,m − 1}.

Proof of Theorem 1.1. Assume µρ is a spectral measure with spectrum Λ. Since m is a prime, Theorem 1.2 implies that
|ρ| = (q/p)

1
r with gcd(p, q) = 1 and m|p. Proposition 4.3 shows that r = 1. m|p and gcd(p, q) = 1 imply gcd(m, q) = 1.

Hence Theorems 4.5 and 4.6 applicable. Hence Λ has the form as (4.11).

Therefore, we need only prove q = 1. Assume, on the contrary, that q > 1.
Use Theorem 4.6, we define

Λn =


λ0 +

k1 + mzk1
m|ρ|

+
k2 + mzk1,k2

m|ρ|2
+ · · · +

kn + mzk1,...,kn
m|ρ|n

: kj = 0, 1, . . . ,m − 1


(4.12)

for n = 1, 2, . . .. Then Theorem 4.6 implies

λ ∈ Λ \ Λn H⇒ |λ| ≥ pn+1−c . (4.13)

Using Theorems 4.5 and 4.6, we see that
kn+mzk1,...,kn

m|ρ|n ∈ |ρ|
−1Z for n > 1. Hence qn−1

|(kn + mzk1,...,kn). Since we have
proven |ρ| = q/p andm|p, so

ρℓ kn + mzk1,...,kn
m|ρ|n

∈ Z, ∀1 ≤ ℓ < n. (4.14)

Using (4.8), we have

m−1
kn=0




1
m

m−1
j=0


exp


2π j


t −

kn
m


i


2

=
1
m2

m−1
j1=0

m−1
j2=0

m−1
kn=0

exp

2π(j1 − j2)


t −

kn
m


i


=
1
m2

m−1
j1=0

m−1
j2=0

exp{2π(j1 − j2)ti}
m−1
kn=0

exp

2π

(j2 − j1)kn
m

i


=
1
m2

m−1
j1=0

m = 1

for all t . Hence, by (2.1), Theorem 4.6 and (4.14), we have
λ∈Λn

n
ℓ=1




1
m

m−1
j=0

(exp{2πρℓj(t − λ)i})


2

=


γ∈Λn−1

m−1
kn=0

n
ℓ=1

 1m
m−1
j=0

exp

2πρℓj


t − γ −

kn + mzk1,...,kn
m|ρ|n


i


2

=


γ∈Λn−1

m−1
kn=0

n−1
ℓ=1

 1m
m−1
j=0

exp{2πρℓj(t − γ )}


2

·

 1m
m−1
j=0

exp

2π j


ρn(t − γ ) −

kn + mzk1,...,kn
m


i


2

=


γ∈Λn−1

n−1
ℓ=1

 1m
m−1
j=0

(exp{2πρℓj(t − γ )i})


2

·

 1m
m−1
j=0

exp

2π j


ρn(t − γ ) −

kn
m


i


2

=


γ∈Λn−1

n−1
ℓ=1

 1m
m−1
j=0

(exp{2πρℓj(t − γ )i})


2

for all t and n > 1.
Repeatedly using the above equality gives


λ∈Λn

n
ℓ=1

 1m
m−1
j=0

exp{2πρℓj(t − λ)i}


2

=

m−1
k1=0

 1m
m−1
j=0

exp

2πρj


t − λ0 −

k1 + mzk1
m|ρ|


i


2

= 1. (4.15)
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Let N be an integer with N > a−1, where a is defined in Theorem 4.1. Let

Qℓ(t) =


λ∈Λ

ℓN

|µ̂ρ(t − λ)|2, ℓ ∈ N.

Then

Qℓ+1(t) − Qℓ(t) =


λ∈Λ

(ℓ+1)N \Λ
ℓN

|µ̂ρ(t − λ)|2

=


λ∈Λ

(ℓ+1)N \Λ
ℓN

(ℓ+1)N
s=1




1
m

m−1
j=0

(exp{2πρsj(t − λ)i})


2

· |µ̂ρ(ρ(ℓ+1)N (t − λ))|2

≤ C2
0


λ∈Λ

(ℓ+1)N \Λ
ℓN

(ℓ+1)N
s=1




1
m

m−1
j=0

(exp{2πρsj(t − λ)i})


2

· (ln(2 + |ρ(ℓ+1)N (t − λ)|))−2a

≤ C2
0


λ∈Λ

(ℓ+1)N \Λ
ℓN

(ℓ+1)N
s=1




1
m

m−1
j=0

(exp{2πρsj(t − λ)i})


2

· (ln(2 + |ρ(ℓ+1)N pℓN−c−1
|))−2a

= C2
0

1 −


λ∈Λ

ℓN

(ℓ+1)N
s=1




1
m

m−1
j=0

(exp{2πρsj(t − λ)i})


2
 (ln(2 + |ρ(ℓ+1)N pℓN−c−1

|))−2a

for any t ∈ (−p−c−1, p−c−1), where the first equality follows from (2.1), the first inequality follows from Theorem 4.1, the
second inequality follows from (4.13), the last equality follows from (4.15).

By (2.1), we have

Qℓ(t) =


λ∈Λ

ℓN

(ℓ+1)N
s=1




1
m

m−1
j=0

(exp{2πρsj(t − λ)i})


2

· |µ̂ρ(ρ(ℓ+1)N (t − λ))|2

≤


λ∈Λ

ℓN

(ℓ+1)N
s=1




1
m

m−1
j=0

(exp{2πρsj(t − λ)i})


2

.

Therefore,

1 − Qℓ+1(t) ≥ [1 − Qℓ(t)][1 − C2
0 (ln(2 + |ρ(ℓ+1)N pℓN−c−1

|))−2a
],

and so

1 − Qℓ+1(t) ≥ [1 − Qn(t)]
ℓ

k=n

[1 − C2
0 (ln(2 + |ρ(k+1)N pk

N
−c−1

|))−2a
], ∀ℓ > n. (4.16)

The assumption N > 1
a shows that


∞

k=1 k
−2Na < +∞. Hence

ℓ
k=1[1 − k−2Na

] converges to a positive number. Since

lim
ℓ→+∞

(ln(2 + |ρ(ℓ+1)N pℓN−c−1
|))−2a

ℓ−2Na
= lim

ℓ→+∞


(ℓ + 1)N ln |ρ| + ℓN ln p

ℓN

−2a

= (ln q)−2a > 0.

Hence, we can find ℓ0 > 0 so that
+∞
k=ℓ0

[1 − C2
0 (ln(2 + |ρ(k+1)N pk

N
−c−1

|))−2a
] = a0 ∈ (0, 1).

Therefore, by noting that Λ is a spectrum of µρ , (4.16) shows

0 = 1 −


λ∈Λ

|µ̂ρ(t − λ)|2 = lim
ℓ→+∞

[1 − Qℓ+1(t)] ≥ a0[1 − Qℓ0(t)] ≥ 0

for any t ∈ (−p−c−1, p−c−1). Hence Qℓ0(t) = 1 for all t ∈ (−p−c−1, p−c−1). Since Qℓ0(t) can be extended to an analytic
function on the complex plane, so Qℓ0(t) = 1 for all t ∈ R. Hence ΛℓN0

is a spectrum. It is obviously impossible, as ΛℓN0
is a

finite set.
Therefore, q = 1, so Theorem 1.1 is proven.
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