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1. Introduction

Let {X,, n > 1} be a sequence of independent and identically distributed (iid) random variables with
marginal cumulative distribution function (cdf) Fi, ~ GED(v), the general error distribution with shape
parameter v > 0. The probability density function (pdf) of GED(v) is defined by

vexp(—(1/2)|xz/A")

fv(fL') = )\21+1/UI‘(1/U) >

z €R,

where A\ = [272/*’(1/v)/I'(3/v)]"/? and I'(-) denotes the gamma function [10]. For v = 2, GED(2) reduces
to the standard normal distribution.

Recently, asymptotic behaviors related to GED(v) have been studied in the literature. Peng et al. [11]
established the Mills ratio and distributional tail representation of GED(v), and showed that F, € D(A),
i.e., there exist norming constants a,, > 0 and b,, € R such that

lim sup|P(M,, < anz +by) — A(z)| =0, (1.1)

n—oo T€R
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where M,, = maxi<k<, Xy denotes the partial maximum of {X,,, n > 1} and A(z) = exp(—e™*), the
Gumble extreme value distribution. Uniform convergence rate of P(M,, < anz + b,) — A(z) has been
established by Peng et al. [12] which extended the work of Hall [1] for the case of GED(2). For higher-order
expansion of P(M,, < a,x + by,), see Nair [9] for GED(2) and Jia and Li [3] for general GED(v) with shape
parameter v > 0.

Moments convergence of extremes was studied by McCord [8], Pickands [13] and Ramachandran [14], see
Section 2.1 in Resnick [15]. The relationship between weak convergence and moment convergence of order
statistics was considered by Hill and Spruill [2]. The objective of this paper is to establish the higher-order
expansions of the moments of M,, for GED(v). Nair [9] derived the higher-order expansions of moments
of extremes for standard normal distribution GED(2). Recall that Peng et al. [12] showed that (1.1) holds
with norming constants a,, and b, satisfying the following equations:

1—-F,(by)=n"" and a, =20 'A"b.7". (1.2)

Noting that for v = 1 the norming constants a,, = 27'/2 and b, = 27/?logn/2. By Proposition 2.1(iii) in
Resnick [15], we have

An(n) = E(M"a—;b"> _ / " dA(z) = 0 (1.3)
z€R

as n — oo for all nonnegative integers r. The following work is to establish the asymptotic expansions
of E((M,, — b,)/an)", from which we can derive the convergence rates of A,.(n). For more related work on
asymptotic expansions of distributions and moments of extremes for given distributions, see Peng et al. [12],
Liao and Peng [4] and Liao et al. [5-7].

This paper is organized as follows. Section 2 provides the main results, and some necessary auxiliary
lemmas and their proofs are given in Section 3. The proofs of the main results are given in Section 4.

2. Main results

In this section, we provide the main results. In the sequel, for nonnegative integers r let

M, — "
M) = /mrde(anx—i—bn)
n

a

my(n) = E(

z€R

and

m, =E& = / x"dA(x)

z€R

respectively denote the rth moments of (M,, — b,)/a, and £ ~ A(x), and the norming constants a,, and b,
are given by (1.2). The main results are stated as follows.

Theorem 2.1. Let {X,, n > 1} be an iid sequence with marginal distribution F,, ~ GED(v). Then,

(i) for v # 1, with norming constants a, and b, given by (1.2), we have

by, [by (mr(n) —my) + (1 — Uﬁl))\”r(mﬂ_l + 2m,.)]
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L (1 — v ) {((1 ) 1) 4 2)mn 4 (L= oY)+ 1)+ D

# (-0 -+ ) Y] 1)

as n — 0o;
(ii) for v =1, with norming constants a, = 2~'/% and b, = 2=/?logn/2, we have

n {n(mr(n) —m,) + (1)’“;F<”>(2)] ~ (4)’“*1214 [81(=1)(3) — 371 (4)] (2.2)

as n — oo, where I'"=Y)(s) denotes the (r — 1)th derivative of the gamma function at x = s.

Remark 2.1. For the case of v = 2, i.e., the standard normal case, the result of Theorem 2.1(i) is agreement
with Theorem 3.1 in Nair [9].

Noting that b¥ ~ 2Alogn due to (1.2), by Theorem 2.1 we can derive the rates of convergence of
moments which is stated as follows.

Theorem 2.2. For the moments of normalized mazima of GED(v), for large n we have

(1—v)r
A ~N—_—— 2
#(n) 2Togn (Mmpg1 +2m,)
ifv#1, and
~ (—1)rt ] pr-1)
Asln) ~ (-1 100 (2)
ifv=1.

3. Auxiliary lemmas

In order to derive the main results, we need some auxiliary results. The first one is about the Mills-type
inequalities of the GED(v).

Lemma 3.1. Let F,(z) and f,(x) denote the cdf and pdf of GED(v), respectively. Then,

(i) forv > 1 we have

2)\? 2v — 1A -t 1-F 2\

A (14 ux_” < 1= F@) < A Y (3.1)
v fv(x) v
for all z > 0, where \ = [272/°I'(1/v)/T(3/v)]"/?;
(ii) for 0 <wv <1 we have

2\Y 1—-F 2)\Y 2(v — 1)AY -t

ixl—v < v(x) < A 21771 + ux_v (32)
v fu(2) v v

for all x > A\[2(1/v — 1)]'/v.

Proof. Note that Lemma 2.1 in Peng et al. [11] shows that (3.1) holds as v > 1. The rest is to prove that
(3.2) holds if 0 < v < 1.
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For ¢t > [2(1/v — 1)]*/?,

oo oo

1 X v
m exp(—%)dy > /y*” exp(—%)dy
t t

- - g ool )

which implies that

ptv=1\ _ﬁ - T _£ gy < v—1 n ptv=1\ T _ﬁ
5 exp 5 exp 5 vy ; 5 exp 5
t

holds if 0 < v < 1. So, by the definition of the GED(v) with 0 < v < 1, we can get

1— F,(z) = m fexp(—%)dy

o/2
< fula) X (1 MECRa b Wx—v) -
and
L= Fye) > fuola) 2t

v

as > A[2(1/v — 1)]'/?. The desired result follows. O
The following distributional expansion of maximum for GED(v) is due to Jia and Li [3].

Lemma 3.2. Let F,, denote the cdf of GED(v). Then,

(i) for v # 1, with norming constants a, and b, given by (1.2) we have

B R 2 e+ 00) = 40) ~ ho@)A(@)] = (o) + 5 ) 400

as n — 0o, where ky(x) and w,(x) are respectively given by
ko(z) = (1 — v H)A"(2® + 22)e”
and

wy(z) = (v = 1)A*" |da + 22° + ;(2 —v )2’ + %(1 - v_l)x‘l] e

(ii) for v =1, with norming constants a, = 2~/% and b, = 2=/?logn/2, we have

0 |n(Fy (ant + by) — A() + %eh/l(x)} o (%e“ _ %631’) A)

as n — oQ.

(3.4)
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Lemma 3.3. Let the norming constant b, be given by (1.2). For any constant 0 < ¢ < 1 and arbitrary
nonnegative real numbers i and j, we have
. i i1 _ _ : i J —
nhﬂngo by, / 27 (1 - A(z))de =0 and nhﬁngo by, / x?dA(x) = 0. (3.5)

cbl’/g Cbz//S

Proof. It follows from the fact 1 —x < e™® < 1 for « > 0 that

b / x’ (1 —exp(—e_”“'))dx <b / /e dx
bz/3 bz/'5
2 ; x
< b;exp(——bﬁ) / ! exp(——)dm -0
cb;’/s
as n — 00. Similarly,
b, / wIdA(z) < b / e dr — 0
cby/? cby/?

as n — 0o. The desired result follows. O

Lemma 3.4. Assume that the shape parameter v # 1, then for any constant 0 < d < 1 and arbitrary
nonnegative real numbers i and j, we have

—dlog by, —dlog b,
lim b x| A(z)dz = 0, lim b zPdA(x) =0 (3.6)
n—oo n—oo
and
—dlog b,
lim bl / |z[? F (anz + by)da = 0. (3.7)

Proof. Note that b, — 0o as n — oo since 1 — F,(b,) = n~1. For 0 < d < 1, we have

—dlog b,

~1
. . . blTiL . efw
by, |z]? A(z)dx < b, exp -5 |x])? exp —— dx

) bd 3 ) T
:b;exp(—?”>/x] exp(—%)dx—)()
1

as n — 0o, and

—dlog b, oo
) ) ) pa ) z
by, / |z|?dA(z) < b}, exp(él) /xje$ exp (%)dw —0
—o0 1

as n — oo since [, z7e” exp(— S )dz < oo.
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Note that a,, = 20~1A\?bL~? implies that b, — da, logb, — 0o as n — oo. By the following facts

(1—y)’ <l—vy+ow—-1)y* for0<y< i, v>1
and
1-y)<l—-wvy for0<y<l, 0<v<l
and Lemma 3.1, we can derive that

bEE™ (b, — day, loghy,) — 0

as n — 00. S0,

—dlog by, b, —dany, log by,
b, |2l By (an + by )dz < 057~ F ™ (by — day log b) / [y = bul” Fo(y)dy

< bia; ) EN Y (b, — day loghy) / ly — bl Fo(y)dy

1—danb, ! log b,

+ bttt g I=L pr(h,, — day, log by,) —1dy
< Z( >b;+5a,jj_1F§_1(bn — day, log by, /y] SE(
s
s=0 0

1
+ bttt g I=  pr(h,, — day, log by,) /(1 —y)ldy
0
—0

as n — oo since fooo y"F,(—y)dy is finite for all » > 0. The desired result follows. O

Lemma 3.5. For any constant 0 < ¢ < 1 and arbitrary nonnegative real numbers v and j, we have

lim b / 2/ (1= F}(anx + by,))dz =0 (3.8)
n—oo
cbu/3
and
lim_ 2 ‘(1= F)(apz +by)) = 0. (3.9)

Proof. By Corollary 3 in Peng et al. [11] and Lemma 1 in Jia and Li [3], we have the following distributional
tail representation of GED(v) with v > 0:

1= Fy(z) = eXP< /% )
A
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for large x > 0, where c(z) — ¢ > 0, g(x) — 1 as ¥ — 00, and the auxiliary function f(z) = 20~ \z17% > 0
on (A, 00) with lim,_,+ f'(x) = 0. Recall that 1 — F,,(b,) = n~! and a,, = f(b,). By arguments similar to
Lemma 2.2(a) in Resnick [15], we have

1= FMapz +bn) < (14)%(1 +ex)c (3.10)

for x > 0, arbitrary € > 0 and large n. So, for 0 < € < we have

v
3itvj+3v?
o0

0< lim b / 2/ (1 — F}(anx +by,))da

n—00
3
cbz/

oo

< lim (1+¢)(ce +0,7/%) " / 2 (1 + ex) 2z

n—00
3
cbﬁ,/

=0

by (3.10) since [~ 27 (1 + ex) I~ 2dx is finite for all j > 0.

From (3.10), for 0 < e < i%’ we have

0< xlgr;o supz’ (1 — F)'(anz + by)) < leIEO(I +e)z'(1+ex) "t =0.
The proof is complete. O
Lemma 3.6. Let h,(z) =nlog F,(a,x +b,) + ™%, where a,, and b,, are given by (1.2), i.e.,
1— Fy(by) =n"", an =207 \UbL Y.
Then, for v # 1 and sufficiently large n we have
|hn(z)| < 3
uniformly for all —dlogb, <z < cbf,/3 with0 <c<1and0<d< a=min(l,v).

Proof. We only prove the case of v > 1. For the case of 0 < v < 1, the proofs are similar and details are
omitted here.
By integration by parts, we have

1 — Fy(z) =207 "\ fy(2)2' ™Y — r(x)
=207\ f,(2)z' T (1= 2(1 — v A7) + s(2) (3.11)

for large = > 0 and for v > 1, where
0<r(z) <4 ' (1—v ") fy(x)z' " and s(z)>0. (3.12)
Let pn(z) =1 — F,(apx + b,) and
nlog Fy(anx + by) = —nop(z) — Ry (),

where
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ne; ()

0 < Rp(x) < 72(1 —on@))

since —y — Q(iy—iy) <log(l —y) < —y for 0 < y < 1. Hence,

|hn(2)] = |—ngn(2) + 7 — Ry(2)] < |—nga(z) + 77| + R (). (3.13)
For large n and —dlogb, < z < cbz/?’7 we have
@n(w) < SDn(_dIOgbn) =1- Fv(bn —day, IOgbn) <c <1

and

1 (1—Fy(anz +0by))?

0 < Ry(z) < = .0
A1 14 2(1 — v )Avh? b >
< n ~ 4 92dlogh,
(T~ co)2/°T(L/0) bl (1 — 2dv T Avby " og by)2o2 P\ " 2w 2418
<1 (3.14)

due to (3.1) and the inequality 1 + vy < (14 y)” as —1 <y < 1 for v > 1. For > 0, we have

|—nen(z) + e < npn(z) + e <n(l— Fy(by)) +1=2. (3.15)

It follows from (3.14) and (3.15) that |h,(2)| < 3 holds for 0 < x < b3

Next, we consider the case of —dlogbh, <z < 0. By (3.11) and (3.12), we have

1= F,(anx + by)
1—Fy(bn)
1 — 2D (1/0)Ar(anz 4 by ) (an® + by) Y~ exp(535 (anz + bp)?)

(14 201\, z)v=1[1 — 21/v 1 (1 /o) AL =vr (b, )bi ' exp(53+04)]

—T

—npp(z) +e F =

+e "

1
X exp [w((anz +b,)" — bi)] +e*

= e_r(l + 2v_1)\”b;”x)1_an(x),
where

_ o NV b2 = (v _ o k1= plapz +by)
Cn(z) = (1+ 207"\, ) b exp ( v E ( ) (207'\"b;, " 7) ) _
2X0 = \k 1 — u(by)

with p(z) = 21 (1/v)Ar(z)2v " exp(555 ) satisfying 0 < p(z) < 2(1 — v~ 1)A%z ™ for large z > 0,

where
(Z) —vw—1)(v—k+1)/K, K =k(k—1)--2-1

for v € R and positive integer k.
For —dlogb, <z <0, let

To(x) = i (Z) (21}71)\”b;“m)k and Qp = i <v ; 1) (21}71)\”1);“33)]6,

k=2 k=1
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we have T, (z) > 0 and Q,(x) < 0 since 1 +vy < (1+y)’ < 1laswv >1and —1 < y < 0. Noting that
1—y<e¥<1fory>0, we have

Co(z) < (14207 A 2)" " = (1 - zb;, Tn(:ﬂ)) L M0n2 % 0n) _fﬁa;?bibn)

<1-— <1 - ;fﬂ Tn(x)> (1= planz +by))

U

< Qb;v () + 2(1 — v_l))\”(anx +b,)7"

and

_ N 1 — planz +by)
Co(z) > (1420~ A 0g)" "t = 2T T On)
ot

1- /Jf(bn)

> 2Qn(z) — 4(1 — v ) A%,

>1+ Qn(JC)

Hence for large n we have

U

b
np
oo (@)

|Cn(2)| < +2|Qn(@)| +6(1 — v ) A (anz + by) "

if —dlogb,, < x < 0. Note that for large n

U
’;’;} Tn(x)’ <2d*(1 — v ") A", " (log b,)?

and
Qn(2)] < 4d(1 —v™1) A%, " log by
hold uniformly for all —dlogb,, < z < 0, and
(an® +by) 7" < b,"(1—2dv ' A\"b, " logby,) ",
so that there exists a constant ¢; > 0 satisfying
|Cn ()] < c1by, " (log by )?.

Hence, for sufficiently large n,

|—npn(z) +e | =e " (1+ 2v71)\”bgvx)17v|6’n(x)’
< (1= 2dv™ A" log by) ' b4 (log by, )2
<1 (3.16)

uniformly for all —dlogb, < = < 0. Combining with (3.14) and (3.16), we have |h,(z)| < 3 uniformly for
—dlogb,, < z < 0. The desired result follows. 0O
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Lemma 3.7. For v # 1, let « = min(1,v). For large n and —dlogb, < z < cbv/g

2"y, [by (F) (ana 4 by) — A(x)) — ky(z) A(x)]

is bounded by integrable functions independent of n, withr >0, 0<c <1 and 0 < d < o, where a,, and b,
are given by (1.2), and k,(x) is given by (1 — v~ )N (2% + 2z)e*.

Proof. We only consider the case of v > 1. For the case of 0 < v < 1, the proofs are similar and details are
omitted here.
By Lemma 3.6, for large n we have

by [bn (F (an® + by) — A(z)) — ky(2)Az)]

< Y [bE hy () — Ky (2)] A(z) + b2RE (2) (% + exp(|hn(x)|)>/1(x)
< B Balie) — k(0] ) + 12 ) (5 + ) Ao

where h,(z) = nlog F,(anx + b,) + e 2.

Note that [~ zFe'® exp(—e~®)dx = (—1)¥I"®)(¢) is finite for ¢ > 0 and nonnegative integers k. In the
following we will show that both |b% (b2 hy, (x) — ky ()| and |2k, ()| are bounded by m(x)e™*, where m(z)
is a polynomial on z. Since proofs of the above two cases are similar, we only prove that |bY (b2 hy, (2) —ky ()]
is bounded by m(z)e~* here. Rewrite

b (boha () — ky(z)) = b2 (—npn(z) + 7% = b ky(2)) — b2 Ry (). (3.17)

By (3.14), for large n we have

)\v—l (1 + 2(1 _ U—l))\vb—v)bv-i-l bv
b B nJn =t dlogby,
w Bnle) < () (+20 b2 ¢ “P\Tow Tee
) Aot (L4201 = o )Ab byt <_ b )
(1 — 60)21/UF(1/1)) (1 — 2d1)71)\”b;v log bn)2U72 p 2\V
<e® (3.18)

for —dlogb, < x < cbz/?’. Obviously, apx+b, > 0if —dlogb, <z < cbz/3 with large n. It follows from (3.1)
that

1— Fy(apz+by) - (anz + b)Y folanz + by)
1— F,(bn) (14 2(1 — v~ ") =165 £y (bn)

1+2(1—v h)Av," v 1w
= T a1 0P| o (12070, 70) " — 1)

<2 " (3.19)

holds for all —dlogb, < x < b¥/? since 1+ vy < (1+y)? for v >1and —1 < y < 1. By Lemma 2 of Jia
and Li [3], we have

1— Fy(by) _ v—1)ay, van(bn +apt)’ "t
T _ —1)dt
1—Fv(anx+bn)e (n, expl/(b + ant 2\V ’
0
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where

1+2(0 = DA+ 40! — 1) (vt = 2)A2b, 2 + O(b, %)
1421 = DA (apx + bp) =0 + 40~ = 1) (01 = 2)A2(apz + bp) =20 4+ O (b *?)

Ay(n,x) =

with lim,, o Ay(n,2) = 1 uniformly for all —dlogb,, < z < cbf/:g. Rewrite

biv (—ngpn(m) LT b;vkv({b)) _ 1-— Fv(anx + bn)biv (_1 + 1-— Fv(bn) >€7‘T(1 o kv(x)ewbnv))

1 — Fy(by) 1— F,(anz + by
_ 1 _Fv(anl'-i-bn)
T [Gal@) + Halw) + In(@) + Ju(a)], (3.20)

Gn(z) = 02" (Ay(n, ) — 1),

Hn(aj‘) _ b%vAv(n,iL') [/((U — ].)Cln + ’Uan(bn + ant)'ufl B 1>dt B (1 _ 071))\@ ($2 + Qx)bnv‘|,
0

by, + ant 2\

v—1
Ln(z) = by Ay (n, @) (1 — v~ ')A (2? + 22) /(b - fn w"(b";;f"t) —1)dt,
0

(v 1a van(anrant)”_l _ l)dt]k

Tu(a) = 020 Ay (n,2) (1 — (1 — v~ A (22 + 22)b;, ") Z s (i 28

!
P k!

First, we consider the bound of G, (z). For the case of 0 < z < cbf/?’, we have

|Go(@)| < (1—2(1 =0 )N (ane +b,) ") 2
x [2(v7h = 1)Ab, Y (1= (14207 '\, v2) )
Fa(oh = 1) (07 = 2)ATB (1 = (14207 A, e) ) + 0 (6;%)]
<(1=2(1— o )AY) A1 = o)A+ 16(1 — 0 71) (2 — v )N, Y + O(b,)]
< 148X (1+8)\)z (3.21)
duetol—vy < (1+y)™" < 1forv>0andy > 0. Next consider the case of —dlogb, < x < 0. Noting
that 1+ vy < (14+y)? <1lforv>1and —1 <y <0, we have
Go(@)| < (1=2(1 =0 )N (by — day logb,) ™) b2
< |2(v™t = )N, (1 — 2dv ™ AV, P log b, ) (14 207N, V)" — 1)
FA(o = 1) (07 = 2)A%0; 2 (1 — 2dv A, P log by ) (1 4+ 20~ TN, ") — 1)
+0(b,%)]
<1+ 16M%"(1 4 8)Y)|z| (3.22)

for large n. Similarly, for the bounds of H,(z), I,(x) and J,(z), as —dlogb, < z < cbz/g we have

|H,(2)] < 2(1 — v )27 A" —d| 'A% + %(1 — o)1 =207 A z?, (3.23)
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1\ o v—1
+(1—v A2 + %(1 —v H[1- 2v_1|)\2”x|3} (3.24)
and
|Jn(x)’ < 26Xp<@) (1 + (1 - v_l))\” (1’2 + 2|x|))
v—1 4 2
X [mm +(1—v A2 + g(l —v |1 - 2v1|)\2”|x|3] (3.25)

for large n. Hence, we derive the desired result by combining (3.17)—(3.25) together. O
For v = 1, noting that the GED(1) is the Laplace distribution with pdf given by
fi(z) =271/2 exp(—21/2|x|), x € R, (3.26)

the distributional tail can be written by

1—F(z)=2""2f(z)=2"" exp(—21/2) exp <— / %dt)7 x>0 (3.27)

with f(t) = 27'/2. For the Laplace distribution, we have the following results. Details are omitted here since
the arguments are similar to that in the case of v > 1. Recall that the norming constants a, = 2-/2 and
b, =2"2logn/2 as v = 1.

Lemma 3.8. For 0 < d < 1 and arbitrary nonnegative real number j, we have

—db}/z —db}l/z
lim n? / |29 A(z)dz = 0, lim n / lz[ e 2" A(x)dx = 0 (3.28)
n—roo n—oo
and
7db;/2
lim n? / 2! F{"(anz + by)dz = 0. (3.29)
n—oo

Lemma 3.9. For v = 1, let h,(x) = nlog Fi(anx + by,) + e~ % with a, = 2-1/2 p, = 271/2 logn/2. For
sufficiently large n, we have |hy,(z)| < 2 uniformly for all x > —db,ll/2 with 0 < d < 1. Furthermore, for
x> —dby/?, " n[n(Fl (anz +by) — A(z)) + e 2 A(x)] is bounded by integrable functions independent of n,
wherer >0 and 0 < d < 1.

4. Proofs

By Proposition 2.1(iii) in Resnick [15], we have

M, — b, \" T
. 1 n n _ _ r — (—_1\" (™)
() = i B( 20—, = [ araa) = (o),
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since f_000|x|7"fv (x)dx < oo for all positive integers r, where I'(") (1) denotes the rth derivative of the gamma
function at 2 = 1. Hence, for large n, m,.(n) is finite and

oo

my(n) —m, = / z" (F (anz + by) — A(x))/dx
= / " d(F) (anz + by) — A(z)).

Noting that ffm|x|rfv(m)dx < oo implies that lim, ,_o|z|"F,(z) = 0, and by the C,-inequality, we
have

21‘—1 T bn T
0< lim supl|z|"F)(anz +b,) < lim (Iyl” + [5n| )Ff(y) =0,
T——00 y——00 ar,
which implies
lim z"F)(anz +b,) =0. (4.1)

T—r—00

Hence, by (3.9) and (4.1), we have

lim 2" (F} (apz + by) — A(z)) = lim 2" (1 — A(z)) — lim 2" (1 — F}'(apz + b,)) =0

r—r00 Tr—r00 T— 00

and

lim 2" (F}(anz +by) — A(z)) = lim 2"F}(apz +b,) — lim 2" A(z) = 0.

r——00 Tr—r—00 T—r—00

So, by integration by parts, we have

my(n) —m, = —r / "N (F (anz + by) — A(z))da (4.2)
and
/ e A(z)dr = —(r + D)my +mpg . (4.3)

For v # 1, by (3.3), (4.2) and (4.3), Lemmas 3.3-3.7, and the dominated convergence theorem, we have
b2 [b2 (my(n) —my) + (1 — v ) A r(mypq + 2m,)]
(oo}
- / b2 022" (F (an + by) — A(2)) — 27 k(@) A(2)]di

= _—r / b2l (1= A(z)) — (1= F'(anz + by))]dz + 7 / b 2" ky (2) Az)da

cb:/3 cbz/3
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cbfl/‘3
—r / 2" [0 (F (anz + b)) — A(z)) — ky(z) A(z)]da
—dlog by,
—d log by, —d log by,
oy / b2'a" M (F) (anz + by) — A(z))da + 7 / b 2" ey () A(z)da
i 2
— = / (wv(x) + @)x’“_l/l(x)dx

— 2 (1— ) [((1 o)+ 1) £ 2)my 4 (L= )4 1)+ D

+ (% (1—v Hr-1)+ %(2 - v_1)>mr+2}

as n — 0o, which is (2.1).
For the case of v = 1, first note that

for all nonnegative integers k and m, where I'") (m) denotes the kth derivative of the gamma function at
x =m. By (3.4) and (4.2), Lemmas 3.8-3.9, and the dominated convergence theorem, we have

n [n(mr(n) —my) + (—1)”CF(T_1)(2)

2
T 1
= —r / n|:x7"—1n(F1n(a,n{L' + bn) — A(!I?)) -+ §$7—1e—2x/1(x):| dx
= —7r / n |:xT—1n(F1"(an:L' —+ bn) — A(.’E)) + %xr—16—2z/1(x):| dl’
—dby/?
—dbl/?
1
—r / n {xrln(Fln(anx +b,) — Az)) + §xr1€21/1(m)] di

as n — oo, which is (2.2).
The proofs are complete. 0O
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