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Julia sets can never be a Sierpiński carpet if the parameter is real. We show that the Julia
set is a quasicircle if and only if the parameter lies in the unbounded capture domain of
these models. Moreover, the asymptotic formula of the Hausdorff dimension of the Julia
set is calculated as the parameter tends to infinity.
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1. Introduction

The statistical mechanical models on hierarchical lattices have attracted many interests recently since they exhibit a
deep connection between their limiting sets of the zeros of the partition functions and the Julia sets of rational maps in
complex dynamics [2–4,7,23–25]. A celebrated Lee–Yang theorem [15,38] in statistical mechanics asserts that the zeros of
the partition function for some magnetic materials lie on the unit circle in the complex plane, which is corresponding to
a purely imaginary magnetic field. This means that the complex singularities of the free energy lie on this line, where the
free energy is the logarithm of the partition function.

The partition function Z = Z(z, t) can be written as a Laurent polynomial in two variables z and t, where z is a ‘field-like’
variable and t is ‘temperature-like’. Note that the complex zeros of Z(z, t) in z are called the Lee–Yang zeros for a fixed
t ∈ [0,1]. Naturally, one can study the zeros of Z(z, t) in the t-variable. These zeros are called Fisher zeros since they were
first studied by Fisher for regular two-dimensional lattice [12,5]. However, compared with the Lee–Yang zeros, Fisher zeros
do not lie on the unit circle any more. For example, for the regular two-dimensional lattice, the Fisher zeros lie on the
union of two circles |t ± 1| = √

2. For more comprehensive introduction on Lee–Yang zeros and Fisher zeros, see [4] and the
references therein.

In 1983, Derrida, de Seze and Itzykson showed that the Fisher circles of the Ising model on the regular two-dimensional
lattice Z

2 become a fractal Julia set upon replacing Z
2 by a hierarchical lattice [7]. They proved that the corresponding

singularities of the free energy lie on the Julia set of the rational map

z �→
(

z2 + λ − 1

2z + λ − 2

)2

. (1.1)
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This means that the distribution of the singularities of the free energy can have a pretty wild geometry. Henceforth, a lot
of works related on the Julia sets of this renormalization transformation appeared (see [1,2,13,14,23–25,32] and references
therein). For the ideas formulated in renormalization transformation in statistical mechanics, see [35].

Recently, Qiao considered the generalized diamond hierarchical Potts model and proved that the family of rational
maps

Umnλ(z) =
(

(z + λ − 1)m + (λ − 1)(z − 1)m

(z + λ − 1)m − (z − 1)m

)n

(1.2)

is actually the renormalization transformation of the generalized diamond hierarchical Potts model [23, Theorem 1.1], where
m,n � 2 are both integers and λ ∈ C

∗ := C \ {0} is a complex parameter. The standard diamond lattice (m = n = 2) and the
diamond-like lattice (m = 2 and n ∈N) are the special cases of (1.2).

In this paper, we will consider the case for d := m = n � 2. For simplicity, we use Udλ to denote Uddλ in (1.2). We not
only study the topological properties of the Julia sets of Udλ , but also consider the connectivity of the non-escaping locus
of the parameter space of this renormalization transformation.

If λ = 0, then Udλ degenerates to a parabolic polynomial Ud0(z) = ( z+d−1
d )d whose Julia set is a Jordan curve. For the

connectivity of the Julia sets of Udλ , we have the following theorem.

Theorem 1.1. The Julia set of Udλ is always connected for every d � 2 and λ ∈ C
∗ .

Note that Qiao and Li proved that the Julia set of Udλ is connected for d = 2 and λ ∈ R [24]. We would like to remark
that if m �= n, then there exists parameter λ ∈ C

∗ such the Julia set of Umnλ defined in (1.2) is disconnected (see [23, Fig. 3.1]
for example).

Let C = C ∪ {0} be the Riemann sphere. According to [33], a connected and locally connected compact set S in C is
called a Sierpiński carpet if it has empty interior and can be written as S = C \⋃i∈N Di , where {Di}i∈N are Jordan regions
satisfying ∂ Di ∩ ∂ D j = ∅ for i �= j and the spherical diameter diam(∂ Di) → 0 as i → ∞.

The first example of the Sierpiński carpet as the Julia set of a rational map was given in [20, Appendix F]. Afterwards,
many families of the rational maps serve the examples such that their Julia sets are Sierpiński carpets for suitable param-
eters. See [8] for the family of McMullen maps and [36] for generated McMullen maps. However, for the renormalization
transformation Udλ , we have the following theorem.

Theorem 1.2. For d � 2 and λ ∈R, the Julia set of Udλ is not a Sierpiński carpet.

The proof of Theorem 1.2 is based on proving the intersection of the boundaries of two of the Fatou components of Udλ

are always non-empty (see Lemma 3.1 and Theorem 3.2).
The Mandelbrot set of quadratic polynomials fc(z) = z2 + c is defined by

M = {c ∈ C: f ◦n
c (0) �∞ as n → ∞}.

Douady and Hubbard showed that M is connected [10]. For higher degree polynomials with only one critical point, there
are associated Multibrot sets. For rational maps, one way to study the parameter space is to consider the connectedness locus,
which consists of all parameters such the corresponding Julia set is connected. However, the connectedness locus makes no
sense in our case since every Julia set is connected.

For λ �= 0, then 1 and ∞ are two superattracting fixed points of Udλ . The non-escaping locus Md associated to this family
is defined by

Md = {λ ∈ C
∗: U ◦n

dλ(0) � 1 and U ◦n
dλ(0) � ∞ as n → ∞}∪ {0}. (1.3)

Obviously, “non-escaping” here means the collection of those parameters such that the orbit of 0 cannot be attracted by 1
and ∞. Note that 0 is a critical value of Udλ .

The non-escaping locus Md can be identified as the complex plane cutting out infinitely many simply connected do-
mains, which will be called ‘capture domains’ later (see Fig. 1 and Proposition 4.4). There exist many small copies of the
Mandelbrot set M in Md which correspond to the renormalizable parameters.

For the connectivity of the non-escaping locus Md , Wang et al. proved that M2 is connected [32, Theorem 1.1]. We now
generate this result to all Md , where d � 2.

Theorem 1.3. The non-escaping locus Md is connected for d � 2.

The proof of the connectivity of M2 in [32] is based on constructing Riemann mapping from the capture domain to
the unit disk D, which is tediously long. Here, we give a proof of Theorem 1.3 by using the methods of Teichmüller theory
of the rational maps which was developed in [19]. The proof is largely simplified and there are several additional results.
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Fig. 1. The non-escaping loci M2 and M3.

For example, we show that the Julia set of Udλ is a quasicircle if and only if λ lies in the unbounded capture domain H0
(Proposition 5.7) and each bounded capture domain contains exactly one center (Theorem 6.1).

If λ is large enough, then the Julia set of Udλ is a quasicircle (see Proposition 5.7). Hu and Lin observed that these circles
become more and more ‘circular’ as λ tends to ∞ in the case of d = 2 [14]. In [13], Gao proved the Hausdorff dimension of
the Julia set of U2nλ tends to 1 for every n � 2, which gave an affirmative answer of Hu and Lin proposed in 1989. In this
paper, we consider the asymptotic formula of the Hausdorff dimension of the Julia set Jdλ of Udλ as the parameter λ tends
to ∞.

Theorem 1.4. Let d � 2. For large λ such that Jdλ is a quasicircle, the Hausdorff dimension of Jdλ is given by

dimH ( Jdλ) = 1 + 1

4 log d
|λ|− 2

d+1 +O
(
λ

− 3
d+1
)
. (1.4)

The proof of the asymptotic formula (1.4) is based on the calculation of an explicit iterated function system (see
Lemma 7.3). As a useful tool, the iterated function system has been used to study the Hausdorff dimension of Julia sets
in several papers previously. The first heart-stirring formula on the Hausdorff dimension of Julia sets, which was calculated
by an iterated function system, was due to Ruelle [29]. He proved that for polynomials Pc(z) = zd + c with degree d � 2, if
c is small, then the Hausdorff dimension of the Julia set J c of Pc is given by

dimH ( Jc) = 1 + |c|2
4 log d

+O
(
c3). (1.5)

Later, the Hausdorff dimension formula of J c was recalculated in [34] and [6, p. 119], where the formula (1.5) was expanded
to the third order and fourth order in c, respectively.

We would like to mention that Theorem 1.4 is a generation of [22] in which the asymptotic formula of the Hausdorff
dimension of J2λ was calculated. Recently, the iterated function system has been used to calculate the Hausdorff dimension
of the boundary of the immediate basin of infinity of the McMullen maps [39]. Note that the iterated function system
is just probably suitable for calculating the Hausdorff dimension of the quasicircles. Rather than iterated function system,
Shishikura and Tan use renormalization theory to study the Hausdorff dimensions of the Julia sets and the bifurcation loci
of parameter spaces. For example, see [30] and [31].

This paper is organized as follows. In Section 2, we analyze the location of the critical points of Udλ and show that the
Julia set of Udλ is always connected and prove Theorem 1.1. In Section 3, we show that if the parameter lies on the real axis,
then there exist two Fatou components of Udλ such that the intersection of the boundaries of them is non-empty and the
Julia set of Udλ cannot be a Sierpiński carpet, which means Theorem 1.2 holds. In Section 4, we show that the parameter
plane of Udλ can be decomposed into the non-escaping locus Md union infinitely many capture domains. In Section 5, we
give a complete classification of the quasiconformal conjugacy classes of Udλ . In Section 6, we show that each bounded
capture domain is simply connected and the unique unbounded capture domain is homeomorphic to the punctured disk
and prove Theorem 1.3. We will prove the asymptotic formula (1.4) of Theorem 1.4 in Section 7 but leave the complicated
calculations to the last section as Appendix A.
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2. The location of critical points and the connected Julia sets

Firstly, we give a splitting principle for Udλ . This principle is not exist if one considers Umnλ with m �= n. This is the
reason why we set m = n in this paper. For every λ ∈C

∗ , it is straightforward to verify that Udλ = Tdλ ◦ Tdλ , where

Udλ(z) =
(

(z + λ − 1)d + (λ − 1)(z − 1)d

(z + λ − 1)d − (z − 1)d

)d

and Tdλ(z) =
(

z + λ − 1

z − 1

)d

. (2.1)

A direct calculation shows that the set of all critical points of Tdλ is {1,1 − λ}, and both with multiplicity d − 1. Note
that

U−1
dλ

(∞) = T −1
dλ

(1) =
d−1⋃
k=0

{ξk} and U−1
dλ

(0) = T −1
dλ

(1 − λ) =
d−1⋃
k=0

{ωk}, (2.2)

where

ξk = e
2kπ i

d + λ − 1

e
2kπ i

d − 1
and ωk = (1 − λ)

1
d e

2kπ i
d + λ − 1

(1 − λ)
1
d e

2kπ i
d − 1

. (2.3)

It follows that ξk and ωk are critical points of Udλ with multiplicity d − 1, where 0 � k � d − 1. In particular, ξ0 = ∞.
Therefore, the set of all critical points of Udλ is

Crit(Udλ) = {1,1 − λ,∞} ∪
d−1⋃
k=1

{ξk} ∪
d−1⋃
k=0

{ωk}. (2.4)

Since Tdλ(1) = ∞, Tdλ(∞) = 1 and 1,∞ are both critical points of Udλ , it means that there exist two fixed immediate
superattracting basins Adλ(1) and Adλ(∞) of Udλ with centers 1 and ∞ respectively. Under the iteration of Tdλ , we have
the following forward orbits:

ξk �→ 1 �→ ∞ �→ 1 �→ ∞ �→ · · · and ωk �→ 1 − λ �→ 0 �→ (1 − λ)d �→ · · · (2.5)

for every 0 � k � d − 1. Since the dynamical behaviors are determined by the critical forward orbits essentially, we only
need to focus on the free critical orbit of 1 − λ (or equivalently, the forward orbit of 0) under the iteration of Tdλ or Udλ .
This is the reason why we define the non-escaping locus Md as in (1.3).

Lemma 2.1. Let U and V be two domains on C and assume that V is simply connected. If f : U → V is a branched covering with only
one critical value in V (counted without multiplicity), then U is also simply connected.

Proof. Let v be the unique critical value lying in V . Consider the unramified covering f : U \ f −1(v) → V \ {v}. Since V \ {v}
is an annulus with Euler characteristic 0, it follows that U \ f −1(v) is also an annulus by the Riemann–Hurwitz formula.
This means that U is a topological disk, which is simply connected as desired. �

In order to prove a rational map has connected Julia set, one often needs to exclude the existence of Herman ring. The
following lemma was proved in [37].

Lemma 2.2. (See [37, Corollary 3.2].) The renormalization transformation Udλ has no Herman ring.

The proof of Lemma 2.2 relies on the quasiconformal surgery and the arguments are divided into two cases: Herman
ring with period 1 and period at least two. However, the prove idea is different from [21, Appendix A].

Theorem 2.3. The Julia set of Tdλ is always connected for every d � 2 and λ ∈C
∗ .

Proof. The proof idea is more or less similar to the case of quadratic rational maps in [20, Lemma 8.2]. Note that the Julia
set is connected if and only if each Fatou component is simply connected. By Sullivan’s classification of the periodic Fatou
components, every periodic Fatou component of Tdλ is either a Siegel disk, a Herman ring, or an immediate basin for some
attracting or parabolic point. By Lemma 2.2, it is known Tdλ has no Herman ring.

By [20, Lemma 8.1], we know that if all the critical values of a rational map are contained in a single component of the
Fatou set, then the Julia set is totally connected. However, the Julia set Jdλ cannot be totally disconnected since Tdλ has a
superattracting periodic orbit of period 2. Therefore, the critical points 1 and 1 − λ lie in different Fatou components and
each Fatou component of Tdλ contains at most one critical value (∞ or 0 by (2.5)).
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Now we prove each Fatou component of Tdλ is simply connected. Firstly, we assume that every periodic Fatou component
of Tdλ is simply connected. Note that the periodic orbit 1 ↔ ∞ is superattracting. There leaves only one critical point
1 − λ needing to consider. According to Lemma 2.1, the preimage of a simply connected region under a branched covering
with only one critical value is again simply connected. This means every Fatou component of Tdλ is simply connected by
induction.

Then suppose that there exists a periodic Fatou component U of Tdλ which is not simply connected and the period
is p � 1. This means that U is an attracting basin or a parabolic basin since Tdλ has no Herman ring. Let z0 be the at-
tracting periodic point in U or parabolic periodic point on ∂U . We use V to denote a simply connected neighborhood
or a simply connected petal of z0 such that T ◦p

dλ
(V ) ⊂ V according to U is attracting or parabolic. Let Vk be the com-

ponent of T −kp
dλ

(V ) containing V . Then U =⋃k�0 Vk and Vk+1 �→ Tdλ(Vk+1) �→ · · · �→ T ◦p−1
dλ

(Vk+1) �→ Vk is a successive
branched covering under Tdλ with at most one critical value in each codomain since each Fatou component of Tdλ contains
at most one critical value. Suppose Vk0 is simply connected (at least k0 = 0 is satisfied). By Lemma 2.1, we know that

T ◦p−1
dλ

(Vk0+1), . . . , Tdλ(Vk0+1), Vk0+1 are all simply connected since Vk0 is also. Inductively, it follows that each Vk is simply
connected and hence U is also simply connected. This contradicts the assumption that U is not simply connected.

Therefore, in any case, the Julia set of Tdλ is always connected. This ends the proofs of Theorems 2.3 and 1.1. �
3. The Julia set cannot be a Sierpińsk carpet

In this section, we will prove that if the parameter λ lies on the real axis, then the Julia set of Udλ can never be a
Sierpińsk carpet by showing there always exist two Fatou components of Udλ whose boundaries are intersecting to each
other.

Lemma 3.1. For every d � 2 and λ ∈ R, there exist two Fatou components V 1, V 2 of Udλ such that V 1 ∩ V 2 �= ∅.

Proof. If λ = 0, then Udλ degenerates to a parabolic polynomial Ud0(z) = ( z+d−1
d )d whose Julia set Jd0 is a Jordan curve. Let

V 1 =Adλ(1) and V 2 =Adλ(∞) be the immediate superattracting basins of 1 and ∞ respectively. We have V 1 ∩ V 2 = Jd0 �=
∅.

In the following, we assume that λ ∈ R \ {0}. The dynamics of Udλ will be restricted on the real axis and the arguments
will be divided into several cases. Let x ∈ R, by a direct calculation, we have

U ′
dλ(x) = d2λ2(x − 1)d−1(x + λ − 1)d−1((x + λ − 1)d + (λ − 1)(x − 1)d)d−1

((x + λ − 1)d − (x − 1)d)d+1
. (3.1)

(1) Let λ > 0. If x � 1, we have x − 1 � 0, x + λ − 1 > 0, (x + λ − 1)d + (λ − 1)(x − 1)d > 0 and (x + λ − 1)d − (x − 1)d > 0.
This means that U ′

dλ
(x) � 0 and Udλ is increasing on [1,+∞). Moreover, U ′

dλ
(x) = 0 if and only if x = 1. We claim that

there exists at least one fixed point of Udλ lying in (1,+∞). Otherwise, we then have 1 < Udλ(x) < x for every x > 1
since Udλ(1) = 1 and U ′

dλ
(1) = 0. This means that the interval (1,+∞) is contained in the attracting basin of 1, which is a

contradiction since ∞ is a superattracting fixed point of Udλ .
Let 1 = x0 < x1 < · · · < xn < +∞ be the collection of all the fixed points of Udλ lying in [1,+∞), where n � 1. It is

easy to see Udλ(x) > x if x > xn . In particular, we have (xn,+∞) ⊂ Adλ(∞). Note that U ′
dλ

(xn) � 1. If U ′
dλ

(xn) = 1, then xn

is a parabolic fixed point of Udλ and Adλ(xn) contains a small interval on the left of xn , where Adλ(xn) is the immediate
parabolic basin of xn . Let V 1 =Adλ(xn) and V 2 =Adλ(∞). We have xn ∈ V 1 ∩ V 2. If U ′

dλ
(xn) > 1, then xn is a repelling fixed

point of Udλ and xn−1 is an (or parabolic) attracting fixed point of Udλ . Moreover, [xn−1, xn) ⊂ Adλ(xn−1), where Adλ(xn−1)

is the immediate attracting (or parabolic) basin of xn−1. Let V 1 =Adλ(xn−1) and V 2 =Adλ(∞). We have xn ∈ V 1 ∩ V 2.
(2) Let λ < 0. If 0 � x � 1, then x − 1 � 0 and x + λ − 1 < 0. If d � 2 is even, then (x + λ − 1)d + (λ − 1)(x − 1)d > 0,

(x + λ − 1)d − (x − 1)d > 0 and U ′
dλ

(x) � 0. If d � 2 is odd, then U ′
dλ

(x) � 0. This means that Udλ is increasing on [0,1] for
every d � 2. Moreover, U ′

dλ
(x) = 0 if and only if x = 1. By a straightforward calculation, we have 0 < Udλ(0) < 1. Now we

divide the arguments into two cases.
If there exists no fixed point of Udλ in (0,1), then we have 0 < x < Udλ(x) < 1 for every 0 < x < 1. This means that 0 lies

in the immediate attracting basin of 1. By Lemma 4.1(5), we know that Jdλ is a quasicircle. In particular, Adλ(1)∩Adλ(∞) =
Jdλ �= ∅. If there exists at least one fixed point of Udλ in (0,1), we denote all of them by 0 < x1 < · · · < xn < 1, where n � 1.
By a completely similar argument as the case λ > 0, one can show that the fixed point xn is contained in the boundaries of
two different Fatou components. Therefore, the proof is complete. �
Theorem 3.2. For every d � 2 and λ ∈ R, the Julia set Jdλ is not a Sierpińsk carpet.

Proof. Note that if Jdλ is a Sierpiński carpet, then the closure of any two Fatou components of Udλ cannot be intersecting
to each other. But this contradicts Lemma 3.1. The proofs of Theorems 3.2 and 1.2 are finished. �
Remark 3.3. By computer experiments, it is shown that Adλ(1) ∩ Adλ(∞) = {z0} for λ ∈ C, where z0 is a repelling fixed
point of Udλ . Therefore, the Julia set Jdλ can never be a Sierpińsk carpet for any λ ∈ C (see Figs. 2 and 3).
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Fig. 2. Julia sets of T2λ with λ1 ≈ 1.319448 + 1.633170i and λ2 ≈ 1.5 + 0.866025i. The critical orbit 1 ↔ ∞ captures the critical orbit 1 − λ1 �→ 0 �→ a �→
b �→ 1 and disjoint with the critical orbit 1 − λ2 �→ 0 �→ c �→ 1 − λ2.

Fig. 3. Julia sets of T2λ with λ3 ≈ 2.046736 + 1.589069i and λ4 = 4.0. T2λ3 has a Siegel disk with periodic 4 and J2λ4 is a quasicircle.

4. Decomposition of the parameter space

In this section, we divide the parameter space of Tdλ into the non-escaping locus Md union countably many capture
domains. Recall that Adλ(1) and Adλ(∞) are the immediate superattracting basins of 1 and ∞ respectively.

Lemma 4.1. For each λ ∈C
∗ , the following conditions are equivalent:

(1) The Julia set Jdλ of Tdλ is a quasicircle;
(2) ξk ∈Adλ(∞) for all 0 � k � d − 1;
(3) ωk ∈Adλ(1) for all 0 � k � d − 1;
(4) 1 − λ ∈Adλ(∞);
(5) 0 ∈Adλ(1).

In particular, ωk ∈Adλ(1) if and only if ωl ∈Adλ(1), where 0 � k, l � d − 1.
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Proof. We first prove (1) ⇒ (2), (3), (4), (5). If Jdλ is a quasicircle, the Fatou set of Tdλ consists of two simply con-
nected Fatou components Adλ(1) and Adλ(∞) whose common boundary is Jdλ . Since Tdλ permutes 1 and ∞, by (2.5),
it follows that (2) holds and {ω1, . . . ,ωd} lies in a single Fatou component. Applying the Riemann–Hurwitz formula to
Udλ :Adλ(∞) → Adλ(∞), it follows that {ω1, . . . ,ωd,0} ⊂Adλ(1) and 1 − λ ∈Adλ(∞). Therefore, (3), (4), (5) hold.

By (2.5), we have (3) ⇒ (4) ⇒ (5). Now we prove (5) ⇒ (1). Suppose that 0 ∈ Adλ(1). By (2.2), we have U−1
dλ

(0) =⋃d−1
k=0{ωk}. Since Udλ(Adλ(1)) = Adλ(1), there exists some k0 such that ωk0 ∈ Adλ(1) and hence 1 − λ ∈ Adλ(∞). Note that

Tdλ : Adλ(1) → Adλ(∞) is d to 1. We claim that ωk ∈ Adλ(1) for every 0 � k � d − 1. In fact, if not, then 1 − λ has at least
d + 1 preimages under Tdλ (counted with multiplicity, d in Adλ(1) and at least one elsewhere), which is impossible. The
same argument also shows that ωk ∈Adλ(1) if and only if ωl ∈Adλ(1), where 0 � k, l � d − 1. Then, Adλ(1) contains critical
points {ω1, . . . ,ωd,1} of Udλ . This means that Adλ(1) is completely invariant under Udλ .

Since 1 − λ ∈ Adλ(∞), it means that Tdλ : Adλ(∞) → Adλ(1) is d to 1. Therefore, ξk ∈ Adλ(∞) for every 1 � k � d − 1
since ξ0 = ∞ ∈ Adλ(∞) and Tdλ(ξk) = 1. Moreover, Adλ(∞) contains critical points {ξ1, . . . , ξd,1 − λ} of Udλ . This means
that Adλ(∞) is also completely invariant under Udλ . Therefore, Jdλ is a quasicircle since Tdλ is hyperbolic and Tdλ has
exactly two Fatou components. This ends the proof of (5) ⇒ (1).

To finish, we prove (2) ⇒ (4). If ξk ∈ Adλ(∞) for all 0 � k � d − 1, then Tdλ : Adλ(∞) → Adλ(1) is d to 1. This means
that 1 − λ ∈Adλ by Riemann–Hurwitz formula. The proof is complete. �
Lemma 4.2. For every λ ∈ C

∗ , we have 0 /∈Adλ(∞) and 1 − λ /∈Adλ(1).

Proof. If 0 ∈Adλ(∞), then 1−λ ∈Adλ(1) by (2.5). Note that 1 lies also in Adλ(1). This means that Tdλ has 2d−1 preimages
in Adλ(1) for each point in Adλ(∞) by Riemann–Hurwitz formula, which is a contradiction. Moreover, 0 /∈ Adλ(∞) means
1 − λ /∈Adλ(1) by (2.5). �

Since 1 and ∞ are always periodic with period 2 under Tdλ , the non-escaping locus Md associated to Tdλ can be defined
as

Md = {λ ∈C
∗: T ◦2n

dλ (0) � 1 and T ◦2n+1
dλ

(0) � 1 as n → ∞}∪ {0}. (4.1)

Definition 4.3. Define H0 := {λ ∈C
∗: 0 ∈Adλ(1)}. For every n � 1, define

Hn := {λ ∈ C
∗: T ◦n

dλ(0) ∈ Adλ(1) and T ◦n−1
dλ

(0) /∈ Adλ(∞)
}
. (4.2)

Each component of Hn is called a capture domain of depth n, where n � 0.

Proposition 4.4. The parameter space of Tdλ has the following decomposition:

C = Md �
( ⊔

n�0

Hn

)
. (4.3)

Proof. By definitions of the non-escaping locus and Hn , we have Md ∩ (
⋃

n�0 Hn) = ∅. We need to show that two capture
domains with different depths are disjoint and each λ ∈ C \ M belongs to Hn for some n � 0. First, suppose that λ ∈
Hm ∩ Hn for m �= n. Without loss of generality, assume that m > n � 0. By Definition 4.3, we have T ◦n

dλ
(0) ∈ Adλ(1) and

T ◦m−1
dλ

(0) /∈ Adλ(∞). This means that T ◦m−1
dλ

(0) ∈ Adλ(1) and hence T ◦m
dλ

(0) ∈ Adλ(∞), which contradicts T ◦m
dλ

(0) ∈ Adλ(1).
Therefore Hm ∩Hn = ∅ for m �= n.

By (4.1), if λ /∈Md , there exists a minimal k � 0 such that T ◦k
dλ

(0) ∈Adλ(1). If k = 0, then λ ∈H0. If k = 1, then Tdλ(0) ∈
Adλ(1). Lemma 4.2 asserts that 0 /∈ Adλ(∞). Therefore, λ ∈ H1 in this case. If k � 2, we claim that T ◦k−1

dλ
(0) /∈ Adλ(∞). In

fact, if not, we have T ◦k−2
dλ

(0) ∈ Adλ(1). This contradicts the choice of the integer k. So we have λ ∈ Hk in this case. The
proof is complete. �

See Fig. 1 for the non-escaping loci M2 and M3. There some capture domains are also clearly visible (blank regions).

5. Quasiconformal conjugacy classes

Let Rd be the collection of all Tdλ , where λ ∈ C
∗ . In this section, we give a complete characterization of the quasicon-

formal conjugacy classes in Rd .

Definition 5.1. Let Λ be a complex manifold. A holomorphic family of rational maps parameterized by Λ is a holomorphic
map fλ : Λ × C → C such that fλ(z) is a rational map for fixed λ ∈ Λ and depends holomorphically on λ ∈ Λ for fixed
z ∈ C.
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The parameter λ ∈ Λ is called a J -stable parameter of a holomorphic family of rational maps fλ if the total number of
attracting cycles of fλ is constant in a neighborhood of λ.

Theorem 5.2. The boundary ∂Md is the set of parameters such that Tdλ are not J -stable in Rd.

Proof. By [18, Theorem 4.2], Tdλ0 is J -stable if and only if both critical sequences {T ◦k
dλ

(1 − λ)}k�0 and {T ◦k
dλ

(1)}k�0 are
normal for λ in a neighborhood of λ0. Since {T ◦k

dλ
(1)}n�0 lies in a finite orbit 1 ↔ ∞, we only need to consider the orbit of

1 − λ. If λ0 ∈ Hn for some n � 0, the orbit of 1 − λ0 will be attracted by the cycle 1 ↔ ∞. For λ close to λ0, the orbit of
1 − λ still converges to the cycle 1 ↔ ∞. By Montel’s theorem, {T ◦k

dλ
(1 − λ)}k�0 is normal at λ0. Similarly, {T ◦k

dλ
(1 − λ)}k�0 is

normal at each point in the interior of Md since {T ◦k
dλ

(1 −λ)}k�0 is disjoint with the attracting basin of 1 ↔ ∞. This means
that Tdλ is J -stable in C \ ∂Md .

On the other hand, if λ0 ∈ ∂Md , then {T ◦k
dλ0

(1 −λ)}k�0 omits the attracting basin of 1 ↔ ∞. However, there are arbitrary

small perturbation of λ0 such that {T ◦k
dλ

(1 − λ)}k�0 converges to the cycle 1 ↔ ∞. This means that Tdλ is not J -stable on
∂Md . �
Corollary 5.3. Let W be a component in the interior of Md. If there exists λ0 ∈ W such that 1 − λ0 converges to an attracting cycle,
then every λ ∈ W also has this property.

Proof. By Theorem 5.2, every Tdλ ∈ W is J -stable. This means that there exists a small neighborhood of λ such the number
of attracting cycles is constant. Since 1 −λ0 converges to an attracting cycle, this means that the constant is 2. The corollary
follows. �

In the case of Corollary 5.3, W is called a hyperbolic component. Otherwise, W is called a queer component. It was
generally believed that queer components do not exist. But if they do, then every Tdλ admits an invariant line field on its
Julia set and the Julia set has positive Lebesgue area. See Figs. 2 and 3 for various Julia sets of Jdλ .

Now we state a theorem of parameterization of quasiconformal conjugacy classes.

Theorem 5.4. Let Tdλ0 , Tdλ1 ∈Rd be two different maps and let ϕ : C→ C be a K -quasiconformal homeomorphism which conjugates
Tdλ0 to Tdλ1 such that ϕ(λ0) = λ1 . Then there exists a holomorphic map t �→ λt from an open disk D(0, r) (r > 1) into C

∗ which maps
0 to λ0 and 1 to λ1 , such that for every t ∈ D(0, r), Tdλ0 is conjugate to Tdλt by a Kt -quasiconformal mapping ϕt : C → C. Moreover,
Kt → 1 as t → 0.

The idea of the proof of Theorem 5.4 is standard in holomorphic dynamics. One can refer to [40, Theorem 5.1] for a
proof in the similar situation. As an immediate corollary, we have

Corollary 5.5. Quasiconformal conjugacy classes in Rd are either single points or open and connected. In particular, the conjugacy
classes on ∂Md are single points.

A holomorphic family of rational maps fλ : Λ × C → C is quasiconformally constant if fλ1 and fλ2 are quasiconformally
conjugate for any λ1 and λ2 in the same component of Λ. We call the family fλ has constant critical orbit relations if any
coincidence f ◦n

λ (c1) = f ◦m
λ (c2) between the forward orbits of two critical points c1 and c2 of fλ persists under perturbation

of λ. The following theorem was proved in [19, Theorem 2.7].

Theorem 5.6. (See [19].) A holomorphic family fλ of rational maps with constant critical orbit relations is quasiconformally constant.

Proposition 5.7. The Julia set Jdλ of Tdλ is a quasicircle if and only if λ ∈H0 . Moreover, H0 is unbounded and connected.

Proof. By the definition of H0 and Lemma 4.1, it follows that if λ ∈ H0, then Jdλ is a quasicircle. Conversely, if Jdλ is a
quasicircle, then 1 − λ ∈ Adλ(∞). This means that Tdλ and Tdλ0 have the same critical orbit relations, where λ0 ∈ H0. By
Theorem 5.6, Tdλ and Tdλ0 are quasiconformally conjugate to each other. By Corollary 5.5, it follows that λ ∈ H0 and H0 is
connected.

To finish, we only need to show that H0 is unbounded. Let α = λ
− 1

d+1 and ϕα(z) = αd(z − 1) be a linear transformation.
By a straightforward calculation, we have

fα(z) := ϕα ◦ Tdλ ◦ ϕ−1
α =

d−1∑
i=0

C i
dα

i

zd−i
= 1

zd
+ C1

dα

zd−1
+ · · · + C1

dαd−1

z
.

If α �= 0 is small enough, then the Julia set of fα is a quasicircle since the Julia set of z �→ 1/zd is the unit circle. This means
that Jdλ is a quasicircle if λ is large enough. �
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By definition, the parameter λ ∈⋃n�0 Hn if and only if the critical orbit 1 − λ �→ 0 �→ (1 − λ)d �→ · · · tends to the
attracting periodic cycle 1 �→ ∞ �→ 1. A point λ is called a center of a hyperbolic component W ⊂ Md if the critical point
1 − λ is periodic. On the other hand, λ is called a center of a capture domain of

⋃
n�1 Hn if the critical point 1 − λ is

eventually mapped to 1.

Lemma 5.8. Every hyperbolic component in Md and capture domain in Hn has a center, where n � 1. Meanwhile, H0 has no center.

It will be proved in next section that every hyperbolic component in Md and capture domain in Hn has exactly one
center, where n � 1 (Theorem 6.1).

Proof of Lemma 5.8. Let W be a hyperbolic component in Md . For every λ ∈ W , let m(λ) be the multiplier of the attracting
periodic orbit of Tdλ other than 1 ↔ ∞. It can be checked directly that the multiplier mapping λ �→ m(λ) defined from W
to D is proper and holomorphic. This means that W has at least one center.

Let W be a component of Hn , where n � 1. Then for every λ ∈ W , T ◦n
dλ

(0) ∈Adλ(1) and n is smallest. Let ψλ :Adλ(1) → D

be the unique Böttcher map define on the immediate basin of 1 such that ψλ ◦ Udλ = (ψλ(z))d , ψλ(1) = 0 and ψ ′
λ(1) = 1.

By the definition of ψλ , it follows that ψλ depends holomorphically on λ ∈ W . Define a map m : W → D by m(λ) =
ψλ(T ◦n

dλ
(0)). It is clearly that m is holomorphic. We then prove m is proper. Let λk ∈ H be a sequence converging to λ ∈ ∂W

as n → ∞. Without loss of generality, suppose that there exists a subsequence of λk , also denoted by λk , such that m(λk)

converges to an interior point w ∈ D. Since the family of univalent mappings {ψ−1
λk

: D → C} is a normal family, we can

suppose that ψ−1
λk

→ ψ−1 locally uniformly on D. So ψ−1(D) ⊂ Adλ(1). This means that ψ−1(w) = limk→∞ ψ−1
λk

(m(λk)) =
limk→∞ T ◦n

dλk
(0) = T ◦n

dλ
(0) ∈Adλ(1). This contradicts T ◦n

dλ
(0) ∈ Jdλ since λ ∈ ∂W .

Finally, by the definition of H0 and Lemma 4.1, Adλ(1) contains only one critical point 1 (counted without multiplicity).
Note that Adλ(1) lies in a superattracting periodic Fatou component and Tdλ(1−λ) = 0 �= 1, it follows that the orbit of 1−λ

is disjoint with the orbit 1 ↔ ∞. The proof is complete. �
Now we give a complete characterization of the quasiconformal conjugacy classes in Rd .

Theorem 5.9. Quasiconformal conjugacy classes in Rd can be listed as follows:

(1) Hyperbolic components in the interior of Md with the center removed.
(2) Capture components of Hn with the center (if any) removed, where n � 0.
(3) Centers of hyperbolic or capture domains.
(4) Queen components in the interior of Md.
(5) Single points on the boundary of Md.

Proof. By Corollary 5.5, the five cases stated in the theorem are disjoint to each other and (4), (5) are indeed quasiconformal
conjugacy classes. (1), (2) are quasiconformal conjugacy classes by Theorem 5.6. As every queer component is a conjugacy
class, one can get a proof in [40, Theorem 3.4] by a word for word analysis. �
6. Simply connectivity of the capture domains

In this section, we prove that the non-escaping locus Md is connected. This amounts to showing that H0 is home-
omorphic to the punctured disk D

∗ := D \ {0} and each of the component of Hn is homeomorphic to the unit disk for
n � 1.

One way to do this is to follow the standard way of Douady–Hubbard’s parameterization of the hyperbolic components of
the quadratic Mandelbrot set [9]. This method was developed by Roesch to study the parameter space of the cubic Newton
maps [27,28] and Qiu, Roesch, Wang and Yin to study the parameter space of the McMullen maps [26]. Moreover, this
parameterized method was generated and then used in the proof of M2 is connected [32, Theorem 1.1].

However, to prove H0 is homeomorphic to the punctured disk D
∗ and each of the component of Hn is homeomorphic

to the unit disk for n � 1, it would be much easier to use the methods of Teichmüller theory of the rational maps which
was developed in [19] (in which, a different proof of the connectivity of the Mandelbrot set was given).

We first recall some definitions in [19]. By definition, the Teichmüller space Teich(Tdλ) of Tdλ consists of all pairs
(Tdλ′ , [ϕ]), where ϕ : C → C is a quasiconformal mapping which conjugates Tdλ′ to Tdλ . Here [ϕ] means the iso-
topy class of ϕ . The modular group Mod(Tdλ) is the group of isotopy classes of quasiconformal homeomorphism com-
muting with Tdλ . The modular group Mod(Tdλ) acts on the Teichmüller space Teich(Tdλ) properly discontinuously by
[ψ](Tdλ′ , [ϕ]) = (Tdλ′ , [ψ ◦ϕ]). The moduli space of Tdλ is defined as the quotient Teich(Tdλ)/Mod(Tdλ), which is isomorphic
to the quasiconformal conjugacy class of Tdλ .

Moreover, one can define the Teichmüller space Teich(U , Tdλ) on an open set U which is invariant under Tdλ . The set
Teich(U , Tdλ) consists of all the triples (V , Tdλ′ , [ϕ]), where V is open and invariant under Tdλ′ , and the quasiconformal
mapping ϕ : V → U conjugates Tdλ′ to Tdλ . Here [ϕ] denotes the isotopy class of ϕ relative ideal boundary of V .
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Theorem 6.1. Each component of Hn is homeomorphic to D and contains exactly one center, where n � 1. Moreover, H0 is homeo-
morphic to the punctured disk D

∗ .

Proof. Let W be a component of Hn with all centers removed. Then the forward orbit of 1 − λ under Tdλ is infinite for
λ ∈ W . By Theorem 5.9, W denotes a single quasiconformal conjugacy class.

For any basepoint λ ∈ W , it follows that the critical point 1 − λ belongs to the attracting basin of the cycle 1 �→ ∞ �→ 1.
In particular, T ◦n

dλ
(0) ∈Adλ(1) and T ◦n

dλ
(0) �= 1. Define the Green function on Adλ(1) by

Gdλ(z) = − lim
k→∞

d−k log
∣∣U ◦k

dλ(z) − 1
∣∣, where z ∈ Adλ(1).

Note that Gdλ can be extended to the Fatou set of Tdλ by pulling back.
Let γ be the equipotential of Gdλ passing through 1 − λ. Then γ is homeomorphic to the figure of eight. Define

Ĵdλ := Jdλ ∪
⋃
n∈Z

T ◦n
dλ

(
γ ∪ {0}).

Then Ĵdλ is the closure of the grand orbits of all periodic points and critical points of Tdλ . The complement U := C \ Ĵdλ

consists of countably many annuli with finite modulus which lie in a same grand orbit. By [19, Theorem 6.2], we have

Teich(Tdλ) � Teich(U , Tdλ) × M1( Jdλ, Tdλ),

where M1( Jdλ, Tdλ) denotes the unit ball in the space of all Tdλ-invariant Beltrami differentials supported on Jdλ . Note that
every hyperbolic rational map carries no invariant line fields on the Julia set, it follows that M1( Jdλ, Tdλ) is trivial since Tdλ

is hyperbolic when λ ∈ W ⊂Hn .
Since W denotes a single quasiconformal conjugacy class, we have

W � Teich(Tdλ)/Mod(Tdλ) � Teich(U , Tdλ)/Mod(Tdλ) � H/Mod(Tdλ)

by [19, Theorem 6.1]. Note that every quasiconformal self-conjugacy ψ of Tdλ fixes the grand orbits of the critical points 1
and 1 − λ and hence fixes the boundaries of each annulus of U . Moreover, ψ is the identity on Jdλ . Therefore, [ψ] ∈
Mod(Tdλ) is identity on Ĵdλ and it is possibly a power of a Dehn twist in the annuli of U . This means that Mod(Tdλ) is a
subgroup of Z.

By Lemma 5.8, each W cannot be simply connected is a component of Hn for n � 1. On the other hand, W is not simply
connected if W = H0 by Proposition 5.7. So Mod(Tdλ) = Z. This means that W is homeomorphic to a punctured disk. This
means that each W contains exactly only one center if W �=H0. The proof is complete. �
Proof of Theorem 1.3. This is a direct corollary of Proposition 4.4 and Theorem 6.1. �
7. Proof of the asymptotic formula

By Proposition 5.7, if the parameter λ lies in the unbounded capture domain H0, then the Julia set Jdλ is a quasicircle.
In this case, Jdλ moves holomorphically in H0 and its Hausdorff dimension depends real analytically on λ by a classic result
of Ruelle. The following Theorem 7.1 is a weak version of [29, Corollary 6].

Theorem 7.1. Let fλ : Λ × C → C be a holomorphic family of hyperbolic rational maps parameterized by Λ, where Λ is a complex
manifold. Then the Hausdorff dimension of the Julia set of fλ depends real analytically on λ ∈ Λ.

Let Ω be a closed subset of R
n . A map S : Ω → Ω is called a contraction on Ω if there exists a real number c ∈ (0,1)

such that |S(x) − S(y)| � c|x − y| for all x, y ∈ Ω . A finite family of contractions {S1, S2, . . . , Sm} defined on Ω ⊂ R
n , with

m � 2, is called an iterated function system or IFS in short.
To compute the Hausdorff dimension of Jdλ with λ ∈ H0, we need the following result (see [11, Theorem 9.1, Proposi-

tions 9.6 and 9.7]).

Theorem 7.2. (See [11].) Let {S1, . . . , Sm} be an IFS on a closed set Ω ⊂ R
n such that |Si(x) − Si(y)| � ci |x − y| with 0 < ci < 1.

Then:

(1) There exists a unique non-empty compact set J such that J =⋃m
i=1 Si( J ).

(2) The Hausdorff dimension dimH ( J ) of J satisfies dimH ( J ) � s, where
∑m

i=1 cs
i = 1.

(3) If we require further |Si(x) − Si(y)| � bi |x − y| for 0 < bi < 1, then dimH ( J ) � s′ , where
∑m

i=1 bs′
i = 1.
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Fig. 4. Sketch illustration of the construction of the IFS.

The non-empty compact set J appeared in Theorem 7.2(1) is called the attractor of the IFS {S1, . . . , Sm}.
Let f be a rational map with degree at least two. We use Fix( f ) to denote the set of all the fixed points in the Julia set

of f .

Lemma 7.3. Let f be a hyperbolic rational map whose Julia set J is a quasicircle. Then the Hausdorff dimension D := dimH ( J ) of J is
determined by An(D) =O(1) as n → ∞, where

An(D) =
∑

z∈Fix( f ◦n)

∣∣( f ◦n)′(z)
∣∣−D

. (7.1)

Under the assumption of Lemma 7.3, Fix( f ◦n) denotes the collection of all the repelling periodic points of f with period
exactly n. The Julia set of a hyperbolic rational map can be seen as the limit of a sequence of IFS. These IFS are defined in
terms of the inverse branches of the iterations of the rational map. The original proof idea of Lemma 7.3 comes from [39,
Lemma 2.6] and the proof appeared here is an improved version.

Proof of Lemma 7.3. Let d � 2 be the degree of f . Since f is hyperbolic and the Julia set J of f is a quasicircle, there exist
a pair of closed annular neighborhoods W1, W2 of J and a quasiconformal mapping φ : W1 → Aε , such that φ conjugates
f : W1 → W2 to z �→ zd or z �→ z−d , where Aε := {z: 1 − ε � |z| � 1 + ε} is a closed annular neighborhood of the unit circle
and ε > 0 is small enough. Without loss of generality, we only consider the first case since the completely similar argument
can be applied to the second one.

In order to define IFS, it is more convenient to lift J and f under the exponential map. Hence we assume further that
J separates 0 and ∞. Define a curve γ := φ−1([(1 − ε)d, (1 + ε)d]) ⊂ W2. Fix a component of exp−1(W2 \ γ ) and denote it
by U . Then U is topologically a strip and exp : U → W2 \ γ is conformal in the interior of U , whose inverse is denoted by
log : W2 \ γ → U (see Fig. 4).

For each n � 1, the map f ◦n : W1 → W2 has dn inverse branches, say T1, . . . , Tdn , each maps W2 \ γ onto a half open
quadrilateral such that their images are arranged in anticlockwise order one by one. Let Si := log◦Ti ◦ exp be the map
defined in U , where 1 � i � dn . It is easy to see each Si is conformal in the interior of U and can be conformally extended
to an open neighborhood of U .

Now it is easy to see {S1, . . . , Sdn } is an IFS defined on U since f is strictly expanding on W1. The attractor
J ′ of {S1, . . . , Sdn } is a closed set satisfying J = exp( J ′). Moreover, J \ {z1} is the conformal image of J ′ with two
ends removed, where z1 ∈ J ∩ γ is a fixed point of f . This means that the Hausdorff dimensions of J ′ and J satisfy
dimH ( J ′) = dimH ( J ).

Let Fn|U :=⊔dn

i=1 S−1
i |Si(U ) be the lift of f ◦n under exp. Then each Si(U ) contains exactly one fixed point ζi ∈ J ′ of

Fn in its interior for 1 < i < dn and on its boundary for i = 1 and dn . Since Si can be conformally extended to an open
neighborhood of U , by Koebe’s distortion theorem, there exist two constants 0 < C1 � 1 � C2 both independent of n, such
that

C1

|F ′
n(ζi)| � |Si(x) − Si(y)|

|x − y| � C2

|F ′
n(ζi)| , ∀1 � i � dn, x, y ∈ U .

By Theorem 7.2, the Hausdorff dimension D = dimH ( J ′) = dimH ( J ) satisfies s1 � D � s2, where
∑dn

i=0 C
s j

j |F ′
n(ζi)|−s j = 1

and j = 1,2. Then, we have

1

C D
� 1

C s2
�

dn∑ 1

|F ′
n(ζi)|s2

�
dn∑ 1

|F ′
n(ζi)|D

�
dn∑ 1

|F ′
n(ζi)|s1

= 1

C s1
� 1

C D
. (7.2)
2 2 i=1 i=1 i=1 1 1
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Fig. 5. The Julia sets of T2λ , both are quasicircles, where λ = 30 and 1000, respectively. It can be seen that the Julia set becomes more circular as the
parameter λ becomes more larger (compare the right picture in Fig. 3). Figure ranges: [−10,16] × [−13,13] and [−125,125] × [−125,125].

The dn − 1 fixed points of f ◦n in the Julia set J are {zi = exp(ζi): 1 � i < dn}. In particular, z1 = exp(ζ1) = exp(ζdn ). Since Fn

is conformally conjugate to f ◦n in the interior of each Si(U ), we have F ′
n(ζi) = ( f ◦n)′(zi) for 1 � i < dn . Therefore, by (7.2),

we have

∑
z∈Fix( f ◦n)

1

|( f ◦n)′(z)|D
=

dn∑
i=1

1

|( f ◦n)′(zi)|D
=

dn∑
i=1

1

|F ′
n(ζi)|D

− ∣∣F ′
n(ζdn )

∣∣−D = O(1)

since |F ′
n(ζdn )| → ∞ as n → ∞. The proof is complete. �

As the parameter λ tends to ∞, the diameter of the Julia set Jdλ of Tdλ becomes larger and larger in the Euclidean
metric and the shape of Jdλ becomes more and more circular (see Fig. 5). Therefore, one can make a scaling of Jdλ (or
equivalently, make a conjugate), such the new Julia set converges to the unit circle.

Specifically, define

J∗
dλ = {λ− d

d+1 (z − 1): z ∈ Jdλ

}
. (7.3)

The following Lemma 7.4 has been proved in [23, Theorem 4.3] as a special case.

Lemma 7.4. The scaled Julia set J∗
dλ

converges to the unit circle in the Hausdorff topology as λ tends to ∞ and the Hausdorff dimension
of Jdλ tends to 1 as λ tends to ∞.

Although Lemma 7.4 is significant, however, we want to know further about the asymptotic formula of the Hausdorff
dimension of Jdλ as λ tends to ∞. In order to calculate the Hausdorff dimension of Jdλ , we do some setting first.

Recall that in Proposition 5.7, α = λ
− 1

d+1 . Then λαd = α−1. Let ϕα(z) = αd(z − 1) be the linear transformation as before.
We define a new rational map with parameter α as

fα(z) := ϕα ◦ Tdλ ◦ ϕ−1
α =

d−1∑
i=0

C i
dα

i

zd−i
= 1

zd
+ C1

dα

zd−1
+ · · · + C1

dαd−1

z
. (7.4)

This means that there exists a small ε > 0 such that fα : Dε × C → C is a holomorphic family of hyperbolic rational
maps parameterized by Dε , where Dε := {z: |z| < ε}. Note that the Hausdorff dimension is invariant under a conformal
isomorphism. This means that we only need to calculate the Hausdorff dimension of the Julia set Jα of fα with α ∈ Dε

since dimH ( Jα) = dimH ( Jdλ). We would like to remark that Jα = J∗
dλ

.
Let E be a subset of C and (Λ,λ0) a connected complex manifold with basepoint λ0. A family of maps hλ : E → C is

called a holomorphic motion of E parameterized by Λ and with base point λ0 if: (1) For each λ ∈ Λ, hλ is injective on E;
(2) For each z ∈ E , hλ(z) is a holomorphic function of λ ∈ Λ; and (3) hλ0 is identity on E (see [16,17] or [18, Chapter 4]).



F. Yang, J. Zeng / J. Math. Anal. Appl. 413 (2014) 361–377 373
Proof of Theorem 1.4. By (7.4), it follows that the Julia set Jα is the unit circle if α = 0. For z ∈ J0 = T, we have f0(z) = z−d .
Note that fα is a holomorphic family of hyperbolic rational maps with parameter α ∈Dε . There exists a holomorphic motion
φα : J0 → C of J0 parameterized by Dε and with base point 0 such that φα( J0) = Jα and

fα ◦ φα(z) = φα ◦ f0(z) = φα

(
z−d) (7.5)

for all z ∈ J0, see [18, Chapter 4]. Since every point on J0 moves holomorphically, we can write φα(z) in power series of α
as

φα(z) = z
(
1 + u1(z)α + u2(z)α2 +O

(
α3)), (7.6)

where z ∈ J0.
In the following, we adopt the notation q := −d since the negative sign is boring in the expressions during the cal-

culation. Meantime, we assume that d � 3 first. If α is small enough, we can expand fα in (7.4) in power series of α
as

fα(z) = zq − qzq+1α + q(q + 1)

2
zq+2α2 +O

(
α3). (7.7)

Substituting (7.6) and (7.7) into (7.5), then comparing the terms to the second order in α, we obtain the following
equations:

u1
(
zq)− qu1(z) = −qz, (7.8)

u2
(
zq)− qu2(z) = q(q − 1)

2
u2

1(z) − q(q + 1)zu1(z) + q(q + 1)

2
z2. (7.9)

For each non-zero integer l ∈ Z, the functional equation

u
(
zq)− qu(z) = −qzl (7.10)

has the formal solution

u(z) =
+∞∑
k=0

zlqk

qk
. (7.11)

Note that the solution (7.11) is convergent if |z| � 1. This means that the solution of (7.8) is

u1(z) =
+∞∑
k=0

zqk

qk
. (7.12)

Therefore, Eq. (7.9) can be reduced to

u2
(
zq)− qu2(z) = −q

(
(q + 1)

+∞∑
l=0

zql+1

ql
− q − 1

2

( +∞∑
l=0

zql

ql

)2

− q + 1

2
z2

)
. (7.13)

By (7.10) and (7.11), the solution of u2 is

u2(z) =
+∞∑
k=0

(
(q + 1)

+∞∑
l=0

zql+k+qk

ql+k
− (q − 1)

2qk

( +∞∑
l=0

zql+k

ql

)2

− (q + 1)

2qk
z2qk

)
. (7.14)

For each n � 1, the collection of the fixed points of f ◦n
α on the Julia set Jα forms the finite set

Fix
(

f ◦n
α

)= {φα

(
e2π it j

)
: t j = j

qn − 1
, 1 � j �

∣∣qn − 1
∣∣}. (7.15)

By (7.5) and the chain rule, we have ( f ◦n
α )′(φα(e2π it j )) =∏n−1

m=0 f ′
α(φα(e2π iqmt j )). The calculation in Appendix A shows that

for every D > 0 and all sufficiently large n, the following holds

1

|qn − 1|
|qn−1|∑

j=1

n−1∏
m=0

∣∣ f ′
α

(
φα

(
e2π iqmt j

))∣∣−D = |q|−nD
(

1 + D2n

4
|α|2 +O

(
α3)). (7.16)

Let Dα := dimH ( Jα) be the Hausdorff dimension of Jα . One can write the corresponding (7.1) of fα in Lemma 7.3 as∣∣qn − 1
∣∣|q|−nDα

(
1 + D2

αn |α|2 +O
(
α3))= O(1). (7.17)
4
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Fix some large n, when α is small enough, (7.17) is equivalent to

exp

(
n

(
D2

α

4
|α|2 − (Dα − 1) log |q|

)
+O

(
α3))= O(1). (7.18)

By Theorem 7.1 and Lemma 7.4, Dα depends real analytically on α in a small neighborhood of the origin and D0 = 1. This
means that in a small neighborhood of 0, the Hausdorff dimension of Jα can be written as

Dα = 1 + a10α + a01α + a20α
2 + a02α

2 + a11|α|2 +O
(
α3). (7.19)

Substituting (7.19) into (7.18) and comparing the corresponding coefficients, we have

a10 = a01 = a20 = a02 = 0 and a11 = 1/
(
4 log |q|). (7.20)

This means that

Dα = 1 + |α|2
4 log |q| +O

(
α3). (7.21)

Note that q = −d and α = λ
− 1

d+1 . This ends the proof of Theorem 1.4 in the case of d � 3.
If d = 2, then (7.7) can be written as fα(z) = zq − qzq+1α. Following the calculation process of d � 3 and carefully

omitting some corresponding terms, it can be checked that Theorem 1.4 still holds for d = 2. The proof is complete. �
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Appendix A

This section will devote to proving (7.16). From (7.7), we have

f ′
α(z) = qzq−1 − q(q + 1)zqα + q(q + 1)(q + 2)

2
zq+1α2 +O

(
α3). (A.1)

Substituting (7.6) into (A.1), we have

f ′
α

(
φα(z)

)= qzq−1 + qzq−1[(q − 1)u1(z) − (q + 1)z
]
α

+ qzq−1
[

(q + 1)(q + 2)

2
z2 + (q − 1)(q − 2)

2
u2

1(z) − q(q + 1)zu1(z) + (q − 1)u2(z)

]
α2

+O
(
α3). (A.2)

Define σ := σ(t) = e2π it ∈ T. Then σσ = 1. For 0 � m � n − 1, by (A.2), we have∣∣ f ′
α

(
φα

(
σ qm))∣∣2 = f ′

α

(
φα

(
σ qm))

f ′
α

(
φα

(
σ qm))

= q2 + Amα + Amα + Am Am|α|2/q2 + Bmα2 + Bmα2 +O
(
α3), (A.3)

where

Am = q2(q − 1)u1
(
σ qm)− q2(q + 1)σ qm

(A.4)

and

Bm = q2(q + 1)(q + 2)

2
σ 2qm + q2(q − 1)(q − 2)

2
u2

1

(
σ qm)− q3(q + 1)σ qm

u1
(
σ qm)+ q2(q − 1)u2

(
σ qm)

. (A.5)

For every D > 0, by (A.3), we have

n−1∏
m=0

∣∣ f ′
α

(
φα

(
σ qm))∣∣−D =

n−1∏
m=0

(∣∣ f ′
α

(
φα

(
σ qm))∣∣2)− D

2

= |q|−nD
n−1∏(

1 + Amα + Amα + Bmα2 + Bmα2

q2
+ Am Am|α|2

q4
+O

(
α3))− D

2

m=0
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= |q|−nD − D

2
|q|−nD−2

n−1∑
m=0

(
Amα + Amα + Bmα2 + Bmα2)

− D

2
|q|−nD−4

( ∑
0�m1<m2�n−1

(
Am1 Am2α

2 + Am1 Am2α
2)+ ∑

0�m1,m2�n−1

Am1 Am2 |α|2
)

+ D(D + 2)

8
|q|−nD−4

(
n−1∑
m=0

(Amα + Amα)

)2

+O
(
α3). (A.6)

Lemma A.1. Let m,m1,m2 ∈N. If n � 1, then:

(1) qm �≡ 0 mod qn − 1.
(2) qm1 + qm2 �≡ 0 mod qn − 1.
(3) qm1 − qm2 ≡ 0 mod qn − 1 if and only if m1 − m2 = kn for some k ∈ Z.

Proof. Since (q,qn − 1) = 1, it means that (qm,qn − 1) = 1 for m � 0. Then (1) follows.
To prove (2), it suffices to show that qm + 1 �≡ 0 mod qn − 1 for m � 0 since qn − 1 is relative prime to qm′

for m′ � 0
by (1). Set m = kn + r, where k � 0 and 0 � r � n − 1. We have

qm + 1 = qkn+r − qr + qr + 1 ≡ qr + 1 �≡ 0 mod qn − 1

since 0 < |qr + 1| < |qn − 1|.
The proof of (3) is similar to that of (2). Since qn −1 is relative prime to qm′

for m′ � 0, we need to find out the condition
on m such that qm − 1 ≡ 0 mod qn − 1 for fixed n � 1. Set m = kn + r, where k � 0 and 0 � r � n − 1. We have

qm − 1 = qkn+r − qr + qr − 1 ≡ qr − 1 mod qn − 1.

This means that qm − 1 ≡ 0 mod qn − 1 if and only if r = 0 since |qr − 1| < |qn − 1|. �
Following [34, §2], it is convenient to introduce the average notation

〈
G(t)

〉
n := 1

|qn − 1|
|qn−1|∑

j=1

G(t j), (A.7)

where G is a continuous function defined on the interval [0,1) and t j = j/(qn − 1) is defined in (7.15).
In order to prove (7.16), we only need to prove for every D > 0 and sufficiently large n, the following holds〈

n−1∏
m=0

∣∣ f ′
α

(
φα

(
σ qm))∣∣−D

〉
n

= |q|−nD
(

1 + D2n

4
|α|2 +O

(
α3)). (A.8)

For each n � 1 and any k ∈ Z, it is straightforward to verify the average in (A.7) has the following useful property:〈
σ k〉

n = 〈e2π ikt 〉
n =

{
1 if k ≡ 0 mod qn − 1,

0 otherwise.
(A.9)

Lemma A.2. For 0 � m,m1,m2 � n − 1, we have 〈σ qm 〉n = 0, 〈u1(σ
qm

)〉n = 0, 〈σ qm1 +qm2 〉n = 0, 〈σ qm1 u1(σ
qm2

)〉n = 0,
〈u1(σ

qm1
)u1(σ

qm2
)〉n = 0 and 〈u2(σ

qm
)〉n = 0.

Proof. By (7.12) and (7.14), the average property (A.9) and Lemma A.1(1), (2), the equations stated in the lemma can be
verified directly. �

As an immediate corollary of Lemma A.2, from (A.4) and (A.5), we have

Corollary A.3. 〈Am〉n = 〈Am〉n = 0, 〈Bm〉n = 〈Bm〉n = 0, 〈Am1 Am2 〉n = 〈Am1 Am2 〉n = 0 for 0 � m,m1,m2 � n − 1.

By (A.6) and Corollary A.3, we have〈
n−1∏∣∣ f ′

α

(
φα

(
σ qm))∣∣−D

〉
= |q|−nD

(
1 + D2

4
|q|−4

∑
〈Am1 Am2〉n|α|2

)
+O

(
α3). (A.10)
m=0 n 0�m1,m2�n−1
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By (A.4) and (A.5), we have

〈Am1 Am2〉n = q4(q − 1)2〈u1
(
σ qm1 )u1

(
σ qm2

)〉
n + q4(q + 1)2〈σ qm1 −qm2 〉

n

− q4(q2 − 1
)〈

u1
(
σ qm1 )

σ−qm2 + u1
(
σ qm2

)
σ qm1 〉

n. (A.11)

Since 0 � m1,m2 � n − 1, it follows that m1 − m2 = kn for k ∈ Z if and only if m1 = m2. By Lemma A.1(3), we have〈
σ qm1 −qm2 〉

n =
{

1 if m1 = m2,

0 otherwise.
(A.12)

This means that∑
0�m1,m2�n−1

〈
σ qm1 −qm2 〉

n = n. (A.13)

Similarly, by Lemma A.1(3), we have

〈
u1
(
σ qm1 )

σ−qm2 〉
n =

+∞∑
k=0

〈σ qk+m1 −qm2 〉n

qk

=

⎧⎪⎨⎪⎩
∑+∞

k=0
1

qn−(m1−m2)+kn = qm1−m2

qn−1 if m1 > m2,∑+∞
k=0

1
qm2−m1+kn = qn−(m2−m1)

qn−1 if m1 � m2.

(A.14)

This means that∑
0�m1,m2�n−1

〈
u1
(
σ qm1 )

σ−qm2 〉
n =

∑
0�m2<m1�n−1

qm1−m2

qn − 1
+

∑
0�m1�m2�n−1

qn−(m2−m1)

qn − 1

= n

qn − 1

(
q + q2 + · · · + qn)= nq

q − 1
. (A.15)

Moreover, by Lemma A.1(3), we have

〈
u1
(
σ qm1 )u1

(
σ qm2

)〉
n =

+∞∑
k1=0

+∞∑
k2=0

〈σ qk1+m1 −qk2+m2 〉n

qk1+k2

=

⎧⎪⎨⎪⎩
( 1

qm1−m2
+ 1

qn−(m1−m2) )
q2+n

(q2−1)(qn−1)
if m1 > m2,

( 1
qm2−m1

+ 1
qn−(m2−m1) )

q2+n

(q2−1)(qn−1)
if m1 � m2.

(A.16)

This means that (similar to the reduction process of (A.15))∑
0�m1,m2�n−1

〈
u1
(
σ qm1 )u1

(
σ qm2

)〉
n = nq2

(q − 1)2
. (A.17)

By substituting (A.13), (A.15) and (A.17) into (A.11), we have∑
0�m1,m2�n−1

〈Am1 Am2〉n = nq4. (A.18)

By (A.10) and (A.18), it follows that (A.8) holds. The proof of (7.16) is complete.
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