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a b s t r a c t

Asymptotic formulas for the positive moments of rank and crank of partitions were
obtained by K. Bringmann and K. Mahlburg recently. Motivated by their works, in this
paper, we prove asymptotic formulas for the k-ranks and their cumulation functions.
Asymptotic inequalities between these combinatorial objects are also discovered. In
particular, we show that, for fixed integer l and sufficiently large N ,

M(l,N) ∼ N (l,N)

and

M(l,N) < N (l,N),

whereM(l,N) (resp.N (l,N)) denotes the number partitions ofN with crank (resp. rank) l.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The ranks and cranks of partitions provide combinatorial explanations for Ramanujan’s famous congruences. Recently,
A. O. L. Atkin and F. G. Garvan [4] studied the even moments of rank and crank which were modified and generalized by
Andrews, Chan and Kim in [2]. Let j be a positive integer. Then the (modified) j-thmoments of the rank and crank are defined
by, respectively,

N j(N) =

∞
r=1

r jN (r,N),

Mj(N) =

∞
r=1

r jM(r,N),

where M(r,N) (resp. N (r,N)) denotes the number partitions of N with crank (resp. rank) r . In [18], Garvan proved that the
even moments of crank were always larger than the ranks which were first conjectured also by Garvan [17]. Andrews, Chan
and Kim [2] established these inequalities for all positivemoments. K. Bringmann, K.Mahlburg and R. C. Rhoades [10] proved
asymptotic formulas for the evenmoments and established these inequalities asymptotically. In [11], also by those authors,
a strengthening asymptotic result for the even moments was obtained. Asymptotic results for the positive moments were
first proved by Bringmann and Mahlburg in [9].
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On the other hand, in [16], Garvan studied a partition statistic called k-rank which generalized the rank and crank. For
an integer l, he defined Nk(l,N) by

N≥0

Nk(l,N)qN =
1

(q; q)∞

∞
n=1

(−1)n−1qn((2k−1)n−1)/2+|l|n(1 − qn), (1.1)

where for n ∈ N0


{∞} we adopt the standard q-factorial notation (a)n = (a; q)n :=
n−1

j=0 (1 − aqj). When k = 1
(resp. k = 2), this is the generating function for the crank (resp. rank). For k ≥ 3, the interpretation of Nk(l,N) was also
discussed in [16]. The even k-rank moments and the inequalities between themwere also studied by A. Dixit and A. J. Yee in
[13]. Moreover, with a similar method by Bringmann, Mahlburg and Rhoades in [11], M.Waldherr [21] obtained asymptotic
formulas for the even k-rank moments. In this article, with a similar method used by Bringmann and Mahlburg in [9], we
study the asymptotic properties of the k-ranks and their cumulation functionswhich will be defined later.

We begin with an interesting phenomenon discussed by K. Bringmann and K. Mahlburg in the concluding remarks of [8].
Following their notations, for a nonnegative integer l, we define the crank and rank cumulation functions by

M(l,N) :=


r≤−l

M(r,N) =


r≥l

M(r,N) (by symmetry)

and

N (l,N) :=


r≤−l

N (r,N) =


r≥l

N (r,N) (by symmetry).

Then Bringmann and Mahlburg tested with MAPLE for 1 ≤ N ≤ 100 and found that, for l > 0,

N (l,N) ≤ M(l,N) ≤ N (l − 1,N).

By definition, we have N (l − 1,N) = N (l − 1,N) − N (l,N). Hence, the above inequalities give

0 ≤ M(l,N) − N (l,N) ≤ N (l − 1,N), (1.2)

for l ≥ 1 and 1 ≤ N ≤ 100. Noting that p(N) = M(0,N) + M(1,N) = N (0,N) + N (1,N), by (1.2), we find that

0 ≤ N (0,N) − M(0,N) ≤ N (0,N), (1.3)

for l ≥ 1 and 1 ≤ N ≤ 100.
In our paper, we obtained generalizations of asymptotic versions of (1.2) and (1.3) for k-ranks and their cumulation

functions. Generalizing the definitions by Bringmann and Mahlburg, we define the k-rank cumulation functions by

N k(l,N) :=


r≥l

Nk(r,N).

By (1.1), when l ≥ 0, we have the following generating function for N k(l,N).
N≥0

N k(l,N)qN =
1

(q; q)∞

∞
n=1

(−1)n−1qn((2k−1)n−1)/2+ln. (1.4)

Remark. Equality (1.4) with k = 1 (resp. k = 2) can be deduced from [15, Theorem 7.19] (resp. [5, Eq. (2.12)]).

For convenience, let

Sk,l(q) :=

∞
n=1

(−1)n−1qn((2k−1)n−1)/2+ln

and

Fk,l(q) :=
1

(q; q)∞
Sk,l(q).

Then we have


N≥0 N k(l,N)qN = Fk,l(q). To generalize (1.2) and (1.3), we first estimate the magnitude of the cumulation
functions N k(l,N) as follows.

Theorem 1.1. Suppose that k ∈ N+ and l ∈ N.
(i) As N → ∞, we have

N k(l,N) ∼
1

8
√
3N

e2π


N
6 ∼

1
2
p(N), (1.5)

where p(N) is the number of partitions of N.
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(ii) As N → ∞, we have

N k(l,N) − N k+1(l,N) ∼
(2l − 1)π2

384
√
3N2

e2π


N
6 ∼

(2l − 1)π2

96N
p(N) (1.6)

The following corollary follows immediately from Theorem 1.1.

Corollary 1.2. For fixed k ∈ N+ and sufficiently large N, we have

N k(0,N) < N k+1(0,N)

and for l ≥ 1,

N k(l,N) > N k+1(l,N).

In particular, for sufficiently large N, both of the first inequalities of (1.2) and (1.3) are true.

Special case of Corollary 1.2 with k = 1 can also be deduced from [3, Theorem 1.3]. Indeed, the unconditional inequality
for all N (but ‘‘>’’ should be replaced by ‘‘≥’’) is equivalent to [3, Conjecture 1.1] (see [3, Theorem 1.2]) which was proved
by William Y.C. Chen, Kathy Q. Ji and Wenston J. T. Zang in [12].

The proof of Theorem 1.1 depends on the following representation of the main terms in the asymptotic expansion of
N k(l,N) in terms of the modified Bessel functions.

Theorem 1.3. As N → ∞, we have

N k(l,N) =
π

2
√
2

×


1

√
6

3/2

N−3/4I−3/2


π


2N
3


−

π2

√
2


l
4

−
5
48


×


1

√
6

5/2

N−5/4I−5/2


π


2N
3



−
π3ξk,l
√
2


1

√
6

7/2

N−7/4I−7/2


π


2N
3


+ O


N−5/2e2π


N
6


, (1.7)

where ξk,l =
(2l−1)(2k−1)

32 −
l
96 +

11
2304 and Iν(x) is the modified Bessel function.

Our proof of Theorem1.3 ismotivated by thework in [9] and depends on a variant of theHardy–Ramanujan CircleMethod
due to E. Wright. We will discuss this in Section 4.

To find generalizations of asymptotic versions of the second inequalities in (1.2) and (1.3), we need to establish an
asymptotic formula for Nk(l,N). Before stating our results, we recall an asymptotic formula for the cranks of partitions
conjectured by F. J. Dyson [14, Eq. (1.24)] (we modify Dyson’s notation so that the formula agrees with our previous
definitions). As N → ∞,

M(l,N) ∼
1
4
βsech2


1
2
βl

p(N), (1.8)

where

β =


π2

6N

1/2

.

Noting that sech x = 1 + O(x) (as x → 0), Eq. (1.8) gives

M(l,N) ∼
π

4
√
6N

p(N) (as N → ∞). (1.9)

Although we have no idea to prove (1.8), a generalization of (1.9) is obtained with the aid of Theorem 1.3.

Theorem 1.4. Suppose that k ∈ N+ and l ∈ N.

(i) As N → ∞, we have

Nk(l,N) ∼
π

48
√
2N3/2

e2π


N
6 ∼

π

4
√
6N

p(N). (1.10)

In particular, Eq. (1.9) is true.
(ii) As N → ∞, we have

Nk(l,N) − Nk+1(l,N) ∼
π2

192
√
3N2

e2π


N
6 ∼ −

π2

48N
p(N). (1.11)
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Now, by (1.6) and (1.10), we see that, for fixed k ∈ N+, l ∈ N, and sufficiently large N ,N k(l,N) − N k+1(l,N)
 < Nk(l,N),

which generalizes both of the second inequalities of (1.2) and (1.3). As a corollary of Theorem 1.4, we give some interesting
inequalities between the k-ranks.

Corollary 1.5. For fixed k ∈ N+, l ∈ N, and sufficiently large N, we have

Nk(l,N) < Nk+1(l,N).

In particular, we have

M(l,N) < N (l,N). (1.12)

It was conjectured by S. J. Kaavya in [20] that M(0,N) ≤ N (0,N) for all positive integers N . Thus our inequality (1.12)
implies Kaavya’s conjecture asymptotically.

The paper is organized as follows. We prove Theorems 1.1 and 1.4 in Section 2. In Section 3 we study the asymptotic
behavior of Sk,l(q) and Fk,l(q)when q is near their singularities. We need these whenwe apply the CircleMethod in Section 4
wherewe complete the proof of Theorem 1.3. In the Appendix, we discuss the asymptotic expansions of certain partial theta
functions and prove a result on Sk,l(q).

2. Proof of Theorems 1.1 and 1.4

In this section, we apply Theorem 1.3 to prove Theorems 1.1 and 1.4. First, we prove Theorem 1.1.

Proof of Theorem 1.1. By [1, Eq (4.12.7)], we know that, as x → ∞ (which holds for any index ν),

Iν(x) =
ex

√
2πx

+ O


ex

x
3
2


.

Replacing x by π


2N
3 , the above equation gives

Iν


π


2N
3


=

31/4N−1/4e2π


N
6

23/4π
+ O


N−3/4e2π


N
6


(as N → ∞). (2.1)

Substituting the above equation into (1.7), we find that

N k(l,N) =
1

8
√
3N

e2π


N
6 + O


N−3/2e2π


N
6


.

Recalling the famous asymptotic formula for p(N) by G. H. Hardy and S. Ramanujan [19]:

p(N) ∼
1

4
√
3N

e2π


N
6 (as N → ∞),

we complete the proof of (1.5).
Next, we prove (1.6). Applying Theorem 1.3, we find that

N k(l,N) − N k+1(l,N) = (ξk+1,l − ξk,l)
π3

√
2


1

√
6

7/2

N−7/4I−7/2


π


2N
3


+ O


N−5/2e2π


N
6


.

Noting that

ξk+1,l − ξk,l =
2l − 1
16

and

N−7/4I−7/2


π


2N
3


=

31/4N−2e2π


N
6

23/4π
+ O


N−5/2e2π


N
6


,

we have

N k(l,N) − N k+1(l,N) =
(2l − 1)π2

384
√
3N2

e2π


N
6 + O


N−5/2e2π


N
6


.

This completes the proof of (1.6). �
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Now, we prove Theorem 1.4.

Proof of Theorem 1.4. Since Nk(l,N) = N k(l,N) − N k(l + 1,N), by Theorem 1.3 and Eq. (2.1), we have

Nk(l,N) =
π2

4
√
2


1

√
6

5/2

N−5/4I−5/2


π


2N
3


+ O


N−2e2π


N
6


=

π

48
√
2N3/2

e2π


N
6 + O


N−2e2π


N
6


.

Thus Eq. (1.10) follows.
Next, we prove (1.11). We have

Nk(l,N) − Nk+1(l,N) =

N k(l,N) − N k(l + 1,N)


−

N k+1(l,N) − N k+1(l + 1,N)


=

N k(l,N) − N k+1(l,N)


−

N k(l + 1,N) − N k+1(l + 1,N)


∼

(2l − 1)π2

384
√
3N2

e2π


N
6 −

(2l + 1)π2

384
√
3N2

e2π


N
6 (by Eq. (1.6))

= −
π2

192
√
3N2

e2π


N
6 .

This completes the proof of Theorem 1.4. �

3. Asymptotic behavior of generating functions

In this section,we study the asymptotic behavior of the generating function Fk,l(q)when q is near its essential singularities
on the unit circle. We set q = e2π iτ , where τ = x + iy and y > 0. Since the asymptotic behavior is largely controlled by the
exponential singularities of (q; q)−1

∞
, our dominant pole is at q = 1. The main task is to understand the asymptotic behavior

of the partial theta function Sk,l(q) near this point.

3.1. Asymptotic behavior of Fk,l(q) near the dominant pole

First, we need the following lemma on the asymptotic behavior of Sk,l(q) near q = 1.

Proposition 3.1. For y =
1

2
√
6N

and |x| ≤ y, as N → ∞, we have

Sk,l(q) =
1
2

+
2l − 1

4
(π iτ) −

(2l − 1)(2k − 1)
8

(π iτ)2 + ζ ∗τ 3
+ O


N−7/4 , (3.1)

where ζ ∗ is a constant (which depends on k and l).

We will prove the above proposition in the Appendix. where a more general result on asymptotic expansions of partial
theta functions will be discussed. The constant ζ ∗ can be replaced by an explicit formula with k and l. We do not do this
because the asymptotic contribution of the term containing ζ ∗ will be absorbed into the error term. However, we emphasize
that, for convenience, in the rest of this article, we will repeatedly use ζ ∗ to denote constants even though it represents
different values in different equations.

Corollary 3.2. For y =
1

2
√
6N

and |x| ≤ y, as N → ∞, we have

Fk,l(q) =
1

2
√
2π

(−2π iτ)1/2e
π i
12τ −

1
√
2π


2l − 1

8
+

1
48


(−2π iτ)3/2e

π i
12τ

−
ξk,l

√
2π

(−2π iτ)5/2e
π i
12τ + ζ ∗(−2π iτ)7/2e

π i
12τ + O


N−2eπ


N
6


, (3.2)

where ξk,l =
(2l−1)(2k−1)

32 −
l
96 +

11
2304 and we take the principal branches of

√
τ .

Proof. By the transformation formula of η(τ), η(− 1
τ
) =

√
−iτη(τ), or following directly from [9, Eq. (3.8)], as N → ∞, we

have

1
(q; q)∞

=
q

1
24

√
−iτ

η

−

1
τ

 =
√

−iτe
2π i
24 (τ+1/τ)


1 + O


e−2π

√
6N


=
√

−iτe
π i
12τ


1 +

2π iτ
24

+
(2π iτ)2

1152
+

(2π iτ)3

3!243 + O

N−2 . (3.3)
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Multiplying the above equation on both sides of (3.1), we find that

Fk,l(q) =


√

−iτe
π i
12τ


1 +

2π iτ
24

+
(2π iτ)2

1152
+

(2π iτ)3

3!243 + O

N−2

×


1
2

+
2l − 1

4
(π iτ) −

(2l − 1)(2k − 1)
8

(π iτ)2 + ζ ∗τ 3
+ O


N−7/4 .

Expanding the above equation and noting that
√

−iτe
π i
12τ = O(N−1/4eπ


N
6 ), we get (3.2). �

3.2. Bounds away from the dominant pole

First, we consider the asymptotic behavior of Sk,l(q) when q is not near 1.

Proposition 3.3. If y =
1

2
√
6N

, then, as N → ∞, we have |Sk,l(q)| = O
√

N

.

Proof. For q = e2π iτ , where τ = x +
1

2
√
6N

i, as N → ∞, we have

|Sk,l(q)| =

 ∞
n=1

(−1)n−1qn((2k−1)n−1)/2+ln


≤

∞
n=1

|qn((2k−1)n−1)/2+ln
|

≤

∞
n=1

|qn| ≤
1

1 − |q|
=

1

1 − e
−

π√
6N

= O
√

N


. �

By the above proposition, we get a bound for Fk,l(q) in the region away from 1. This bound is exponentially smaller than
the asymptotic discussed in Section 3.1.

Corollary 3.4. If y =
1

2
√
6N

and y ≤ |x| ≤
1
2 , then, as N → ∞, we have

|Fk,l(q)| = O


√
Ne

π
2


N
6


. (3.4)

Proof. By Eq. (3.3), as N → ∞, we have 1
(q; q)∞

 ∼


|τ |

e 2π i
24τ

 ≤ e
πy

12(x2+y2) ≤ e
π
24y = e

π
2


N
6 . (3.5)

This together with Proposition 3.3 implies (3.4). �

4. The circle method

In this section, by an argument analogous to that in [9, Section 4], we apply the Circle Method to complete the proof of
Theorem 1.3. By Cauchy’s residue theorem, we have the following representation of the coefficients of Fk,l(q).

N k(l,N) =
1

2π i


C

Fk,l(q)
qN+1

dq =

 1
2

−
1
2

Fk,l

e
−

π√
6N

+2π ix

eπ


N
6 −2π iNxdx, (4.1)

where the contour is the counterclockwise traversal of the circle C :=


|q| = e

−
π√
6N


. We separate the integral in (4.1) into

two ranges, writing N k(l,N) = I ′ + I ′′, with

I ′ :=


|x|≤ 1

2
√
6N

Fk,l

e
−

π√
6N

+2π ix

eπ


N
6 −2π iNxdx

and

I ′′ :=


|x|≤ 1

2
√
6N

≤
1
2

Fk,l

e
−

π√
6N

+2π ix

eπ


N
6 −2π iNxdx.

Wewill show later that themain term in the asymptotic expansion ofN k(l,N) in Theorem 1.3 comes only from I ′, however,
the integral I ′′ will be absorbed into the error term.
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4.1. Main arc

We introduce the auxiliary function Ps which is originally due to Wright before examining the integral I ′. For s ∈ R, we
define

Ps :=
1

2π i

 1+i

1−i
vseπ


N
6 (v+

1
v )dv.

Then, by [9, Lemma 4.2], as N → ∞, we have

Ps − I−s−1


π


2N
3


= O


e

3π
2


N
6


.

We evaluate I ′ by the modified Bessel functions up to an allowable error.

Proposition 4.1. As N → ∞, we have

I ′ =
π

2
√
2

×


1

√
6

3/2

N−3/4I−3/2


π


2N
3


−

π2

√
2


2l − 1

8
+

1
48


×


1

√
6

5/2

N−5/4I−5/2


π


2N
3



−
π3ξk,l
√
2


1

√
6

7/2

N−7/4I−7/2


π


2N
3


+ O


N−5/2e2π


N
6


.

Proof. First, writing τ =
1

2
√
6N

(u + i), i.e., replacing x by u
2
√
6N

we find that

I ′ =


|x|≤ 1

2
√
6N

Fk,l

e
−

π√
6N

+2π ix

eπ


N
6 −2π iNxdx

=
1

2
√
6N

 1

−1
Fk,l

e

π√
6N

(−1+iu)

eπ


N
6 (1−iu)du. (4.2)

Next, replacing τ by 1
2
√
6N

(u + i) in (3.2) and noting that −2π iτ =
π(1−iu)

√
6N

and e
π i
12τ = eπ


N
6


1

1−iu


, we have

Fk,l

e

π√
6N

(−1+iu)


=
1

2
√
2π


π(1 − iu)

√
6N

1/2

eπ


N
6


1

1−iu


−

1
√
2π


2l − 1

8
+

1
48


π(1 − iu)

√
6N

3/2

× eπ


N
6


1

1−iu


−

ξk,l
√
2π


π(1 − iu)

√
6N

5/2

eπ


N
6


1

1−iu



+ ζ ∗


π(1 − iu)

√
6N

7/2

eπ


N
6


1

1−iu


+ O


N−2eπ


N
6


(as N → ∞). (4.3)

Substituting (4.3) into (4.2), we get

I ′ =
1

2
√
2π

×
1

2
√
6N

 1

−1


π(1 − iu)

√
6N

1/2

eπ


N
6


1

1−iu +(1−iu)

du

−
1

√
2π


2l − 1

8
+

1
48


×

1

2
√
6N

 1

−1


π(1 − iu)

√
6N

3/2

eπ


N
6


1

1−iu +(1−iu)

du

−
ξk,l

√
2π

1

2
√
6N

 1

−1


π(1 − iu)

√
6N

5/2

eπ


N
6


1

1−iu +(1−iu)

du

+ ζ ∗
1

2
√
6N

 1

−1


π(1 − iu)

√
6N

7/2

eπ


N
6


1

1−iu +(1−iu)

du

+
1

2
√
6N

 1

−1
O

N−2eπ


N
6


eπ


N
6 (1−iu)du (as N → ∞).
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Making the change of variables u = i(v − 1), we find that

1

2
√
6N

 1

−1


π(1 − iu)

√
6N

s

eπ


N
6


1

1−iu +(1−iu)

du

=
i

2
√
6N

 1−i

1+i


πv

√
6N

s

eπ


N
6 (v+

1
v )dv

=
−i

2
√
6N


π

√
6N

s  1+i

1−i
vseπ


N
6 (v+

1
v )dv

=


π

√
6N

s+1

Ps

=


π

√
6N

s+1

I−s−1


π


2N
3


+ O


e

3π
2


N
6


(as N → ∞).

From this, we see that

I ′ =
1

2
√
2π

×


π

√
6N

3/2

I−3/2


π


2N
3



−
1

√
2π


2l − 1

8
+

1
48


×


π

√
6N

5/2

I−5/2


π


2N
3



−
ξk,l

√
2π


π

√
6N

7/2

I−7/2


π


2N
3



+ ζ ∗


π

√
6N

9/2

I−9/2


π


2N
3


+ O


N−5/2e2π


N
6


(as N → ∞). (4.4)

Recall Eq. (2.1):

Iν


π


2N
3


=

31/4N−1/4e2π


N
6

23/4π
+ O


N−3/4e2π


N
6


(as N → ∞), (4.5)

setting ν = −9/2, we find that

ζ ∗


π

√
6N

9/2

I−9/2


π


2N
3


= O


N−5/2e2π


N
6


(as N → ∞).

Substituting the above equation into (4.4) and simplifying, we complete our proof of the proposition. �

4.2. Error arc

We give a bound for I ′′ which is exponentially smaller than the error term of I ′.

Proposition 4.2. As N → ∞,

I ′′ = O


√
Ne

3π
2


N
6


.

Proof. By Corollary 3.4, as N → ∞, we have

|I ′′| =




|x|≤ 1
2
√
6N

≤
1
2

Fk,l

e
−

π√
6N

+2π ix

eπ


N
6 −2π iNxdx


≤

√
Ne

π
2


N
6




|x|≤ 1
2
√
6N

≤
1
2

eπ


N
6 −2π iNxdx


= O


√
Ne

3π
2


N
6


. �
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4.3. Proof of Theorem 1.3

Invoking Propositions 4.1 and 4.2 in Eq. (4.1), we find that, as N → ∞,

N k(l,N) = I ′ + I ′′

=
π

2
√
2

×


1

√
6

3/2

N−3/4I−3/2


π


2N
3


−

π2

√
2


l
4

−
5
48


×


1

√
6

5/2

N−5/4I−5/2


π


2N
3



−
π3ξk,l
√
2


1

√
6

7/2

N−7/4I−7/2


π


2N
3


+ O


N−5/2e2π


N
6


.

This completes the proof of Theorem 1.3.
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Appendix. Asymptotic expansions of partial theta function

In this section, we establish an asymptotic expansion of a class of partial theta functions which generalizes a result in [7].
As its application, we will prove Proposition 3.1.

First, we recall an asymptotic expansion by S. Ramanujan [6, p. 545],

2
∞
n=0

(−1)n

1 − t
1 + t

n2+n

∼ 1 + t + t2 + 2t3 + 5t5 + · · · ,

where t → 0+. Recently, this result was generalized by B. C. Berndt and B. Kim in [7]. For real numbers b, β and γ > 0, we
define

F1(θ) := 2
∞
n=0

(−1)ne−(n2+bn)θ , (A.1)

where θ = γ + βi. Note that we abandon the notation ‘‘F1(q)’’ in [7, Eq. (2.4)] to avoid misunderstanding. Then, by
[7, Theorem 1.1] or [7, Eq. (2.9)], for any non-negative integerM and β = 0, i.e., θ > 0, as θ → 0+, we have

F1(θ) = e(2b−1)θ/4
M

n=0

E2nθn

22n(2n)!
H2n


(b − 1)

√
θ

2


+ O(θM+1/2), (A.2)

where En, n ≥ 0, is the n-th Euler number, and Hn(x), n ≥ 0, is the n-th Hermite polynomial.
By an argument analogous to that in [7], we prove a generalization of (A.2).

Theorem A.1. For θ = γ + βi satisfying |β| ≤ γ and any non-negative integer M, as γ → 0+, we have

F1(θ) = e(2b−1)θ/4
M

n=0

E2nθn

22n(2n)!
H2n


(b − 1)

√
θ

2


+ O(|θ |

M+1/2), (A.3)

where we take the principal branches of
√

θ .

To prove Theorem A.1, we need two lemmas.

Lemma A.2. Let γ > 0 and β, a, b be real. If Hn(x), n ≥ 0, denotes the n-th Hermite polynomial, then, for θ = γ +βi satisfying
|β| ≤ γ , we have

1
√

πθ


∞+ai

−∞+ai
z2nebize−z2/θdz =

(−1)nθn

22n
e−b2θ/4H2n


b
√

θ

2


, (A.4)

where we take the principal branches of
√

θ and
√

πθ .
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Proof. Let D := {θ ∈ C| θ = γ + βi with γ > 0 and |β| ≤ γ }. First, we examine the integral on the left side of (A.4) with
a = 0 and θ ∈ D. Let T be any non-negative real number. Since 1

θ
= (γ − βi)/|θ |

2, we have
|z|≥T

z2nebize−z2/θdz
 ≤


|z|≥T

z2n
e−z2/θ

 dz
=


|z|≥T

z2n
e−z2(γ−βi)/|θ |

2
 dz

=


|z|≥T

z2ne−z2γ /|θ |
2
dz

=


|θ |
√

γ

2n+1 
|u|≥

√
γ T

|θ |

u2ne−u2du

u =

√
γ z

|θ |


. (A.5)

By |β| ≤ γ , we know that, for all θ ∈ D, |θ |
2

≤ 2γ 2. Hence, we have |θ |
√

γ
≤ 2

1
4
√

|θ |. This together with (A.5) implies
|z|≥T

z2nebize−z2/θdz
 ≤ 2

2n+1
4 |θ |

n+1/2


|u|≥
√

γ T
|θ |

u2ne−u2du. (A.6)

Since γ > 0 and


∞

−∞
u2ne−u2du converges for all non-negative integers n, ∀ε > 0, there exists a positive number T0, such

that, for all T ≥ T0,
|u|≥

√
γ T

|θ |

u2ne−u2du ≤
ε

2
2n+1

4 Cn+1/2
,

where C is any fixed positive real number. By (A.6), ∀θ ∈ Dwith |θ | ≤ C and T ≥ T0, we have
|z|≥T

z2nebize−z2/θdz
 ≤ 2

2n+1
4 |θ |

n+1/2


|u|≥
√

γ T
|θ |

u2ne−u2du

≤ 2
2n+1

4 |θ |
n+1/2 ε

2
2n+1

4 Cn+1/2

≤ ε.

Now, we see that


∞

−∞
z2nebize−z2/θdz converges uniformly for all θ in any compact subset of D, thus defines a function of θ

which is continuous on D and analytic at all of its interior points.
Next, we show that the integral on the left side of (A.4) is independent of the parameter a. For L ≥ |a|, we consider now

IL =


CL

z2nebize−z2/θdz,

where the contour CL is the positive oriented rectangle with vertices ±L and ±L + ai. Since the integrand is an analytic
function of z on the whole complex plane, by the Cauchy integral theorem, we have IL = 0. For the integral on the two
vertical edges of CL, we have the following estimate, a

0
(±L + yi)2nebi(±L+yi)e−(±L+yi)2/θdy

 ≤


|a|

0

(±L + yi)2nebi(±L+yi)e−(±L+yi)2/θ
 dy

≤ eb|a|


|a|

0
(L2 + y2)n

e−(±L+yi)2(γ−βi)/|θ |
2
 dy

≤ eb|a|−L2γ /|θ |
2


|a|

0
(L2 + y2)ne(y2γ+2Ly|β|)/|θ |

2
dy

≤ (L2 + |a|2)neb|a|+(|a|2−L2)γ /|θ |
2


|a|

0
e2Ly/|θ |dy (by |β| ≤ |θ |)

≤ (L2 + |a|2)neb|a|+(|a|2−L2)γ /|θ |
2
|a|e2|a|L/|θ |

≤ 2neb|a|+|a|2γ /|θ |
2
L2n+1e2|a|L/|θ |−L2γ /|θ |

2
(by |a| ≤ L) . (A.7)
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Since γ > 0, we have L2n+1e2|a|L/|θ |−L2γ /|θ |
2

= O(e−L), as L → ∞. Hence, we see that, as L → ∞, Eq. (A.7) together with
IL = 0 implies that

∞+ai

−∞+ai
z2nebize−z2/θdz =


∞

−∞

z2nebize−z2/θdz,

for any real number a.
From the above proof, we know that the integral on the left side of (A.4) defines a function of θ which is continuous

on D and analytic at all of its interior points. Since 1
√

πθ
is analytic on D, the function on the left side of (A.4) has the same

analytic property as the integral. On the other hand, it is clear that the function on the right side of (A.4) is analytic on the
complex plane. Thus, by analytic continuation, it suffices to show that (A.4) is true for all real positive θ which is stated in
[7, Lemma 2.2]. �

Lemma A.3. Let γ > 0 and β, a, b be real. Then, for θ = γ + βi satisfying |β| ≤ γ , we have

1
√

πθ


∞+ai

−∞+ai
e−z2/θ+(2n+b)izdz = e−(n+b/2)2θ (A.8)

where we take the principal branches of
√

θ and
√

πθ .
Proof. By an argument analogous to that in the proof of Lemma A.2, we can show that the function (independent of a) on
the left side of (A.8) is continuous at any θ in D and analytic at all of its interior points. Clearly, e−(n+b/2)2θ is analytic on
the whole complex plane. Then, by analytic continuation, it suffices to show that (A.8) is true for all real positive θ which is
stated in [7, Lemma 2.4]. �

Nowwe are in a position to prove Theorem A.1. We follow the steps in the proof [7, Theorem 1.1] except the estimate of
the error term RM .
Proof of Theorem A.1. Write

F1(θ) = 2
∞
n=0

(−1)ne−(n2+bn)θ
= 2eb

2θ/4
∞
n=0

(−1)ne−(n+b/2)2θ (A.9)

and let G1(θ) := 2


∞

n=0(−1)ne−(n+b/2)2θ . By (A.8) (we require a > 0), we have

e−(n+b/2)2θ
=

1
√

πθ


∞+ai

−∞+ai
e−z2/θ+(2n+b)izdz.

Multiply both sides of the above equation by 2(−1)n and sum on n, 0 ≤ n < ∞, to obtain

G1(θ) =
2

√
πθ


∞+ai

−∞+ai
e−z2/θ

∞
n=0

(−1)ne(2n+b)izdz

=
1

√
πθ


∞+ai

−∞+ai
e−z2/θ+(b−1)iz 1

cos z
dz, (A.10)

wherewe interchanged the order of summation and integration by using the absolute and uniform convergence of the series
on the path of integration, as a > 0. Using the generating function

1
cos x

= sec x =

∞
n=0

(−1)nE2n
(2n)!

x2n, |x| < π/2,

for the Euler numbers E2n, by (A.10), we write

G1(θ) =
1

√
πθ

M
n=0

(−1)nE2n
(2n)!


∞+ai

−∞+ai
e−z2/θ+(b−1)izz2ndz + RM , (A.11)

where

RM =
1

√
πθ


∞+ai

−∞+ai
e−z2/θ+(b−1)iz


sec z −

M
n=0

(−1)nE2n
(2n)!

z2n

dz. (A.12)

Multiplying by eb
2θ/4 on both sides and invoking equation (A.4), Eq. (A.11) gives

F1(θ) = e(2b−1)θ/4
M

n=0

E2nθn

22n(2n)!
H2n


(b − 1)

√
θ

2


+ RM .
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We need to examine the error term RM . If 0 < a ≤ 1, for all points z on the contour (−∞ + ai, ∞ + ai), by [6, Eq. (16.3)],
there exists a positive constant C2 which is dependent only on N but not on z or a, such that a

z2M+2


sec z −

M
n=0

(−1)nE2n
(2n)!

z2n
 ≤ C2.

Substituting the above inequality into (A.12), we find that

|RM | =

 1
√

πθ


∞+ai

−∞+ai
e−z2/θ+(b−1)iz


sec z −

M
n=0

(−1)nE2n
(2n)!

z2n

dz


≤

 C2

a
√

πθ

  ∞+ai

−∞+ai

e−z2/θ z2M+2
 dz

≤

 C2

a
√

πθ

  ∞

−∞

e−(x+ai)2/θ (x + ai)2M+2
 dx

≤

 C2

a
√

πθ

  ∞

−∞

e−(x2−a2+2axi)/θ
 (x2 + a2)M+1dx

≤

 C2

a
√

πθ

  ∞

0

e−(x2−a2+2axi)/θ
 (x2 + a2)M+1dx

+

 C2

a
√

πθ

  0

−∞

e−(x2−a2+2axi)/θ
 (x2 + a2)M+1dx. (A.13)

We denote the first (resp. second) integral in the last inequality above by I1 (resp. I2). Substituting θ = γ + βi into I1 and
noting that 1

θ
=

γ−βi
|θ |2

, we find that

I1 =


∞

0

e−(x2−a2+2axi)/θ
 (x2 + a2)M+1dx

= eγ a2/|θ |
2


∞

0
e−(γ x2+2axβ)/|θ |

2
(x2 + a2)M+1dx. (A.14)

Since |β| ≤ γ (by assumption), a > 0 and x > 0, we have x2 + a2 ≤ (x + a)2 and e−(γ x2+2axβ)/|θ |
2

≤ e−(γ x2−2axγ )/|θ |
2
.

Substituting these two inequalities into (A.14), we find that

I1 ≤ eγ a2/|θ |
2


∞

0
e−(γ x2−2axγ )/|θ |

2
(x + a)2M+2dx

= e2γ a2/|θ |
2


∞

0
e−γ (x−a)2/|θ |

2
(x + a)2M+2dx

=
|θ |
√

γ
e2γ a2/|θ |

2


∞

−
a
√

γ

|θ |

e−u2


|θ |
√

γ
u + 2a

2M+2

du

u =

√
γ (x − a)

|θ |


. (A.15)

Since |θ |
2

= γ 2
+ β2

≤ 2γ 2, we have |θ |

γ
√
2

≤ 1 which implies |θ |
√
2γ ≤

√
γ ≪ 1, as γ → 0+. This allows us to set a =

|θ |
√
2γ

in (A.15). Hence, we arrive at

I1 ≤
|θ |
√

γ
e


∞

−

√
2
2

e−u2


|θ |
√

γ
u +

√
2|θ |

√
γ

2M+2

du

= e


|θ |
√

γ

2M+3  ∞

−

√
2
2

e−u2(u +
√
2)2M+2du

≤ eγ M+3/22M+3/2


∞

−

√
2
2

e−u2(u +
√
2)2M+2du

≤ e|θ |
M+3/22M+3/2


∞

−

√
2
2

e−u2(u +
√
2)2M+2du.

The convergence of


∞

−

√
2
2

e−u2(u +
√
2)2M+2du (for any non-negative integer M) implies I1 = O(|θ |

M+3/2), as |θ | → 0+.

Similarly, we can prove that, for any non-negative integerM, I2 = O(|θ |
M+3/2), as |θ | → 0+. Substituting these bounds into
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(A.13) with a replacing by |θ |
√
2γ and noting that

 C2
a
√

πθ

 =

 C2√2γ
|θ |

√
πθ

 = O(|θ |
−1), as |θ | → 0+, we find that RM = O(|θ |

M+1/2),

as |θ | → 0+, or γ → 0+. This completes the proof of Theorem A.1. �

Now we prove Proposition 3.1 with a special case of Theorem A.1. Setting M = 3 in (A.3) and noting that E0 = 1, E2 =

−1, E4 = 5,H0 = 1,H2(x) = 4x2 − 2 and H4(x) = 16x4 − 48x2 + 12, we find that, for θ = γ + βiwith γ > 0 and |β| ≤ γ ,

F1(θ) = e(2b−1)θ/4
3

n=0

E2nθn

22n(2n)!
H2n


(b − 1)

√
θ

2


+ O(|θ |

7/2)

=


3

n=0

(2b − 1)nθn

4nn!
+ O(|θ |

4)


3

n=0

E2nθn

22n(2n)!
H2n


(b − 1)

√
θ

2


+ O(|θ |

7/2)

= 1 +
bθ
2

+
bθ2

4
+ ζ ∗θ3

+ O(|θ |
7/2), (A.16)

as γ → 0+.

Proof of Proposition 3.1. Since q = e2π iτ , where τ = x + yi, we have

2(Sk,l(q) − 1) = 2
∞
n=0

(−1)n−1qn((2k−1)n−1)/2+ln

= −2
∞
n=0

(−1)n

q

2k−1
2

n2+ 2l
2k−1 −

1
2k−1


n

= −2
∞
n=0

(−1)n

eπ iτ(2k−1)n2+ 2l

2k−1 −
1

2k−1


n
.

Next, let θ = −π iτ(2k − 1) = (2k − 1)πy − (2k − 1)πxi. By assumption, we have y > 0 and |x| ≤ y which imply
(2k − 1)πy > 0 and |(2k − 1)πx| < (2k − 1)πy. Hence, applying (A.16) with θ and b replaced by −π iτ(2k − 1) and

2l
2k−1 −

1
2k−1 , respectively, we find that, as |τ | → 0+,

− 2(Sk,l(q) − 1) = 1 −
(2l − 1)π i

2
τ −

(2l − 1)(2k − 1)π2

4
τ 2

+ ζ ∗τ 3
+ O(|τ |

7/2). (A.17)

Since τ = x + yiwith |x| ≤ y and y =
1

2
√
6N

, we have |τ |
2

≤
1

12N . This together with (A.17) implies

Sk,l(q) =
1
2

+
(2l − 1)π i

4
τ +

(2l − 1)(2k − 1)π2

8
τ 2

+ ζ ∗τ 3
+ O(N−7/4).

This completes the proof of Proposition 3.1. �
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