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We examine the Toeplitzness of products of composition operators and their adjoints. We
show, among other things, that C∗

φCφ is strongly asymptotically Toeplitz for all analytic
self-maps φ of the unit disk, and that CφC∗

φ is Toeplitz if and only if φ is the identity or a
rotation. Also, we see that CφC∗

φ can exhibit varying degrees of asymptotic Toeplitzness.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In recent years it has been seen that there are several ways in which composition operators and Toeplitz operators
are closely related. In this paper we will explore the Toeplitzness of certain products of composition operators and their
adjoints.

We will use as our setting the Hilbert space H2 of analytic functions on the unit disk with square-summable Taylor coef-
ficients. We will use the standard inner product on H2: for f (z) = ∑∞

n=0 anzn and g(z) = ∑∞
n=0 bnzn in H2 (and identifying

functions in H2 with their boundary functions),

〈 f , g〉 =
∞∑

n=0

anbn

=
∫
∂D

f (w)g(w)dm(w), where m is normalized Lebesgue measure

= 1

2π i

∫
∂D

f (z)g(z)
dz

z
.

Important to us will be the kernel functions Ka(z) = 1
1−az for each a ∈ D. These are functions in H2 with the property that,

for any f ∈ H2,

〈 f , Ka〉 = f (a).

We will use ka(z) = (1−|a|2)1/2

1−az for the normalized reproducing kernels.

✩ We would like to thank Dong-O Kang for his help with the proof of Theorem 5.
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For analytic maps φ : D→D, we will be interested in the composition operators Cφ : H2 → H2 defined by

Cφ f = f ◦ φ.

It is well-known that such composition operators are bounded linear operators (see [8] or [5]). We will also be interested in
Toeplitz operators defined on H2 in the normal way: For a function ψ ∈ L∞(∂D), we define Tψ : H2 → H2 by Tψ f = P (ψ f ),
where P is the projection operator from L2 to H2. In the special case where ψ is an analytic function on the disk (or its
boundary function – we will identify the two), Tψ can be thought of as a multiplication operator. Throughout this paper we
will be making use of the shift operator, S = T z , and its adjoint, S∗ = T z , the backward shift.

When we talk about the Toeplitzness of an operator, we are referring to whether or not an operator is a Toeplitz operator,
or how asymptotically close to a Toeplitz operator it is, in the sense of Barría and Halmos in [1]. This notion of asymptotic
Toeplitzness has been developed in, among other papers, [7] and [10]. It has been noted that an operator T ∈ L(H2) (the
set of bounded linear operators from H2 to itself) is a Toeplitz operator if and only if S∗T S = T .

We will say that T is Uniformly Asymptotically Toeplitz if there is a bounded operator A, necessarily Toeplitz, such that

lim
n→∞

∥∥S∗n T Sn − A
∥∥ = 0.

It is shown in [7] that a bounded linear operator T is uniformly asymptotically Toeplitz if and only if it is the sum of a
Toeplitz operator and a compact operator. The only composition operator which is Toeplitz is the identity operator, and it is
shown in [10, Theorem 1.1] that the only composition operators which are uniformly asymptotically Toeplitz are the identity
operator and those which are compact.

We will say that an operator T ∈ L(H2) is Strongly Asymptotically Toeplitz (SAT) if there is a bounded operator A such
that for each f ∈ H2,

(
S∗n T Sn − A

)
f → 0,

and that an operator T ∈ L(H2) is Weakly Asymptotically Toeplitz (WAT) if there is a bounded operator A such that for each
f , g ∈ H2,

〈
S∗n T Sn f , g

〉 → 〈A f , g〉.
2. The Toeplitzness of C∗

φCφ

We will begin with a simple but important intertwining relationship between composition operators and Toeplitz oper-
ators which, along with more complicated variants, can be found in a number of papers (see [6,3], or [9]).

Lemma 1. For an analytic self-map of the disk φ , Cφ S = TφCφ and C∗
φ T ∗

φ = S∗C∗
φ .

Proof. For any h ∈ H2, (Cφ S)h(z) = Cφ(zh(z)) = φ(z)h(φ(z)) = φ(z)Cφh(z) = (TφCφ)h(z). This proves the first part of the
lemma. The second part of the lemma follows by taking adjoints of both sides. �

For which self-maps of the disk φ is C∗
φCφ a Toeplitz operator? This has been answered in [2] and generalized in

interesting ways in [9]: It is precisely the inner functions φ which make C∗
φCφ a Toeplitz operator. We present this result

here, with a slightly different proof from earlier ones, since the proof leads us to some of our later results.

Proposition 1. C∗
φCφ is a Toeplitz operator if and only if φ is an inner function, and in this case

C∗
φCφ = Tψ where ψ(z) = 1 − |φ(0)z|2

|1 − φ(0)z|2 .

Proof. C∗
φCφ is a Toeplitz operator if and only if S∗C∗

φCφ S = C∗
φCφ But

S∗C∗
φCφ S = C∗

φ T ∗
φ TφCφ = C∗

φ T |φ|2 Cφ.

So C∗
φCφ is a Toeplitz operator if and only if C∗

φ T1−|φ|2 Cφ = 0. Thus it is clear that if φ is inner, T1−|φ|2 = 0 and C∗
φCφ is a

Toeplitz operator. In this case, set C∗
φCφ = Tψ . Then

C∗
φCφ1 = C∗

φ1 = C∗
φ K0 = Kφ(0) = Tψ 1 = P (ψ).

Since Tψ = T ∗
ψ = (C∗

φCφ)∗ = C∗
φCφ = Tψ , thus ψ is real-valued. Hence

ψ = Kφ(0) + Kφ(0) − 1 = 1 − |φ(0)z|2
2
.
|1 − φ(0)z|
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Now if C∗
φCφ is a Toeplitz operator, from the above discussion, C∗

φ T1−|φ|2 Cφ = 0. Since T1−|φ|2 is positive, C∗
φ T1−|φ|2 Cφ = 0

if and only if T1−|φ|2 Cφ = 0. In particular, T1−|φ|2 Cφ1 = P (1 − |φ|2) = 0. This implies that 1 − |φ|2 = 0 (a.e.) on the circle

since 1 − |φ|2 is a real-valued function. �
In [10] it was shown that many composition operators are not strongly asymptotically Toeplitz, including many known

to be weakly asymptotically Toeplitz. It is conjectured that all composition operators, except those whose symbols are
the identity or rotations, are weakly asymptotically Toeplitz – this is the WAT conjecture in [10]. In [9, Theorem 5] it is
shown that the operator C∗

φCφ is always weakly asymptotically Toeplitz. We will show that C∗
φCφ is, in fact, always strongly

asymptotically Toeplitz.

Lemma 2. Assume fn ∈ L∞ and ‖ fn‖∞ � C for some constant C and for all n � 1 and fn → 0 pointwise a.e. on ∂D. Then T fn → 0
strongly as n → ∞.

Proof. Let h ∈ H2, then

‖T fn h‖2 = ∥∥P [ fnh]∥∥2 � ‖ fnh‖2 =
∫
∂D

∣∣ fn(w)
∣∣2∣∣h(w)

∣∣2
dm(w) → 0 as n → ∞,

where the limit follows from the assumption and the Lebesgue Dominated Convergence Theorem.

Theorem 1. C∗
φCφ is strongly asymptotically Toeplitz. That is

S∗nC∗
φCφ Sn → C∗

φ Tχ(E)Cφ strongly,

where χ(E) is the characteristic function of the set E = {w ∈ ∂D: |φ(w)| = 1}. Furthermore,

C∗
φ Tχ(E)Cφ = Tψ, where ψ(z) =

∫
E

(1 − |z|2)
|1 − zφ(w)|2 dm(w). �

Proof. Note that by repeatedly using Lemma 1,

S∗nC∗
φCφ Sn = C∗

φ T ∗n
φ T n

φCφ = C∗
φ T |φ|2n Cφ.

It is clear that the infinity norm of |φ|2n is at most 1 and |φ(w)|2n − χ(E) → 0 pointwise on ∂D. Therefore by the above
Lemma 2, T |φ|2n → Tχ(E) strongly. Set C∗

φ Tχ(E)Cφ = Tψ , then for z ∈D,

ψ(z) = 〈Tψkz,kz〉 = 〈
C∗

φ Tχ(E)Cφkz,kz
〉 = 〈Tχ(E)Cφkz, Cφkz〉 = (

1 − |z|2)
∫
E

∣∣(Cφkz)(w)
∣∣2

dm(w)

=
∫
E

(1 − |z|2)
|1 − zφ(w)|2 dm(w). �

As was noted before, we know that if C∗
φCφ is uniformly asymptotically Toeplitz, then C∗

φCφ = T f + K for some Toeplitz
operator T f and compact operator K . If this is the case, then the Toeplitz operator T f must equal C∗

φ Tχ(E)Cφ as in the proof
above, so C∗

φCφ = C∗
φ Tχ(E)Cφ + K . Equivalently C∗

φCφ − C∗
φ Tχ(E)Cφ = C∗

φ T1−χ(E)Cφ = K . Since T1−χ(E) is a positive operator,
C∗

φ T1−χ(E)Cφ is compact if and only if T1−χ(E)Cφ is compact. Therefore we have the following result:

Theorem 2. C∗
φCφ is uniformly asymptotically Toeplitz if and only if T1−χ(E)Cφ is compact.

The following theorem generalizes Theorem 2.2 in [10] with an elementary proof.

Theorem 3. If φ1 and φ2 are analytic self-maps of the disk, then C∗
φ1

Cφ2 is Mean Strongly Asymptotically Toeplitz (MSAT). Further, if
φ1 
= φ2 , then

1

N + 1

n=N∑
n=0

S∗nC∗
φ1

Cφ2 Sn → 0 strongly.
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Proof. If φ1 = φ2, we know that C∗
φ1

Cφ2 is SAT, thus MSAT. Now assume φ1 
= φ2. Note that

1

N + 1

n=N∑
n=0

S∗nC∗
φ1

Cφ2 Sn = 1

N + 1

n=N∑
n=0

C∗
φ1

T ∗n
φ1

T n
φ2

Cφ2 = C∗
φ1

T gN Cφ2 ,

where

gN = 1

N + 1

n=N∑
n=0

φn
1φn

2 = 1

N + 1

1 − φN+1
1 φN+1

2

1 − φ1φ2
.

Since φ1 
= φ2, 1 − φ1φ2 
= 0 a.e. on ∂D. Note also |gN | � 1 on ∂D. Furthermore

|gN | � 1

N + 1

2

|1 − φ1φ2|
on ∂D,

so gN → 0 pointwise on ∂D as N → ∞. By Lemma 2, T gN → 0 strongly, hence C∗
φ1

T gN Cφ2 → 0 strongly. The proof is
complete. �
Remark 1. From above theorem we know that if φ1 
= φ2 and C∗

φ1
Cφ2 = T f + K , then f = 0. This proves that C∗

φ1
Cφ2 is not

uniformly Toeplitz unless C∗
φ1

Cφ2 is compact.

3. The Toeplitzness of CφC∗
φ

We will begin by asking what we can say about the Toeplitzness of Cφ1 C∗
φ2

for analytic self-maps of the unit disk φ1
and φ2.

When is it true that Cφ1 C∗
φ2

is a Toeplitz operator, i.e., when do we have Cφ1 C∗
φ2

= S∗Cφ1 C∗
φ2

S? We compute the action

of each side of this equation on the reproducing kernels, Ka(z) = 1
1−az for each a ∈ D. C∗

φ2
Ka(z) = Kφ2(a)(z) = 1

1−φ2(a)z
, so

we have

Cφ1 C∗
φ2

Ka(z) = 1

1 − φ2(a)φ1(z)
. (3.1)

To compute S∗Cφ1 C∗
φ2

S Ka(z), we note that S Ka(z) = z
1−az = 1

a ( 1
1−az − 1) = 1

a (Ka(z) − K0(z)) (for a 
= 0), so C∗
φ2

S Ka(z) =
1
a (Kφ2(a)(z) − Kφ2(0)(z)) = 1

a ( 1
1−φ2(a)z

− 1
1−φ2(0)z

). We thus have

Cφ1 C∗
φ2

S Ka(z) = 1

a

(
1

1 − φ2(a)φ1(z)
− 1

1 − φ2(0)φ1(z)

)

and

S∗Cφ1 C∗
φ2

S Ka(z) = 1

az

[
1

1 − φ2(a)φ1(z)
− 1

1 − φ2(a)φ1(0)
− 1

1 − φ2(0)φ1(z)
+ 1

1 − φ2(0)φ1(0)

]
.

We now have:

Theorem 4. For analytic self-maps of the disk φ1 and φ2 , Cφ1 C∗
φ2

is a Toeplitz operator if and only if

1 − az

1 − φ2(a)φ1(z)
= 1

1 − φ2(a)φ1(0)
+ 1

1 − φ2(0)φ1(z)
− 1

1 − φ2(0)φ1(0)
(3.2)

for all a, z ∈ D.

Proof. Equating Cφ1 C∗
φ2

Ka(z) and S∗Cφ1 C∗
φ2

S Ka(z) by putting Eq. (3.1) together with the equation above, we obtain Eq. (3.2).
We note that Cφ1 C∗

φ2
= S∗Cφ1 C∗

φ2
S if and only if their actions are equal on each kernel function Ka(z), and it is enough, by

continuity of the operators, to consider those kernels with a 
= 0. Note that Eq. (3.2) is easily seen to hold when a = 0. �
We next ask the question, for analytic self-maps of the unit disk φ1 and φ2: If Cφ1 C∗

φ2
were a Toeplitz operator, what

Toeplitz operator would it be? I.e., what would the symbol g have to be in order to have Cφ1 C∗
φ2

= T g ? It is easy, from the

definition of a Toeplitz operator, to see that if we write g(z) = h(z)+k(z) where h and k are analytic and k(0) = 0 (breaking
g into its analytic and co-analytic parts), then we know that h(z) = T g1(z) and, since T ∗

g = T g , and g(z) = h(z) + k(z), we
know k(z) = T ∗

g 1(z) − T ∗
g 1(0). If we are to have Cφ1 C∗ = T g , then
φ2
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h(z) = T g1(z) = Cφ1 C∗
φ2

1(z) = Cφ1 C∗
φ2

K0(z) = 1

1 − φ2(0)φ1(z)

as before, and

T ∗
g 1(z) = Cφ2 C∗

φ1
1(z) = Cφ2 C∗

φ1
K0(z) = 1

1 − φ1(0)φ2(z)
,

so k(z) = 1
1−φ1(0)φ2(z)

− 1
1−φ1(0)φ2(0)

, and

g(z) = 1

1 − φ2(0)φ1(z)
+ 1

1 − φ1(0)φ2(z)
− 1

1 − φ1(0)φ2(0)
. (3.3)

If we let a = z in Eq. (3.2), we see that if Cφ1 C∗
φ2

is a Toeplitz operator, then

1 − |z|2
1 − φ2(z)φ1(z)

= 1

1 − φ2(z)φ1(0)
+ 1

1 − φ2(0)φ1(z)
− 1

1 − φ2(0)φ1(0)
. (3.4)

This then tells us

Corollary 1. If φ1 
= φ2 , then Cφ1 C∗
φ2

is not Toeplitz.

Proof. Notice that the right hand sides of Eqs. (3.3) and (3.4) are equal. This tells us that if Cφ1 C∗
φ2

is Toeplitz, its symbol

must be 1−|z|2
1−φ2(z)φ1(z)

. Since φ1 
= φ2 are analytic in the unit disk, the boundary uniqueness property tells us that φ2φ1

cannot be 1 on a set of positive measure on the boundary. Thus 1−|z|2
1−φ2(z)φ1(z)

has boundary function which is zero a.e., i.e.,

the Toeplitz operator would be the zero operator. This is impossible if it is equal to Cφ1 C∗
φ2

. �
What can we say when in the special case where φ1 = φ2 (= φ, say)? From Theorem 4 we get:

Corollary 2. For an analytic self-map of the disk φ , CφC∗
φ is a Toeplitz operator if and only if

1 − az

1 − φ(a)φ(z)
= 1

1 − φ(a)φ(0)
+ 1

1 − φ(0)φ(z)
− 1

1 − |φ(0)|2
for all a, z ∈ D.

As before, if we let a = z, we see that if CφC∗
φ is a Toeplitz operator, then from Corollary 2 it must be true that

1 − |z|2
1 − |φ(z)|2 = 1

1 − φ(z)φ(0)
+ 1

1 − φ(0)φ(z)
− 1

1 − |φ(0)|2 . (3.5)

From lines (3.3) and (3.5), we get

Corollary 3. If CφC∗
φ is a Toeplitz operator, say T g , then

g(z) = 1

1 − φ(z)φ(0)
+ 1

1 − φ(0)φ(z)
− 1

1 − |φ(0)|2 = 1 − |z|2
1 − |φ(z)|2 .

It is clear that when φ(z) = λz for some λ with |λ| = 1, Cφ will be a unitary operator. This can be seen in a number
of ways, for example, look at the matrix for Cφ – it is diagonal, with entries along the diagonal which are just successive
powers of λ. CφC∗

φ is the identity operator, which is Toeplitz. Are there other self-maps of the disk φ for which CφC∗
φ is

Toeplitz?

Lemma 3. For an analytic self-map of the disk φ with φ(0) = 0, CφC∗
φ is Toeplitz if and only if φ(z) = λz for some λ with |λ| = 1, i.e.,

φ is the identity function or a rotation.

Proof. The only part to prove is the “only if” part. By Corollary 3 above, if CφC∗
φ is Toeplitz and φ(0) = 0, the symbol for

the Toeplitz operator is the boundary function of 1−|z|2
1−|φ(z)|2 = 1 a.e. on the unit circle. This tells us that |φ(z)|2 = |z|2 in the

disk, which implies that φ(z) = λz for some constant λ with |λ| = 1. �
We would like to know if these simple functions, the identity and rotations, are the only self-maps of the disk for which

CφC∗ is Toeplitz. It turns out that, indeed, these are the only ones.
φ
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Theorem 5. If φ is an analytic self-map of the disk, then CφC∗
φ is Toeplitz if and only if φ(z) = λz for some λ with |λ| = 1.

Proof. Again, we need only prove the “only if” part. Because of Lemma 3 we need only consider the case where φ(0) 
= 0,
since if φ(0) = 0, then we already know exactly which φ make CφC∗

φ Toeplitz. We will show that no such φ with
φ(0) 
= 0 can make CφC∗

φ a Toeplitz operator. For purposes of contradiction, assume there is a self-map of the disk φ

with φ(0) 
= 0 and such that CφC∗
φ is Toeplitz.

Since φ certainly cannot be a constant function, we can pick some a ∈ D, a 
= 0 at which φ(a) 
= 0 and also φ(a) 
= φ(0),
and use this in Corollary 2 to get

1 − az

1 − φ(a)φ(z)
= 1

1 − φ(a)φ(0)
+ 1

1 − φ(0)φ(z)
− 1

1 − |φ(0)|2
for all z ∈ D. To simplify the notation (a little), we can let b = φ(a), d = φ(0) and c = 1

1−φ(a)φ(0)
− 1

1−|φ(0)|2 . By our choice

of a, none of these new constants are zero. The equation above becomes

1 − az

1 − bφ(z)
= 1

1 − dφ(z)
+ c.

Clearing the denominators and gathering terms, we see that we must have

bcd
(
φ(z)

)2 + (b + d − bc − cd − adz)φ(z) + c + az = 0.

The coefficient on φ(z)2 is nonzero, so we can divide through by it, complete the square, and get
(
φ(z) + (rz + s)

)2 = tz2 + uz + v

for some constants r, s, t, u, and v . Now the left side is the square of an analytic function (on D), and for it to equal
a quadratic, it must be a linear function, from which we see that φ itself must be a linear function, i.e., φ(z) = αz + β

for some constants α and β . Also, we know that β cannot be zero, since φ(0) 
= 0. But now we see that φ(z) can have
modulus 1 on only a set of measure zero on ∂D (at most one point). By Corollary 3, if CφC∗

φ were Toeplitz, its symbol

would have to be 1−|z|2
1−|φ(z)|2 , which would be zero a.e. on ∂D, i.e., the Toeplitz operator would be the zero operator, and this

is impossible. This completes the proof. �
The question of when CφC∗

φ is uniformly Toeplitz seems to be more difficult. But we have the following result which
generalizes Theorem 1.1 in [10] with a shorter proof.

Theorem 6. If φ1 
= φ2 , then Cφ1 C∗
φ2

is not uniformly Toeplitz unless Cφ1 C∗
φ2

is compact. Similarly, if φ1 
= φ2 , then C∗
φ1

Cφ2 is not
uniformly Toeplitz unless C∗

φ1
Cφ2 is compact.

Proof. Assume Cφ1 C∗
φ2

= T f + K for some nonzero Toeplitz operator T f and compact operator K . Note that

Cφ1 C∗
φ2

− Cφ1 S S∗C∗
φ2

= Cφ1

(
I − S S∗)C∗

φ2
= Cφ1(e0 ⊗ e0)C∗

φ2
= e0 ⊗ e0.

Here e0 ⊗ e0 represents the rank 1 operator of projection onto the subspace of constant functions. On the other hand,

Cφ1 C∗
φ2

− Cφ1 S S∗C∗
φ2

= Cφ1 C∗
φ2

− Tφ1 Cφ1 C∗
φ2

T ∗
φ2

= T f + K − Tφ1(T f + K )T ∗
φ2

= T f − Tφ1 T f T ∗
φ2

+ K + Tφ1 K T ∗
φ2

.

Therefore T f − Tφ1 T f T ∗
φ2

is compact which implies that f = φ1 f φ2, or (1 − φ1φ2) f = 0 a.e. on ∂D. Again, we note that

since φ1 
= φ2, 1 − φ1φ2 
= 0 a.e. on ∂D. Thus we conclude f = 0. For the proof that if φ1 
= φ2, then C∗
φ1

Cφ2 is not uniformly
Toeplitz unless C∗

φ1
Cφ2 is compact, see Remark 1 after Theorem 3. �

From the calculation above we get the following result:

Corollary 4. If CφC∗
φ = T f + K , for some compact operator K , then (1 − |φ|2) f = 0 a.e. on ∂D.

3.1. Examples of the Toeplitzness of CφC∗
φ

In contrast to the earlier theorem which told us that C∗
φCφ is always Toeplitz if φ is an inner function and, in fact,

strongly asymptotically Toeplitz for all φ, we will see by means of some examples that we get less Toeplitzness for CφC∗
φ .

Consider first the Möbius functions φa(z) = a−z
1−az for a ∈ D. These are automorphisms of the disk. The result below can

be obtained in a different form in [2, Corollary 3]. We present it here with a more direct, computational proof:
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Example 1. For each nonzero a ∈ D, Cφa C∗
φa

is a Toeplitz operator plus a rank 1 operator.

Proof. In fact, what we will show is that we can compute the matrix explicitly for Cφa C∗
φa

(with respect to the standard

basis for H2, {zn: n = 0,1,2, . . .}). We will show that Cφa C∗
φa

has matrix

⎡
⎢⎣

α γ 0 0 ···
γ β γ 0

...
0 γ β γ

...
0 0 γ β

...
...

...
...

...
...

⎤
⎥⎦, where α = 1

1−|a|2 , β = 1+|a|2
1−|a|2 ,

and γ = − a
1−|a|2 . Note that if a = 0, this is the identity matrix. For any other a ∈ D, the matrix is a tri-diagonal matrix

except for the upper-left entry, which is a different number from those in the rest of the main diagonal. This is then the

matrix for the operator Tψ − |a|2
1−|a|2 e0 ⊗ e0, where the symbol ψ for the Toeplitz operator is given by ψ(z) = γ 1

z +β +γ z =
− a

1−|a|2
1
z + 1+|a|2

1−|a|2 − a
1−|a|2 z. Note that the constant − |a|2

1−|a|2 which multiplies the rank one operator e0 ⊗ e0 is just α − β .

To see that this is the correct matrix, we can compute the entries in the matrix directly using the formula from Cowen
and MacCluer [5] for the adjoint of a composition operator with linear fractional symbol. Here, this formula tells us that
C∗

φa
= T 1

1−az
Cφa T ∗

1−az . We can use this formula to compute the m,nth entry in the matrix (m,n = 0,1,2, . . .), which is given

by 〈Cφa C∗
φa

zn, zm〉 = 〈C∗
φa

zn, C∗
φa

zm〉. We use T ∗
1−az = T1−az to compute, when n � 1,

C∗
φa

zn = T 1
1−az

Cφa T1−azzn = 1

1 − az
Cφa

(
zn − azn−1) = z(|a|2 − 1)

(1 − az)(a − z)

(
a − z

1 − az

)n

= z(|a|2 − 1)

(1 − az)(a − z)
φn

a (z). (3.6)

There are several cases to consider. First, when m and n are both zero, we have 〈C∗
φa

zn, C∗
φa

zm〉 = 〈C∗
φa

1, C∗
φa

1〉 =
〈C∗

φa
K0, C∗

φa
K0〉 = 〈Kφa(0), Kφa(0)〉 = 〈Ka, Ka〉 = 1

1−|a|2 = α. When m = 0 and n � 1, we use

〈
C∗

φa
zn, C∗

φa
z0〉 = 〈

C∗
φa

zn, Ka
〉 =

〈
z(|a|2 − 1)

(1 − az)(a − z)

(
a − z

1 − az

)n

, Ka

〉
.

This last quantity can easily be seen to be − a
1−|a|2 = γ when n = 1 and 0 when n > 1. The formula on line (3.6) then gives

us, for n � m � 1 (and using |φa(z)| = 1),

〈
C∗

φa
zn, C∗

φa
zm〉 = 1

2π i

∫
∂D

(|a|2 − 1)2zφn
a (z)zφm

a (z)

(1 − az)(a − z)(1 − az)(a − z)

dz

z
= 1

2π i

∫
∂D

z(1 − |a|2)2φn−m
a (z)

(1 − az)2(z − a)2
dz. (3.7)

We can evaluate this using residues, giving us, when n = m, 1+|a|2
1−|a|2 = β , and when n − m = 1, we again compute using

residues that this quantity is − a
1−|a|2 = γ . Finally, when m > n, we get entries which are just the conjugates of those with

the row and column reversed. Together, these give us the matrix as claimed above. �
The examples discussed above show that for some self-maps of the disk φ, CφC∗

φ is either Toeplitz (when φ is just a
rotation) or a rank one perturbation of a Toeplitz operator (when φ is a single Blaschke factor, other than a rotation). Is it
true that for other functions, even for inner functions or even Blaschke products with more than one factor that CφC∗

φ is
similarly close to being a Toeplitz operator? The answer is no.

Example 2. For φ(z) = z2, the matrix for Cφ is
⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 · · ·
0 0 0 0 0 · · ·
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

and the matrix for CφC∗
φ is

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 · · ·
0 0 0 0 0 · · ·
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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That is, CφC∗
φ is the projection operator onto the subspace of H2 generated by the even powers of z. Similarly one can

easily see that when φ(z) = zn (for any n � 0), CφC∗
φ is the projection operator onto the subspace of H2 generated by the

powers of z which are multiples of n. For n � 2, the entries on the diagonal certainly have no limit, so the operators are not
even weakly asymptotically Toeplitz.

Remark 2. It shouldn’t be surprising that in these last examples CφC∗
φ turned out to be a projection operator. Whenever φ

is inner with φ(0) = 0, the composition operator Cφ is an isometry, and for any isometry A, A A∗ is a projection operator.

4. Questions

We saw in Theorem 2 that the operator C∗
φCφ is uniformly Toeplitz if an only if T1−χ(E)Cφ is compact. For which

self-maps of the disk φ is T1−χ(E)Cφ compact? This certainly includes all inner functions, for which 1 − χ(E) is (a.e.) zero,
so T1−χ(E)Cφ is the zero operator (and for which it is known, in any case, that C∗

φCφ is a Toeplitz operator). It also includes
all φ for which Cφ is compact – these have been characterized in [11] and [4]. Are there any others?

Can we characterize those self-maps of the disk φ for which CφC∗
φ is uniformly Toeplitz? These certainly include rotations

and Möbius functions (Example 1) but exclude certain other simple inner functions (Example 2).
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