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1. Introduction

Let u be a Borel probability measure on R. We say that u is a spectral measure if there exists a discrete set A such that
E, = {e¥™X . A e A} forms an orthonormal basis of L?(j4). In this case, we call A a spectrum of x and (i, A) a spectral
pair, respectively.

Jorgenson and Pederson [4]studied the spectral property of general Cantor measures. They proved that the 1/k-Cantor
measure /41, on R is a spectral measure if k is even (Strichartz provided a simplified proof in [9]). This result was investigated
by Laba and Wang in more details in [5] and for the general Borel measures in [6].

Hu and Lau [3] further studied the spectral property of Bernoulli convolutions. They proved that the necessary and
sufficient condition that the Bernoulli convolution has an infinite orthonormal set E, of exponential functions is that the
contraction ratio p is the n-th root of a fraction p/q, where p is odd and q is even. Recently, Dai [1] proved that the Bernoulli
convolution has an orthonormal basis E 4 of exponential functions if and only if the contraction ratio p is the reciprocal of
an even integer.

Motivated by the above results, we study the spectral property of one dimensional self-similar measures with consecutive
digits.

Let p be a real number such that 0 < |p| < 1, it is well known that for any positive integer m > 2, there exists a unique
probability measure, denoted by u,, such that

1 m—1
o) = — > 1p(p™" () =) (1.1)
j=0

for all Borel set A € B. u,, is called a self-similar measure.
For the self-similar measure p, defined in (1.1), our main theorem is as follows.
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Theorem 1.1. If m is a prime, then [2 () contains an orthonormal basis of exponential functions only if p = j:# for some
ke N

This is an extension of the result of [1].
On the other hand, Dai etc. proved that L? (14 /mk) contains an orthonormal basis of exponential functions for any k € N

in [2]. It is easy to see that L?(j1_q /mk) also contains an orthonormal basis of exponential functions for any k € N. Hence we
have the following.

Theorem A. If m is a prime, then L?(w,) contains an orthonormal basis of exponential functions if and only if p = :l:ﬁ for
some k € N.

Remarks. Theorem 1.1 indicates that the main theorems of [3,1] also hold for —1 < p < 0. Our proof of Theorem 1.1
strongly depends on the structure of the zeros of fi,. The set of zeros of i, will be very complicated if the digit set is
replaced by a non-consecutive digit set. So far, we do not know how to deal with the case of non-consecutive digits. Also,
some of our proofs do not work when m is not a prime. For integral self-affine measures, Li studied the spectrality of a class
of planar self-affine measures with decomposable digit sets in [7] and with three non-consecutive digit set in [8].

If we only consider the existence of infinite orthonormal set of exponential functions, we have the following theorem
which is an extension of the result of [3].
Theorem 1.2. Assume m is a prime, then L?(i1,,) contains an infinite orthonormal set of exponential functions if and only if
p = %(q/p)V/" for some p, q, r € N with the properties: p, q are co-prime and m|p.

Since E 4 forms an orthonormal set in L2 (u,) ifand only if E¢ 4 forms an orthonormal set in 12 (up) forany fixed t € R4,
For simplicity we assume that 0 € A throughout this paper.
Notations. We will use the following notations. Let Z be the set of all integers, let N be the set of all positive integers. For

anyx,y € Zandr € N, we use X = y(mod r) to denotex —y € rZ.

For the iterated function system {Sj}j”;)] with Sj(x) = p(x + j) and the associated j, defined in (1.1), let fi,(t) =
[ e*™dy , (x) be the Fourier transform of 1 ,. Define

Z,={teR:,(t) =0}
to be the set of zeros of /i, (t). Let
0 ={+@/p'"" :p,q.r €N},

It is clear that 8 € Q if and only if | 8| is an algebraic rational with a minimal polynomial px" — q for some p, q,r € N.
Throughout this paper, we always use

Eap = (¥ . ) e A),
to denote an orthonormal set of exponential functions in L2 (u »)» Where A is a subset of R containing 0. For this A, we define

Q) =Y 1A, — DI,

reA

We organize the paper as follows. Some preliminary lemmas are given in Section 2. Section 3 is devoted to prove
Theorem 1.2. While Theorem 1.1 is proven in Section 4.

2. Some preliminary lemmas

We first give some preliminary results associated with the self-similar measure 1 ,. Then we will use them to prove
Theorems 1.1 and 1.2 in Sections 3 and 4, respectively.
It is easy to prove the following.

Lemma 2.1. Let [1,,(t) be the Fourier transform of the self-similar measure 11, defined in (1.1), then

n 1 m—1 o
ro® =11 [m Z(ez’”’k“y} fo(p"t) (21)

k=1 j=0

for all positive integers n > 0.

Lemma22. Z, = {m%k :keN,leZ\mz).
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Proof. Use (2.1), since fi,(p"t) — 1asn — o0, 1,(1) = 0if and only if there exists a positive integer k > 0 so that
m—1
iy o
j=0

Hence e £ 1, multiplying both sides by 1 — e>*“*i, we see that the above equation is equivalent to
1_ (eZHpkM)m -0 eankM £1

Hence 1,(A) = 0if and only if there exist integers £ € Z and k € N such that 2mm p*A = 2 and p*A is not an integer, i.e.

A= mip,( with £ € Z \ mZ and k € N, the conclusion follows. O

Remark. It is possible that A € Z, has another representation different from the one in Lemma 2.2. For example, if p = m

— m—1 1 i 1 _ m=1
and p = *=, then 7 € Z,, since - = moZ

Lemma 2.3. Let A be a subset of R containing 0, then E 4 is an orthonormal set of L? (1p) if and only if (A — A)\ {0} C Z,,.
Equivalently, the following two conditions are satisfied:

(i) A={0}U {ij :1<j<N}withkj e N, {; € Z\ mZ,0 < j < N, where N is a finite positive integer or the infinity.
mp

(i) There exist —%+ € Z, with vs, € Z \ mZ such that

mp's:t

£ £ Us,t
- = , 1<s#t<N. (2.2)
mpks mpkt mprs,t

Proof. It is clear that E 4 is an orthonormal set in Lz(up) if and only if /i, (A — A,) = 0 for any distinct A4, A, € A. Hence
(ii) follows from Lemma 2.2, and (i) follows from the assumption0 € A. O

Lemma 2.4. If [? (m,) has an orthonormal set of exponential functions with at least m + 1 elements, then o~ 1is azero of an
integral polynomial.

Proof. Let E, be an orthonormal set with at least m + 1 elements. Then the N defined in Lemma 2.3 is at least m + 1. Hence
(2.2)holdsforall1 <s <t <m.

Ifks =k =15 foralll <s <t <m,thent; — £ = v, forall1 <s < t < m.Itis clear that there exist s and t such
that0 <s <t < mand {; — ¢; € mZ. Hence v, € mZ, it contradicts Lemma 2.3(ii). Therefore, there is a pair (s, t) so that
at least two of ks, ki, 15 are distinct, so p~ ! is a zero of an integral polynomial by using (2.2). O

Lemma 2.5. Assume 8 € O admits a minimal polynomial p8" — (£1)"q = 0 and satisfies a; ¥ +a, p/ = a3 BY, wherek, j, u > 0
are nonnegative integers and ay, a,, as € Z \ {0}. Then k = j = u(mod r).

Proof. Letk = kyr +5,j =jir +t,u = uyr + vwith0 < s, t, v < r.Since p8" = (£1)"q, so B satisfies
b1’ + by = bsp’

for some integers by, b, b3 # 0. Since px" — (£1)"q is the minimal polynomial of 8 with order r, in view of 0 < s,t, v < r,
we see that s = t = v, the conclusion follows. O

3. Proof of Theorem 1.2
We first prove Theorem 1.2 for the case p € Q.

Proposition 3.1. Let px” — q be the minimal polynomial of |p| for some p, q,r € N, where p, q are co-prime. Then L? (mp)
contains an infinite orthonormal set of exponential functions if and only if p, m have a common divisor larger than one.

Proof. Consider the necessity. Let E4 be an infinite orthonormal set with 0 € A, then A \ {0} C Z,.

Forany x € Z,, there existu € Nand v € Z \ mZ such thatx = ﬁ by Lemma 2.2. Furthermore, there exist integers
p {voand m ¢ plvg. Since A — A € {0} U Z,,. Let k; be
the smallest positive integer such that m‘iﬁ € A— A C{0}UZ, forsome ¢y € (Z\ pZ).

Let A1, Ag € AbesuchthatA; — Ay = b

mlpl*1

£ > 0and vy € Z so that v = p'vy with p f vo. Hence o = %.
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For any A € A, Lemma 2.3 implies that there exists a A’ € Z, such that — (A — X)) = A1 — A = A. Write

kl

A=hio+ and A’ = I“+” with the properties: £, v € (Z \ pZ) \ mZ; k,u € N; s, t > 0. Then we have

m|p ‘k+rs

£1 QL q‘v

m|p|"1 - m|p|k+rs - m|p|u+rt'
Therefore, Lemma 2.5 implies that k — k; = u — k; = 0 (mod r). Let k +rs = nr + kq, u + rt = u'r + ky, then the definition
of k; implies n, u" > 0. The above equality becomes

!

0 — qs—npng — qt—u’vpu )

Ifn =0,then X = Ao + |"1 If n > 0, note that p, q are co-prime, if #’ > 0, then the above equality implies p|¢;, a

contradiction. Hence v’ = 0, so the above equality implies g"|q*¢. Hence A can be written as the form A = A + #{m =
m‘;:ﬁ; - with £" € Z. Therefore, there exist non-zero integers z; such that
= {ho} U {L}T with A = Ao + (G > 0. (3.1)

| |k1

Lemma 2.3(ii) implies that 2 e ﬁf € Z, for all distinct s, t > 0. Choose s > t > 0 so that m|(z; — z), let z; — z; = mz.

Then Lemma 2.2 implies that there exist us; € Z \ mZ, vs; € N such that

z o Us ¢
ol =7 T mfppee”
Lemma 2.5 implies that vs ; — k1 = r&;; for some integer & ;. Hence
st
u
(9> = Lt (32)
p mz

The definition of k; implies & ; > 0. Note that m { ug,, we see that & ; > 0 and p, m have a common divisor larger than
one. The necessity follows.

We now prove the sufficiency. Suppose that p, m have a common divisor larger than one. Let mg > 1 be the greatest
common divisor of m and p. Since p, g are co-prime, so mg, g are co-prime.

Let
n
= {0} U q :neN;.
m|p|™
)

. . . .. . n ne,k
Since myg, q are co-prime and mo > 1is the greatest common divisor of m and p, so neither % nor WT]

all n, k € N. Therefore, both mlp\”’ and

is an integer for

q* ¢ q@ -1

m|p[" T mlpl T mlp|r

are zeros of [1,(t) for all n, k € N by using Lemma 2.2. Hence (A —A) \ {0} C Z,, so E; is an infinite orthonormal set in
12 (m,) by Lemma 2.3. The sufficiency follows. 0O

To prove Theorem 1.2 for the case p ¢ 0. We will suppose on the contrary that Lz(up) has an infinite orthonormal set
of exponential functions for some p ¢ Q, then obtain a contradiction.
Let E, be an infinite orthonormal set in L? (mp), then Lemma 2.4 implies that p~lis a zero of an integral polynomial. Let

g(X) = ap+ax + - - - + apx" (3.3)
be the minimal integral polynomial of p~!, where ag > 0, ay, ..., a, are relative prime and a, # 0.
It is easy to see that the following lemma holds.

Lemma 3.2. If p~" is a zero of an integral polynomial f (x) = dg + d1x + - - - + dix¥, then ag|dy and a,|dy.

Lemma 3.3. Let E 4 be an orthonormal set in L? (up)and p & Q, let Ay = Zm\—['sz N A, then { Ay}~ are disjoint and each one has
cardinality at most m — 1.
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Proof. For the disjointness of { Ay }x-0, suppose on the contrary, AN A; # @ forsome 0 < k < r.Then there exist = € Ay

mpk
t st
and mpr € A, so that e mp,.Hence
1
p ==x(|t/s)TF € O,
a contradiction. .
For the cardinality of Ay. If A has at least m elements, let —- € A, j=1,2,..., m.Thenthereexist1 <j; <j, <m

k
so that ¢;, — ¢;, = rm for a non-zero integer r. Hence Lemma 51% implies that
r u
oF ~ mp?
for some u € Z \ mZ and v € N. This means that v # k and

1

p:(i)rlk (v>k) or p:(%)m (v <k,

mr
a contradiction to the assumption p ¢ 0. O

Lemma 34. Assume p ¢ Q. If Lz(up) has an infinite orthonormal set of exponential functions, then p~! has a minimal
polynomial g (x) as (3.3) withay = 1.

Proof. Lemma 2.4 implies that p~! is a zero of an integral polynomial. Hence p~! has a minimal polynomial g(x) as given
by (3.3). Since p ¢ O, it is easy to see that zp % ¢ Z,forallz e Zand k € N.
Since Lz(up) contains an infinite orthonormal set of exponential functions E,, Lemma 3.3 implies that there exist

infinitely many A; = —1,9 € Awith0 < k; < kj1. Without loss of generality, we assume
mp

ki

e.
A:{O}U{ ] :O<k1<k2<--~}.
mp"i

By Lemma 2.2, we can assume that %’ ¢ Z.Lemma 2.3(ii) then implies that there exist vs; € Z \ mZ, rs; € N such that

£ _ £ _ Ust
mpks mpkt - mprs,t ’
Since p & O and kg # k; when s # ¢, it is easy to see that rs; # kg, k; when's # t.

Vst eN. (34)

Claim. r;; - +ooasj — +ooforalls € N.

Proof of the Claim. For any given s, a € N, if there are infinitely many j such that r;; < a, then there are infinitely many

. . . . . ) 0 ¢; o
identical ry 's. Hence there existj, > j; > ssothatm|(vsj, — vsj,) and rsj, = r5j,. This means that 2} — —2— = %
. » » - - mp' i1 mp 2 mp $1
and % is not a zero of [1,(t) by p ¢ O, a contradiction. Therefore, there are only finite j such that r;; < g, the claim
mp >
follows.
For any s > 1, the claim implies that, we can choose a sufficiently large t so that k;, 15, > ks. (3.4) implies that p~!is a
zero of the integral polynomial
O — £oxkeThs — oy x5t ks,
Hence Lemma 3.2 implies
alls, s=1,2,.... (3.5)
For any given s # t € N, since A — A = (As — Ay) — (At — Ay), s0 (3.4) implies
Use  Usu  VUru

mprs,r mprs,u mprt.u

for all u € N. By the above claim, we can choose a sufficiently large u so that rs,, 1, > 15, Hence p~!is a zero of the
integral polynomial

vs,t _ vs,uxrs.ufru + vt.uxrt,u*rs,t.
Hence Lemma 3.2 implies

aolvse, S#t=1,2,.... (3.6)
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Therefore, (3.4)-(3.6) imply that E -1 , is also an infinite orthonormal set in 12 (mp). Replace A by ao_lA, the above proof
0
implies that Eang is an infinite orthonormal set in [2 (14,). Continuing in this way, it can be proven that Eag”A is an infinite

orthonormal set in [? (up) foralln > 0.1t must implies that ap = 1 necessary by using ap € N. The lemma is proven. 0O

For the minimal polynomial of p~! defined in (3.3) with ay = 1, we define an (n 4+ 1) x (n + 1) invertible matrix

1 0
(2, 9) o)

where I, is the n x n identical matrix,a = (ay, ..., a,)’. For this matrix E, we define a sequence of (n + 1) x 1 vectors as
following:

a = (0,1,0,...,0)

and
st = (k1,00 Okt 1,15 - - - k1)’ = B, @iz, -, in, 0)F (3.8)

fork > 0.
Lemma 3.5. Assume m is a prime, then

(i) as,n = —anos o for any integer s > 0;

(ii) There is an integer £ > 0 so that oy, = o; (mod m) for alli > 0;

(ili) ag_n = (W—n0,0,...,0, 1) (mod m) when k = ¢j + 1 > n for some integer j, where ay_y o satisfies a,ay_no =
1(mod m).

Proof. (i) It follows directly from the definition.
(i) Consider the residue class of Z"*! modulo m, we see that there exist integers i and £ > 0 so that ;¢ = o; (mod m).
Ifi > 0O, then

E(Cigo—1,1 Cie—125 - Aire—1n, 0 = E(@iz11, Xi12, - .., &1, 0)' (mod m).

It is easy to see that (iy¢—1.1, Cite—1.2 - > Xire—1.00 0)F = (@11, Xi_1.2, - -+, ®%i_1.0, 0)F (mod m). By the conclusion (i)
and the assumption that m is a prime, we see that otj¢—1, = ti_1,, (mod m) implies i ¢—1,0 = @i—1,0 (mod m). Therefore,
®it¢—1 = aj—1 (mod m). Continuing in this way implies the conclusion (ii).

(iii) The conclusion (ii) implies ox—; = ag = (0, 1,0, ..., 0)' (mod m). Note
-1_ (1 0
B = <a I,]°
(3.8) implies (ax_2.1, Ak_2.2, .-, %_2.1,0)¢ = E71(0,1,0,...,0)' = (0,1,0,...,0)* (mod m). Since m, a, are co-
prime, ax_»n = An@_30, SO ay_» = (0,0,1,0,...,0)" (modm) if n > 2. Continuing in this way proves
(Ctk=n.1> Ck—n.2> - - - » Ck—p.ns 0) = (0,0, ...,0, )" (mod m). Note that m, a, are co-prime, we see that the conclusion

anQk—n,0 = 1(mod m) follows and so (iii) is proven. O

Proposition 3.6. If p & Q, mis a prime and E 4 is an orthonormal set in L*(j1,) with 0 € A, then A is a finite set.

Proof. Assume on the contrary that A is an infinite set. Lemma 3.4 implies that p~! has a minimal polynomial g (x) as (3.3)
withag = 1.
Since m is a prime, the assumption of Lemma 3.5 holds, m, ¢; are co-prime.

Claim. There are infinitely many families of integers {c1, 2, c3, S, k} such that: p~' is a zero of the integral polynomial f (x) =
€1 — X — Xt k+n>s>0,cq, 0, c3 € Z\ mZand, either c; = c;(mod m) and £|s or ¢; = c3(mod m) and £|(k + n),
where ¢ is defined in Lemma 3.5.

Proof of the Claim. By Lemma 3.3, there exist infinitely many —%— € A such that ¢, € Z\ mZ and 0 < ki < kiy1.By (2.2)

mpks
in Lemma 2.3(ii), there exist v;; € Z \ mZ and r5; € N such that

£s £ _ Ust
mpks mpkt - mprs.r

, sAt>1. (3.9)

(a) It is easy to see that there is an i such that ¢; = £;(mod m) for infinitely many s. By choosing a subclass of A, without
loss of generality, we can assume that £; = {;(mod m) forall s > 1.

(b) For the ¢ defined in Lemma 3.5, there is an i such that £|(k; — k;) for infinitely many t. By choosing a subclass of A,
without loss of generality, we can assume that £|(k; — k) forall t > 1.
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(c) By the claim in the proof of Lemma 3.4, we can choose a tp such that ry; > k; for all t > t;. Hence (3.9) implies that
p~1is a zero of the integral polynomial £; — £xk %1 — v x".e=%1 with €] (k, — k;).

Since p ¢ O implies that eitherry; — k; > k —k; > 00or0 < ry;; — ky < k¢ — kq, the claim follows.

By Lemma 3.4, let g(x) = 1+ a;x + - - - + a,x" be the minimal polynomial of p~', then f (x) = g(x)h(x) for an integral
polynomial h(x) with order k.

For the above g (x), f (x) and h(x), we use the following notations. Let h(x) = by + bix + - - - + bix*,a = (1, a4, ..., a,)’,
b = (by, b1, ..., by)t. Let e; be the j-th column of the (k +n + 1) x (k + n + 1) identical matrix liy,11.

Definea (k+n+ 1) x (k+ 1) matrix A = (U j)o<¢<ktn,0<j<k By Ujj = 1for0 < j < k, ujy;j = a;for0 < j < kand
1 <i <n,andu;; = 0 for other (j, t).

Then f (x) = g(x)h(x) if and only if Ab = c1e; — cy€541 — C3€k4n+1. Define (k 4+ n + 1) x (k 4+ n + 1) matrices:

., 0 O
E O 1 I, 0
E1_<0 Ik),...,E,-_<g g 0 ),...,Ek+1—(0 E>,

Le—j1

where [; is the j x j identical matrix, E is defined in (3.7).

It is clear that E(1, a4, ..., a,)" = (1,0, ..., 0)". It follows that E;A reduces the first column of A to (1,0, ..., 0)" and
the other columns remain unchanged; E,E;A reduces the second column of E;A to (0, 1,0, ..., 0)" and the other columns
remain unchanged. Finally Ej.,1 - - - E1A is the matrix with 1 on the diagonal and 0 elsewhere.

Furthermore, the last n+ 1 entries of Ex, 1 - - - E1e; generate the vector o1 defined in Lemma 3.5. Hence Ey 1 Ey - - - E1e1 =
(vo, Uiy o v vy Uk—1, Ok41,05 Xk+1,15 - - - » ak+1,n)f(mod m) for some Vo, U1y« « vy Ug—1.

For e, 1, we have

_ EI<+1 e Es+1es+17 s < k»
Eii1---Er€541 = {es+1, s>k (3.10)
Hence the last n + 1 entries of Ey, - - - E1€,, generate the vector o 1_s when's < k and the vector (0, ...,0,1,0,...,0)"

with the 1 at the s — k + 1-th entry when s > k.
Since f (x) = g(x)h(x), so the last n entries of g1 - - - E;(C1€1 — Co@511 — C3€,4n41) are all zero. In the following, we will
consider the (n + 1) x 1 vector generated by the last n 4+ 1 entries of Exq - - - E;(c1€1 — €511 — C3€,ynt1) by using the

above claim. Note that the last n + 1 entries of E, ; - - - E;Ab generates the vector(by, 0, . .., 0)'. Hence
C10es1 — Cr1—s — €3(0, ..., 0,1) = (b, 0, ..., 0)F, ifs <k, (3.11)
C1op41 — (0, ...,0,1,0,...,0)f —¢3(0,...,0,1) = (b, 0,...,0), ifs>k )
Case 1.If ¢]s and k + n > s > k. Then, use (3.10), the vector generated by the last n + 1 entries of Eyy1 - - - E1(c1e1 —
(€541 —C3€np1)iscioge1—(0,...,0,¢2,0,...,0, c3)" with the ¢, at the s— k+ 1-th entry. Hence (3.11) implies cjotp 1 =
(b, 0,...,0,c3,0,...,0,c3)",s0c; isacommon divisor of by, ¢; and c3, so a1 = (by/c1,0,...,0,¢/¢1,0,...,0,c3/c1)".
By the definition of «j, we have a1 = E(c2/c1, 0, ..., 0, c3/cq, . .., 0,)". This contradicts o541 = E(1,0, ..., 0)'(mod m),

since £|s and c;, ¢35 % 0(mod m).

Case 2. If £|s,s < k and ¢c; = c;(mod m). Then the last n + 1 entries of Ex;1 - - - E1es41 generate the vector ot1—s
by using the definition of E; and (3.10). Hence the last n + 1 entries of Ex,q - - - E1(c1€1 — c,€41) generate the vector
C10+1 — C20+1—s = 0(mod m) by using Lemma 3.5(ii) and ¢; = c;(mod m).

Therefore, we have

Ext1Ex - - - E1(c1€1 — C2€541 — C3€kint1) = (Cillo, ..., C1tls—1, 0, ..., 0, —c3)" (mod m)
for some ug, ug, ..., Us_1. Since c3 % 0(mod m), it contradicts to the conclusion that the last n entries of Eyy1 - - - E{(c1€1 —
Cy€511 — C3€knt1) are all zero.
Case 3.1f £|(k 4+ n) and ¢; = c3(mod m). Then Eyy1Ey - - - E1(c1€1) = (vo, V1, - - -, Vk—1C1@%+1,0, 0, . . ., 0, ¢1)" (mod m) for
some vg, V1, . . . , Uk—1 by using Lemma 3.5(ii). Note Ey1Ey - - - E1€4n+1 = €kynt1, WE S€€
Ex1Ex - - E1(c1€1 — C3€k4nt1) = (Vo, V1, - - ., Uk—1, C1041,0, 0, . .., 0)" (mod m).

Since the last n entries of Ex, 1 - - - E;(c1@1 — €511 — C3€@,4n1) are all zero, the above equality implies
Ek+1Ek ce Eles—H = (wg, W1, «v., W, 0, O, ey O)t(l‘l‘lOd m)

for some wy, wy, ..., wi. If s < k, (3.10) implies ay_s11 = (wy, 0,0, ..., 0)"(mod m), so Lemma 3.5(i) implies a,wy
AnOk—s+1.0 = Ok—st1.n = 0(mod m). Since f(x) = g(x)h(x), so ay|c3. Since c3 € Z \ mZ and m is a prime, so
ar—s+1 = 0(mod m). Hence the definition of o implies o = 0(mod m) for all sufficiently large j, a contradiction
Lemma 3.5(ii). If s > k, (3.10) implies Ej,Ey - - - E1€5.1 = €s,1, SO the above equality implies that (wy, 0,0, ..., 0)"
0,...,0,1,0,...,0)(mod m) with the 1 at the s — k + 1-th entry, This is obviously impossible.

Therefore, A is finite. O

s
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Proof of Theorem 1.2. The sufficiency follows from Proposition 3.1. For the necessity, Proposition 3.6 implies p € O, then
the necessity follows from Proposition 3.1. O

4. Proof of Theorem 1.1
The idea of the following theorem comes from [1].

Theorem 4.1. If |p| = q/p with 1 < q < p being co-prime, then there exist constants a > 0, C; > 0 so that

Sguﬂlg{lﬁp(f)l(ln(Z +1tD)*} < G < +o0.

Proof. Claim. There is a positive constant b < 1 such that: assume || > 1, then we can find an n such that |p&| > |n| >
p2|§|lnq/lnp and

Lo (&) < blit, ().

Proof of the Claim. For any real number ¥, let [x] be the number in (—%, %] such thatx — [x] € Z.
(a)If [p&] & (—=, L), then |1 + exp{27 [pE1i}| < |1 + exp{%i}| < 2.Use(2.1)and | exp{27j[p£1i}| < 1, we have

2p° 2p
1 m—1 ) 1 m—1
o B = i1, (p8)| - | = ) (exp{2mp&i}Y | = |1, (p&)| - | = ) exp{2mj[p&Ti}
o o — ,:Zo o — ,:Zo
_ . — 2+ |[1+expiZi
X m— 2+ |1+ exp{27 [p&li}| _ . m ’ [p H
< e (08| - < [ (p8)] - .
m m
Letb = w n = pé&, the claim holds.
(D)If [0 € (—35. 35)- Since [§] > 1,50 |pE| > o] = } by [p| = q/p. Hence, we can write |p§| = [p&] + Yj_, exp*
withe; € {0,1,...,p—1},e; > 0,¢; > 0and s > 0. Hence

: s+1
(P61 = [(q/p)sﬂ 3 +q5“/p2ekp’”w = [(q/p)“lfpsw = W
k=s

Since [p£] € (=3, ) and 0 < (a/p)**" < 1,50 (a/p)"'[pE1 € (=35, 5). Hence [p**2¢] & (=35 ) by using the

above equality. Therefore, similar to the above conclusion (a), we have

s+2 1 m—1 )
I1 [m > (exp{2mpte i})l} Py (p°T2E)

k=1 =0

|ﬁp(g)| =

IA

1 m—1 )
‘ D (expl2m p* €] - mp(p”z@‘
m =

m—2+‘1—exp{1i}

p I
=< i, (0" F28)1.
m

Since | p§| = [1p&[1+ X i_s e = esp® — 1 > |plp’, 505 < log, |£|. Hence |p*+2&| > |£]p?|p|*% 15| = |&|p?|§ 1% 1P =

2|¢&(lng/Inp . S5+2 _ m_2+“_EXp{%i}|
p7lE] Letn =p°"“&andb = -

[, < bl ), |p&| = Inl = p?|5|"9/"P

the claim also holds. The proof of the claim is completed.
For any real number t with [t| > 1, the claim shows that, there exist an integer n and real numbers & with & = t,

|&n—1] > 1= |&,| such that, |p§| > [§41] = p?|&1" 9™ and |1, (&) < blft, (§ir1)l.
The second inequality implies |ft, (t)| < b"|{1,(&,)|. While, the first inequality implies

, then we have

2 Ing/1 2+42(Ing/1 Ing/Inp)?
|&nl = p*[En|" VP = 22N R, ((nafin)

1>
> ... > ,02+2(1nq/1np)+~<+2(lnq/lnm”‘1 |z§0|(lnq/lnp)”
> lenp/(lnpflnq) |t|(1" q/Inp)"

— p72 |t|(lnq/ Inp)"
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by using the equality xﬁ =e ! for0 < x < 1. Hence

Inp®> > In|t| - (Ing/Inp)" = In|t| - "N/ 1P/ Inb,
o)

(In p?)nb/ 0/ Inp) > gy |¢ynb/Inng/Inp) pn  yppp 5 1,
Leta = Inb/In(Ing/Inp), thena > 0 and

In(2 + |t|))“

|4, O1A02 + [E))* < b1, (ED)IAn + [E))® = (In ¢/ MRV b4 ()| ( nt|

R In2 + ) \*
< (lnpz)lnb/ln(l"q/l"p)|l/«p($n)| (W , V|t| > 1.

Since

1 a
sup {(M) } < 400, Sup{|ﬂp([)|(]n(2 + |t|))a} < o0,
[{E In |t] s

N¢]

Sunlg{lﬂp(t)l(ln(Z + 1eD)"} < +o0
te
by using the fact |i,(£)| < 1. The theorem is proven. O

Lemma 4.2. Assume |p| admits the minimal polynomial px" — q, where p, q are co-prime and r € N. If E 4 is an orthonormal
basis of L*(11,,), then

Z\ mZ
A—AC{O}U — |
|:’<L2JO m|p|1+kr:|

(A—A)H[Z\mz} £
m|p|

Proof. Since E, is an orthonormal basis of L ((p),s0 A — A C Z,. By Lemmas 2.2 and 2.3, we can choose the smallest

positive integer kg so that (A — A) N :fm’i # (). Hence there exist A1, Ao € A such that
mz+s
M—Ar=——, 1<s<m. (4.1)
m|p|ko
Forany A € A\ {Ag, A1}, Lemma 2.3 shows that A — ; = :T’J;’ with 1 <'s; < m. The definition of ko shows that n; > ko.
Hence
mzy + So mzy + $q mz—+s
_ =AM —Ag= ——
m|p|"o m|p|™ m|p|ko

for some integers 2y, z1, 2, So, S1, S, Mg, Ny With nj > ko and 1 < s; < m. Hence Lemma 2.4 shows r|(n; — ko),j = 0, 1.

Therefore, A = Ao + mT;?":iO"‘ for some k > 0.

Now, for any y € A different from A, the above results show that y has the form: y = Ao + m\%ﬁm and satisfies
s mz+s mzo + So _mz/—i—s’
vV A= m|p|kg+rn o m|p|k0+rk - m|pN

for some integers z’, s’ and N with 1
Z\mZ
A — Y S [UkZO W] Hence

IA

s’ < m(since y — A € Z,). Hence Lemma 2.4 shows r|(N — ko). Therefore,

Z\ mzZ
m|p|k0+kr'

(a-m\ocly

k>0

Noting (4.1), we see that, in order to prove the lemma, we need only prove ky = 1. Assume ko > 1 on the contrary.
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Let A = pko—1(A — Ap). The definition of k; and A shows that E; is also an orthonormal set of LZ(/L,,). For any
A=Ay + m'"ziﬁ € Aleth = pfo~1(A — Ag) and f = (t — Ag)p* ", then (2.1) implies

|p‘k0+rk

ko—1 1 m—1 ) B B
ot —n =] [m > _(exp{2mp(t — A)i}y} o= 1.

k=1 j=0
Hence
ko—1 lmfl ) 2
Dot =P =Y, E = 0)P - ]"[ { > (expl2mp*(t — A)i})}}
reA ieh - M j=0

It is easy to see that there existat € Randa A € A so that [ [[{'[ ij:g] (exp{2m p*(t — A)i}Y]| < 1and f1,(f — 1) # 0.
Hence

D it =P < Y I, E =D <1,
reA reA

where the last inequality follows from Parseval’s identity and the fact that E; is also an orthonormal set of L2( o)
Therefore, E 4 is not an orthonormal basis of L2 (1 ») by using Parseval’s identity. A contradiction, hence ko = 1. The proof
completes. O

Now, we prove Theorem 1.1 by using the conclusions proven in the above part. Assume A is a spectrum of 1 ,. It is easy

to see that A is infinite, so Theorem 1.2 shows that |p| = (g)%, admit a minimal polynomial px" — q such thatp > q > 0

are co-prime and m|p. We first prove r = 1, then prove g = 1.
As an extension of [3, Theorem 4.4], we have the following.

Proposition 4.3. If u, is a spectral measure, then p is a rational.

Proof. By Theorem 1.2, |p| has a minimal polynomial as px" — q. Assume r > 1, on the contrary. Define w  with k € N to
be the self-similar measure satisfying

1 m—1
wrB) = — 3 (o™ (A) = ).
j=0

Let A be a spectrum of 1, use Lemma 4.2, we see that

Z\ mZ
A—A 0} C _—
(A— M\ }_klzol T
Hence
_ Z\ mZ
r+1 A=A 0l C =Z.r. 4.2
pHA = M)\ }_klZlI ol = 2 (4.2)

Since |1 Zj";](exp{an"ti})H <1,N4+r—1>{r+1}U@N)byusingr > 1,s0

m—

Z(exp{znpkti}y'
Z
=0

| (0)] = H
k=1
+oo

m—1

exp{Zn,o"“-lthi})f"

-1
(exp{27 p°ti}y

3

+00

[T

n=1

IA
3=

1 .
— ) (exp{2mp" p' i}y
m

j=0

m—1 ‘

.
Il
<)

3
L

(exp(2m p2ti)Y | - |7t (p' D).

3=

Il
<)

J
Chooseato € Aandaty € R so that |1 Zj”;_ol(exp{anz(to — 20)i}Y| < Tand |fi,r(p'~"(to — Ao))| > O.Since E, is an
orthonormal basis of [? (1 ), S0 the above inequality and Parseval’s identity imply

1= 1, to =P < D I (0" "o —p" "MP = D iy (0 o — ) <1

A€A A€A yepl=TA
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a contradiction, where the last inequality “<” follows from (4.2) which implies that E,1-r, is an orthonormal set of

Lz (,upr )
Therefore, r = 1, the proposition follows. 0O

Lemma 4.4. If Aisaspectrum of u, and |p| = q/p with gcd(q, m) = 1. Then

p*(z\ mz)
A— A 0 _
( )\ }Cg -

Proof. We first prove a weaker conclusion:

k
(A -\ (0} ¢ [ JEND (43)

o mlel
for some positive integer1and Ag € A.
Foranya € Z,, it can be writtenasa = I Tiof for some k € N, £ € Z \ mZ. We can find a nonnegative integer n > 0 so
that £ = p"¢, with ¢; € (Z \ pZ) \ mZ, thena = W with q"¢1 € (Z \ pZ) \ mZ by using the assumption gcd(p, q) = 1
and gcd(q, m) = 1.Forany A € A\ {A¢}, we have A — Ay € Z,. Hence

A\{AO}CA0+ZpCAo+{ :keN,Ee(Z\pZ)\mZ]. (4.4)

l
mipl*

Since (A — A) \ {0} C Z,, let1be the smallest positive integer such that thereisaA; € Asothatl; — ¢ =
for some ¢; € (Z \ pZ) \ mZ.

Forany A € A\ {Ag, A1}, by (4.4), we havek Ao = % € Awithn € N, ¢; € (Z\ pZ) \ mZ. Furthermore, Lemma 2.3
and the above (4.4) imply that there exists — ‘u € Z, withv € (Z \ pZ) \ mZ such that

€z,

m\pl'

Z] Zz _ 3 = v

= A = .
mlpl'  mlp[" mlp["

Letn =t 4+ 1,u = s + 1. The definition of 1 implies that eithert = Oort > 0.1ft = 0, i.e. n = 1, then A — )¢ belongs to
the right hand side of (4.3). Assume t > 0, i.e.n > 1.(4.5) implies

(4.5)

Lpt op?
g ¢

If s > 0, since p, q are co-prime, so p|€4, a contradiction, hence s < 0.Ifs < 0, then the above equality shows pl|gis+ty,
also a contradiction. Hence s = 0, the above equality implies that g*|£;, SO A — Ay = for some ¢35 € (Z \ pZ) \ mZ.
Therefore, (4.3) holds for some 1 € N.

Assume 1 > 1. Note that we have assumed gcd(q, m) = 1. For any distinct A, 1’ € A, the above equality shows

A—n=E "‘pﬁ,y for some integersx,y € Z \ pZandt > s > 0.Since A — A’ € Z,, s0

mI \’

, Px=pT%y) v
S N P (46)

for some v € Z\ mZandn > —1. We can find k > 0 so that v = p*(mu 4+ w’) withp { (mu+ w’)and 1 < w’ < m.
Since |p| = q/p and p, q are co-prime, the second equality of (4.6) shows k 4+ n > s > 0. Noting gcd(q, m) = 1, we see that
q*(mu + w’) belongs to Z \ mZ. Hence

ptmu+w')  q*(mu+w')

/
|p|()h—)x) = m|p|'+”_l - m|p|l+n+k—1

€z,

by using gcd(q,m) = 1,k+n>s>0and1 > 1.
Therefore, p(A — A) € Z, U {0}, i.e. E, 4 is an orthonormal set of L?(1,) when 1 > 1. Since A is a spectrum, Parseval’s
identity implies

. 1 m=l ' N
1= e =nF =Y = (exp(2milot — )| - ity (ot = )P

reA YeEPA j=0
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It is easy to see that there exist t € Rand y € pA so that |+ Zj';](exp{zm(pt — VIV (ot — )12 < |, (ot — y)I2

Hence, by |% Zj'":gl(exp{zm(pt — )Pl < 1, we have

1= I, =P < Y ot = p)* <1,

reA YEPA
a contradiction, where the last inequality follows from the proven fact that E, 4 is an orthonormal set of L?(4,,). Therefore,
1=1.
By (4.3)and (4.6) and 1 = 1, we see that, for any two different A, A’ € A, the v and nin (4.6) satisfy n > 0 and ¢"|v. Hence

A — A’ belongs to the set £ (Z‘\’TZ) with n > 0. The lemma follows. 0O

The following theorem describes the structure of a spectrum.

Theorem 4.5. If Aisa spectrum of u, and |p| = q/p with m|p and gcd(p, q) = 1, then there exist spectrums I', C Z and

integers zi such that A = Uk 0 (Ao + k;r:l" + |p|~' 1) with Ay € A and O € I}. Furthermore, the union is a disjoint union.

Proof. Use the notations in Lemma 4.4. Let

k+ mz
B:{ke{o,1,...,m—1};(xo+ tm )ﬂA;é(()}.

m|p|
Using Lemmas 4.2 and 4.4, there are integers z, for all k € B, such that
mz, + k mz +k k mz
‘ et ’:mmH - ] x0++eA} (47)
mp| m|p| mip| — m|p|

and

mzx+k mzZ
A:U|:<A0+ k +—)0A]
et m|p| m|p]
by noting that Lemma 4.4 implies A — Ag C ml - Furthermore, the above union is disjoint.
Let

k+ mz
rk:zn(mm—wo— - ">, k e B,

then

l<—|—mz B
A= U( o el 1Fk>, Lz

keB
We will prove that Ej; is an orthonormal basis of Lz(pcp) foreachk e BandB={0,1,...,m— 1}.
Forany k € B, let z, £ € I}, be distinct. Let
mz, + k mz mz, + k mé
a=>Xx+ u _—, b=2X+ k —_—
m|p| m|p| m|p| m|p|
Then a, b belongto A,soa—b = r'n"lt:lﬁ for some integers t, s, nsuchthat0 <s < mandn > 0,hencez — ¢ = |[p|(a—b) =
mTZﬁT .Noting |p| = q/p, we see that m|p"~'(mt +s),son > 1byusing0 < s < m.Hencez — £ ¢ Z, by Lemma 2.2. This
means that E, is an orthonormal set of I? (up) for all k € B by Lemma 2.3.
Since
k i i
Zexp JZ) _ 1% i f]z (4.8)
m, Jh=J

foranyji,j> € {0,1,...,m— 1}, s0

ey k j ] m=Im—1m-1 0
f2<exp {27‘( (,Ot ,O)LO_ *) }) = 722 Z exp {27‘[01 —jz) (,Ot_p)uo— 7) l}
k=0 m] m m k=0 j1=0j,=0 m
1 m—1m—1 ) ) ) m—1 (I _], )k.
= — 3 expl2n (i — ) (ot — pho)i} Y exp { 2714,}
m j1=0j2=0 =0 m

.lm—l
=z m=1

J1=0
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for all t. Hence, by I, C Z, we have
2

1 m—1 )
1= I =RIF =) lizg(ot = ph)I* |— Z(exp{h(pt —~ P}y

reA reA
-2
k + mz, 1 md k + mz, TV
=3 5 | (e - K y)‘ T8 (exp [ (e — oo — KE™ ),
keB yely mj:(] m
-2
k 4+ mz, 1 md K\ 1YV
=Y > (ot —pro——= =y ) || |=D_ (exp pt — pho — — )i
keB yely m m]:O m

2

g

1 md K\ Y
—Z exp 2w | pt — pro — — )1
m = m

5 ol (s 2)1)

for all t. Therefore, the above two inequalities are equalltles The first one means that [j is a spectrum of I? (up) for each
Jj € B. The second one means that B = {0, 1, — 1L

While the conclusion 0 € I, follows from the assumptlon Ao+

keB

-5

=1

5 \

mzk+k

€ A.The theorem is proven. [

Repeated application of Theorem 4.4 shows, there exist spectrums Ik, ., containing zero such that

m—1 m—1 m—1
ki +mzy, |k + mzy ky +mzy,, _
A= (0 1 2‘12 "7H+|p| "y (4.9)
NZ0k=0 k=0 m|p| m|p| mlp|
. L . . k k
and the union is a disjoint union, where integers z, .., ki G=1,2,. n) are chosen to satisfy Ao + 1;\:2\‘{1 + ztnn;;’f;kz +
kj+mze, | k; .
——L e Aforj=1,2,
m|p}
First, by (4.9) and Lemma 4.4, we have |p| "I}, .k, S A — A C m\p\ Since |p| = q/p and p, q are co-prime, we see
Fkl ,,,,, kn = qn% and
kn + mzy,,... p"'Z
ATl e o ke © (4.10)
m|p[" m|p|

Second, as we have assumed (4.7) for the case n = 1, repeated application of Theorem 4.4 shows that we can choose

kq+mz ky+mzy, kn+mzy, .k .. . ky+mzy ky+mzy, |
Zk,....k; SO that ! o 1 2 m|p|(5’ Z 4.4 W has the minimal absolute value in the set ]m\pl 1 2 mwg 2 4.t
kn+mzy, K .. .
W + |p| ™" I,.....ky,- This implies that z, 1, = 0 whenever k; = 0.
kq+mzy ky+mzp., i kn+mzy, k
For any given sequence {k;}; of {0, 1,...,m — 1}, denote a, = Ao + —r" e e, then
lan| > |an—1].
Claim. There exists a constant ¢ € N so that |a,| > p"~¢ whenever k, # 0.
. . kn+mzy. . .
Proof of the Claim. If a,, a,_; have the same sign, then |a,,| = |a,_1]| + |"mT1|,;| by using |a,| > |a,_1|. Using (4.10)
. . kn+mzy, .k n—1z . =
implies a, — a,_; = — m‘pl‘n L e pm‘p‘Z is non-zero, so |a,| > m‘ ‘ Otherwise, a,, a,_1 have different 51gns Since
kn+mzpe, .k . . . kntmzi
lap| > lan—1l, so |az| > %|W| Using (4.10) implies — o € pmlpl is non-zero, so |a,| > me The claim

is proven.
Forany A € A\ {Xo}, we can find an integer ng so that |A| < p™~¢, hence the above claim shows that A does not belong

kq+mz ky+mzy, i kn+mzy. k _ .
to the set Ao + 1m|p\<1 + 2 mw; 2 4 W + |p|™"Ik,,...k, for any n > ng with k, # 0. On the other hand,
kq+mzy ky+mzy. i kn+mzp, k _
however, (4.9) shows that & € Ao + " i SR e+ pI ™" Ik, for some n. Hence X can be
. kq+mzy ky+mzy, kn+mzy., k
written as the form Aq + 1 12 L. 2 for some n.

m|p] m|p|? m|p|

Therefore, we have proven the following theorem.
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Theorem 4.6. If ., is a spectral measure with spectrum A and |p| = q/p with gcd(q, m) = 1, then m|p and A has the form

ki 4+ mz ky + mz kn + mz
Az{lo-i- 1 kq 2 12<1,k2 ...+"7k1"""‘“:kj:071,.._,m_1;n>0} (4.11)
m|p| m|p| m|p|"
k k kn+mzy: . kn . . .
such that |Ag + 1;;1:'“ + 2:"2“‘;"‘2 4+ %| > p"~“if k, # 0 and this sequence of absolute values increases as n
increases for any given sequence {k;}; of {0, 1,..., m — 1}.

Proof of Theorem 1.1. Assume p, is a spectral measure with spectrum A. Since m is a prime, Theorem 1.2 implies that
lp| = (q/p)% with ged(p, ) = 1 and m|p. Proposition 4.3 shows that r = 1. m|p and gcd(p, q) = 1imply gcd(m, q) = 1.
Hence Theorems 4.5 and 4.6 applicable. Hence A has the form as (4.11).

Therefore, we need only prove g = 1. Assume, on the contrary, thatq > 1.
Use Theorem 4.6, we define

ki 4+ mz ky + mz kn + mz
An={)»0+ 1 kq 2 ’2<1,k2 r”‘lvw"":kj=0’1’“_’m_1} (4.12)
m|p| m|p| m|p|"
forn =1, 2,....Then Theorem 4.6 implies
re A\ A, = |A| =p"TITEL (4.13)
Using Theorems 4.5 and 4.6, we see that % € |p|7'Z forn > 1.Hence q"!|(k, + Mz, ... k,)- Since we have
proven |p| = q/p and m|p, so
kn, + mz
pl ke oy oy < <. (4.14)
m|p|"

(S5l )] - P LR ela-n(-3)]

J1=0j2=0 kn=0

1 I CEDLP
= — Zexp{Zn(]] — jo)ti} Z exp {2mr ——i
m [ =oj,=0 kn=0 m
1 m=l
= Z m=
j1=0
for all t. Hence, by (2.1), Theorem 4.6 and (4.14), we have

2
[ Z(eXP{an jt — x)l})}
n m—1
EORLT {an‘j (r —y - w) i}
M= mipl"

> S

yE€Ay_1 kn=0 t=1
exp{27 p'j(t — y)}
j=0

reAL £=1

m—1n—1 1
> 2115

Y €An_1 kn=0 =1

n-l 1 m—1 1 m—1
= > [1|z D texp2npticc = yip)| -|— p {2711 (p"(t -v) - —) z}
yeAp_1 £=1 m j=0 m ‘=0
n—1 1 m—1 2
= > [11=D (exp2nptitc — v)ip)
yéan t=1|M j=0

foralltandn > 1.
Repeatedly using the above equality gives

NIE

rEAp £=1

2

e

k1=0

2

Z exp{27 p'ji(t — M)} =1. (4.15)

ki +mz
N
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Let N be an integer with N > a~!, where a is defined in Theorem 4.1. Let

QM) = ) IRt —WP, el

)»EA[N
Then
Qe1(t) — Qe(t)

D =P
€A N \AN
2

e+ N
i (P (E = )

2.l

AN \AN  s=1

(e+N 1 m=1
G > 11 [m O(exp{ansj(r—A)i})

1 m—1
[ > (exp{2m pli(t A)i})}
m =5

(0@ + [p Y (£ — a2

=<
AN AN s=1 J= i
€OV |y mod 712 .
<G — exp{2m p%j(t — M)i  (In(2 + |p DN ¥ —e=11yy—2a
=G X T || Dtewtonstic = nin || - n@-+ 155

AGA(Z_H)N \A[N s=1 Jj= n

I
T
N
—]

m—1 2
= Z(exp 27 pi(t — A)z})] (In@ + [p D pt" —e 1)) 2

forany t € (—p~1, p~¢~1), where the first equality follows from (2.1), the first inequality follows from Theorem 4.1, the
second inequality follows from (4.13), the last equality follows from (4.15).
By (2.1), we have

e+ )V 2
am =Y T[] { Z(exp{mm —mz})} (0 (£ = )P
AEA[N s=1 j=0
N | me 2
< { Z (exp{27 p%j(t — A)i})}
reAN  s=1 m- =
Therefore,
1= Qi (6) = [1— QO[T — C2(n@ + [p " p™=e=T) =2,
and so
14
1= Quii(6) = [1— QO T[11 = Gan@ + [V P 1)), ve > n. (4.16)

The assumption N > 1 shows that 3"p° | k™2 < 400, Hence [],_,[1 — k~2"] converges to a positive number. Since

o @A ety (@ )M Infp] + Y Inp 2

im —n = lim N = (Ingq) >0
{——+00 V2 a {——+00 Y2

Hence, we can find £o > 0 so that

+00

N N_._ _
[[11 - Gan@+ 1p* " P ") =ao € (0, 1).
k=¢g

Therefore, by noting that A is a spectrum of 1, (4.16) shows
_1_ W = T _ _
0=1-3% If,(t=n = lim [1-Q41(0)] = aol1 - Qq(H)] = 0
reA
forany t € (—p~°~!, p~°1). Hence Qg (t) = 1forallt € (—p~¢~', p~¢1). Since Qq, (t) can be extended to an analytic
function on the complex plane, so Q. (t) = 1for all t € R. Hence Azg’ is a spectrum. It is obviously impossible, as Azg’ isa

finite set.
Therefore, ¢ = 1, so Theorem 1.1 is proven.
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