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Deforming convex curves with fixed elastic energy ∗

Laiyuan Gao† · Yiling Wang‡

Abstract This paper presents a curve flow which preserves the elastic energy of the evolving
curve. If the initial curve is a planar, simple and smooth curve with positive curvature then the
local and global existence of the flow is proved. Under this flow, the evolving curve will converge
to a finite circle in the C∞ metric as time goes to infinity.
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1 Introduction

In many fields, curve evolution problems are proposed to smooth curves from noisy input data,

such as image processing ([8]), phase transitions ([12]), reverse engineering, image registration

and mesh optimization ([14]), etc. Because of these various applications, the curve flows have

been studied extensively. Many of the curve evolutions focus on the famous curve-shortening

flow and its generalizations (see [4], [7], [9], [1], [6], [17], [3], etc.). If one needs to smooth

the input data with some global quality preserved then he demands non-local flows, such as

the area-preserving flows ([5], [18], [20]) and the length-preserving flows ([19], [22]), etc. Since

the elastic energy of a closed curve is a kind of interesting geometric quality and arouses some

research interest (see [13], [23], [16]), we pose a flow in this paper to deform a given curve with

its elastic energy preserved in order to obtain some more geometric properties of convex curves,

such as geometric inequalities involving elastic energy. As far as we know, to construct such a

kind of flow is the first try in this field.

Given a simple, closed and C2 curve X(·) in the plane, one can define a kind of energy in

the following form

En �
∫ L

0
(κ(s))nds,

where n is a positive integer and κ is the relative curvature of the curve. If n = 1 then E1 = 2π

(see Theorem 7 on page 20 of [24]). In the case of n = 2, E2 is so called the elastic energy (or

bending energy) of the curve (see the definition on page 1 of [23]).

∗This work is supported by the National Science Foundation of China (No.11171254).
†The corresponding author. Email: hytcmath031g@163.com Address: Department of Mathematics, Shanghai

University, Shanghai, 200444, China.
‡Email: ylwang@math.ecnu.edu.cn Address: Department of Mathematics, East China Normal University,

Shanghai, 200062, P. R. China.

1



Let X0 : S
1 → R

2 be a smooth curve in the plane. We say X0 is convex if it is a simple curve

with positive curvature. Denote by T (ϕ) the unit tangential vector of the curve at X(ϕ). For

each ϕ, let N(ϕ) be the unit normal such that {T (ϕ), N(ϕ)} gives a positive orientation of the

plane R
2. The support function of X0 is defined by p = −〈X0, N〉. In this paper, the following

evolution problem for convex curves will be investigated:⎧⎪⎪⎨⎪⎪⎩
∂X
∂t (ϕ, t) =

(
p(ϕ, t)−

∫ L(t)
0 κ2(s,t)ds∫ L(t)
0 κ3(s,t)ds

)
N(ϕ, t),

(ϕ, t) ∈ S1 × [0, ω),
X(ϕ, 0) = X0(ϕ), ϕ ∈ S1,

(1.1)

where X(ϕ, t) is the evolving curve with its curvature, perimeter and support function denoted

by κ(ϕ, t), L(t) and p(ϕ, t), respectively. Under the flow (1.1), the elastic energy of the evolving

curve is invariable, which makes this flow differ from all the previous ones.

Let θ be the oriented angle from the positive x-axis to the unit tangential vector of the curve.

By the definition of the curvature κ, one has

dθ

ds
= κ.

So we can use θ ∈ [0, 2π] as a parameter for convex curves. From now on, we choose a convex

curve to be the initial curve X0 of our flow (1.1).

If the flow (1.1) has a solution on S1× [0, ω) then the curvature of the evolving curve satisfies

the following Cauchy problem (see Equation (1.15) on page 20 of [3]):⎧⎨⎩ ∂κ
∂t (θ, t) = κ(θ, t)−

∫ 2π
0 κ(θ,t)dθ∫ 2π
0 κ2(θ,t)dθ

κ2(θ, t), (θ, t) ∈ [0, 2π]× [0, ω),

κ(θ, 0) = κ0(θ), θ ∈ [0, 2π],
(1.2)

where κ0(θ) is the curvature of a convex curve in the plane and it satisfies the closing condition:∫ 2π

0

eiθ

κ0(θ)
dθ = 0. (1.3)

Although the support function p appears in the evolution equation (1.1), the shape of the

evolving curve X(·, t) does not rely on the choice of the original point of the plane because

X(·, t) is in fact uniquely determined by its curvature, the unique solution of (1.2)-(1.3).

In comparison with the previous work, the difficulty to investigate the flow (1.1) is first to

prove the existence of the positive and uniformly bounded solution for the integro-differential

equation (1.2)-(1.3) on time interval [0,+∞). And then we also need to study the asymptotic

behavior of κ as time goes to infinity. To settle the first problem, we reduce the existence

problem to find a fixed point in a closed set of a Banach space and this goal can be efficiently

achieved by using Banach’s fixed point theorem. Then we use comparison principles to prove the

positivity and boundedness of κ in any finite time interval. In order to give a uniform bound of

κ, we introduce a new trick to establish its Hanarck estimate. To deal with the second problem,

we use some famous or important geometric inequalities, such as Bonnesen’s inequality ([2] and
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[21]), Gage’s inequality ([4]) and Lin-Tai’s inequality ([15]) to obtain the convergence of our

flow. Our main theorem of the flow (1.1) is given as follows.

Main Theorem If a convex curve X(ϕ, 0) evolves according to (1.1) then one obtains a family

of convex curves {X(ϕ, t)|(ϕ, t) ∈ S1 × [0,∞)} with fixed elastic energy E2(0) =
∫ L
0 (κ0(s))

2ds,

where κ0(s) is the curvature of the initial curve. If t tends to infinity then the evolving curve

X(·, t) converges to a circle in the C∞ metric. The radius of the limiting circle is 2π
E2(0)

and the

center of this circle is the original point of the plane.

This paper is organized as follows. In section 2, it is proved that the evolution problem (1.1)

is equivalent to the Cauchy problem (1.2)-(1.3) for some T > 0, if the initial curve is smooth

and convex. It is then shown that the Cauchy problem (1.2)-(1.3) has a positive and bounded

solution on [0, 2π] × [0, T ), for any T > 0. In section 3, the asymptotic behavior of evolving

curves X(·, t) is considered and the Main Theorem is proved. In the end of this paper, a new

geometric inequality is proved for convex curves in the plane by using the flow (1.1).

2 Long Time Existence

In this section, the equivalence of the curve evolution problem (1.1) and the Cauchy problem

(1.2)-(1.3) will be proved. And then the positive solution of (1.2) will be obtained on the domain

[0, 2π]× [0,+∞).

Given a convex curve X(ϕ) in the plane for ϕ ∈ S1. Denoted by θ its tangential angle, i.e.

the angle between the positive direction of x-axis and the tangential vector T . The convexity of

the curve X implies that θ can be chosen as a parameter of this curve. Noticing that

T = (cos θ, sin θ), N = (− sin θ, cos θ),

one obtains the structural equation of the curve:

dX

dθ
(θ) =

1

κ(θ)
T (θ),

dT

dθ
= N(θ),

dN

dθ
(θ) = −T (θ).

Now, the flow (1.1) can be rewritten as follows,⎧⎪⎨⎪⎩
∂X
∂t (θ, t) =

(
p(θ, t)− E2(t)

E3(t)

)
N(θ, t),

(θ, t) ∈ [0, 2π]× [0, ω),
X(θ, 0) = X0(θ), θ ∈ [0, 2π].

(2.1)

Since θ depends on κ and the arc length s, it is in fact a function with respect to the time t. In

order to make θ be independent of t, one can add a tangential component to the flow (2.1) to

obtain a new one: {
∂X̃
∂t (θ, t) = α(θ, t)T (θ, t) +

(
p(θ, t)− E2(t)

E3(t)

)
N(θ, t),

X̃(θ, 0) = X0(θ),
(2.2)
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where α(θ, t) is to be determined later. Under the flow (2.2), the tangential angle θ and the

Frenet frame satisfy the following equations (see page 20 of [3]),

∂θ

∂t
= αk +

∂β

∂s
=

(
α+

∂β

∂θ

)
k,

∂T

∂t
=

(
αk +

∂β

∂s

)
N,

∂N

∂t
= −

(
αk +

∂β

∂s

)
T,

where β = p(θ, t) − E2(t)
E3(t)

. If one sets α = −∂p
∂θ then ∂θ

∂t = 0, i.e., θ is a variable independent of

time t. And one also gets ∂T
∂t = ∂N

∂t = 0. The Proposition 1.1 on page 6 of [3] tells us that the

solution X̃ of (2.2) differs from the solution of (2.1) only by altering the parametrization. So

one can consider the flow (2.2) instead of (2.1). Now it is time to show that the new evolution

problem (2.2) is equivalent to the Cauchy problem (1.2)-(1.3).

Theorem 2.1 If the initial curve X0(ϕ) is smooth and strictly convex then the flow (2.2) is

equivalent to the Cauchy problem (1.2) for some T > 0.

Proof. Suppose the initial curve is strictly convex and X̃(θ, t) is a solution of (2.2) for (θ, t) ∈
[0, 2π]× [0, T ). By Equation (1.16) on page 20 of [3], the curvature of X̃ evolves according to

∂κ

∂t
= κ2

(
∂2p

∂θ2
+ p− E2

E3

)
.

Denote by ρ the radius of curvature, i.e., ρ = 1
κ . Since ρ = ∂2p

∂θ2
+ p (c.f. Proposition 1.6 of [11]),

one obtains that

∂κ

∂t
= κ− κ2

E2

E3
.

So one obtains a solution of the Cauchy problem (1.2) from the flow (2.2). By the closed

condition of X̃(·, 0), one gets (1.3) immediately.

Conversely, suppose the Cauchy problem (1.2)-(1.3) has a positive solution κ in S1 × [0, T ).

Noticing that

d

dt

∫ 2π

0

eiθ

κ
dθ =

∫ 2π

0
−eiθ

κ2

(
κ− κ2

E2

E3

)
dθ = −

∫ 2π

0

eiθ

κ
dθ,

one obtains the closing condition of κ:∫ 2π

0

eiθ

κ(θ, t)
dθ =

∫ 2π

0

eiθ

κ(θ, 0)
dθ · e−t = 0.

If one sets ρ(θ, t) � 1
κ(θ,t) then he obtains a integrability condition from the above closing

condition ∫ 2π

0
ρ(θ, t) sin θdθ =

∫ 2π

0
ρ(θ, t) cos θdθ = 0, (2.3)
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for the following second order o.d.e.

∂2p

∂θ2
(θ, t) + p(θ, t) = ρ(θ, t), (θ, t) ∈ [0, 2π]× [0, T ), (2.4)

In fact one can define p(θ, t) as follows and check (2.4) directly by using (2.3).

p(θ, t) = sin θ

∫ θ

0
ρ(ϕ, t) cosϕdϕ− cos θ

∫ θ

0
ρ(ϕ, t) sinϕdϕ.

Now let us construct a family of curves X̃(θ, t) = (x̃(θ, t), ỹ(θ, t)) + (C1(t), C2(t)) by setting

x̃(θ, t) =

∫ θ

0
ρ(φ, t) cosφ dφ, ỹ(θ, t) =

∫ θ

0
ρ(φ, t) sinφ dφ,

C1(t) = −
∫ t

0

∂p

∂θ
(0, τ)dτ, C2(t) =

∫ t

0

(
p(0, τ)− E2(τ)

E3(τ)

)
dτ.

Direct computations can give us the following

∂x̃

∂t
(θ, t) =

∫ θ

0

∂ρ

∂t
(φ, t) cosφ dφ,=

∫ θ

0

(
E2(t)

E3(t)
− ρ(θ, t)

)
cosφ dφ,

=
E2(t)

E3(t)
sin θ −

∫ θ

0

(
∂2p

∂θ2
(φ, t) + p(φ, t)

)
cosφdφ

=
E2(t)

E3(t)
sin θ − ∂p

∂θ
(φ, t) cosφ

∣∣∣∣θ
0

−
∫ θ

0

∂p

∂θ
(φ, t) sinφdθ −

∫ θ

0
p(θ, t) cosφ dφ,

=
E2(t)

E3(t)
sin θ − ∂p

∂θ
(θ, t) cos θ +

∂p

∂θ
(0, t)− p(θ, t) sin θ

= −∂p

∂θ
(θ, t) cos θ +

(
p− E2(t)

E3(t)

)
(− sin θ) +

∂p

∂θ
(0, t).

Similarly, one has

∂ỹ

∂t
(θ, t) = −∂p

∂θ
(θ, t) sin θ +

(
p− E2(t)

E3(t)

)
cos θ +

E2(t)

E3(t)
− p(0, t).

So the curves X̃(·, t) satisfy the evolution equation (2.2). Q. E. D.

In the next, we will show that the Cauchy problem (1.2)-(1.3) has a unique positive smooth

solution κ. Now let us set the constants

m = min{κ0(θ)|θ ∈ S1}, M = max{κ0(θ)|θ ∈ S1},

and denote

m̃ =
1

λ
m, M̃ = λM, QT = S1 × [0, T ),

where λ > 1 and T > 0.

Theorem 2.2 The Cauchy problem (1.2)-(1.3) has a unique positive smooth solution κ on QT

for some T > 0.
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Proof. First, let us define

T = min

{
(1− 1

λ)m
3

λ5M3
, 1− 1

λ
,
1

2

m̃4

m̃4 + 2M̃3 + 3M̃2

}

and consider an equation as follows⎧⎨⎩ ∂u
∂t (θ, t) = v(θ, t)−

∫ 2π
0 v(θ,t)dθ∫ 2π
0 v2(θ,t)dθ

v2(θ, t), (θ, t) ∈ [0, 2π]× [0, T ),

u(θ, 0) = κ0(θ), θ ∈ [0, 2π],
(2.5)

where v ∈ C(QT ) and m̃ ≤ v ≤ M̃ . By the choice of T , one obtains

u(θ, t) ≥ κ0(θ) +

(
m̃− M̃2 M̃

m̃2

)
t ≥ m− λ3M3

1
λ2m2

t

= m− λ5M3

m2
t ≥ m

λ
= m̃,

and

u(θ, t) ≤ κ0(θ) + M̃t ≤ M + λMt ≤ λM = M̃.

So u ∈ C(QT ) and m̃ ≤ u ≤ M̃ . In order to simplify the statement, one can introduce a space

as follows

V = {f ∈ C(QT )|m̃ ≤ f(θ, t) ≤ M̃}.
V is a closed subset of the Banach space C(QT ) endowed with the norm

‖f‖C(QT ) = max{|f(θ, t)| |(θ, t) ∈ QT }.

Therefore the solution of the (2.5) defines an operator T from V to itself. In the next, we will

show that the operator T is a contract mapping. Let v1, v2 be two functions in V . Let us define

ui = Tvi, i = 1, 2. Since

u =

∫ t

0
vdt−

∫ 2π
0 vdθ∫ 2π
0 v2dθ

∫ t

0
v2dt+ κ0(θ),

one obtains

u1 − u2 =

∫ t

0
(v1 − v2)dt+

∫ 2π
0 v2dθ

∫ 2π
0 v21dθ

∫ t
0 v

2
2dt−

∫ 2π
0 v1dθ

∫ 2π
0 v22dθ

∫ t
0 v

2
1dt∫ 2π

0 v21dθ
∫ 2π
0 v22dθ

.
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Noticing that ∣∣∣∣∫ 2π

0
v2dθ

∫ 2π

0
v21dθ

∫ t

0
v22dt−

∫ 2π

0
v1dθ

∫ 2π

0
v22dθ

∫ t

0
v21dt

∣∣∣∣
=

∣∣∣∣∣
∫ 2π
0 v2dθ

∫ 2π
0 v21dθ

∫ t
0 (v

2
2 − v21)dt

+
(∫ 2π

0 v2dθ
∫ 2π
0 v21dθ −

∫ 2π
0 v1dθ

∫ 2π
0 v22dθ

) ∫ t
0 v

2
1dt

∣∣∣∣∣
≤ 4π2M̃3

∫ t

0
2M̃ |v1 − v2|dt

+

(∫ 2π

0
(v2 − v1)dθ

∫ 2π

0
v21dθ +

∫ 2π

0
v1dθ

∫ 2π

0
(v21 − v22)dθ

)∫ t

0
v21dt

≤ 8π2M̃3‖v1 − v2‖C(QT )t

+
(
2π‖v1 − v2‖C(QT ) · 2πM̃2 + 2πM̃ · 2π · 2M̃‖v1 − v2‖C(QT )

)
M̃2t

=
(
8π2M̃3 + 12π2M̃2

)
‖v1 − v2‖C(QT )t,

one obtains

‖u1 − u2‖C(QT ) ≤
(
1 +

8π2M̃3 + 12π2M̃2

4π2m̃4

)
‖v1 − v2‖C(QT )t

=
m̃4 + 2M̃3 + 3M̃2

m̃4
‖v1 − v2‖C(QT )t

≤ 1

2
‖v1 − v2‖C(QT ).

Hence, T is a contraction operator from V to V . By Banach’s contraction mapping principle,

there exists a unique fixed point of T. So one gets κ ∈ C(QT ) such that m̃ ≤ κ ≤ M̃ and

T(κ) = κ, i.e., the Cauchy problem (1.2) has a unique solution on QT .

It is a straightforward to show that κ satisfies the closing condition (1.3). The higher order

regularity of κ(θ, t) is an immediate consequence of the smoothness of κ0(θ). Q. E. D.

Combining this theorem and Theorem 2.1, one has the local existence of the flow (1.1). Since

m̃ ≤ κ ≤ M̃ , the evolving curve X(·, t) is convex and it has no singularities for each t in [0, T ).

Corollary 2.3 The curve flow (1.1) has a unique smooth solution on QT , where T is defined

in Theorem 2.2.

By estimating of the non-local quantity E3(t) =
∫ L
0 κ3ds =

∫ 2π
0 κdθ and the curvature κ, we

can prove the long time existence of the flow (1.1).

Theorem 2.4 The evolution equation (1.1) has a long time solution on [0, 2π]× [0,+∞).

Proof. Let us set κmin(t) � min{κ(θ, t)|θ ∈ S1}, κmax(t) � max{κ(θ, t)|θ ∈ S1}. First, if we

assume that κmin(t) > 0 and κmax(t) < ∞ for t ∈ [0, T ), then

d

dt
E2(t) =

∫ 2π

0

(
κ− E2(t)

E3(t)
κ2

)
dθ

= E2(t)− E2(t)

E3(t)
E3(t) = 0.
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So one obtains E2(t) ≡ E2(0), i.e., the flow (1.1) preserves the elastic energy of the evolving

curve. By using Cauchy-Schwartz inequality E3(t) =
∫ 2π
0 κ2dθ ≥ 1

2π

(∫ 2π
0 κdθ

)2
= 1

2πE2(0)
2.

One gets

∂κ

∂t
= κ− E2(t)

E3(t)
κ2 = κ− E2(0)∫ 2π

0 κ2dθ
κ2

≥ − E2(0)
(E2(0))2

2π

κ2 = − 2π

E2(0)
κ2,

namely,

∂

∂t

1

κ(θ, t)
≤ 2π

E2(0)
,

1

κ(θ, t)
− 1

κ0(θ)
≤ 2π

E2(0)
t,

κ(θ, t) ≥ 1
1

κ0(θ)
+ 2π

E2(0)
t
> 0. (2.6)

If there is a positive time T0 > 0 such that κmin(T0) = 0 and κmin(t) > 0 for t ∈ [0, T0) then (2.6)

tells us κ(θ, T0) > 0, a contradiction. So the flow (1.1) preserves the convexity of the evolving

curve if no singularity occurs in the same time interval. Second, by the evolution equation of κ,

one gets ∂κ
∂t ≤ κ, which implies that

κmax(t) ≤ κmax(0)e
t,

here t ∈ [0,∞). The singularity will never happen as time goes. Combining the above two steps

gives us

0 <
E2(0)κ0(θ)

E2(0) + 2πκ0(θ)t
≤ κ(θ, t) ≤ κmax(0)e

t, (2.7)

for any positive t. So we obtain the long time existence of the flow (1.1). Q. E. D.

3 Convergence

In this section, the geometric properties of the flow (1.1) will be investigated and we will complete

the proof of the Main Theorem. Now, let us introduce several useful inequalities.

Lemma 3.1 Let X(θ) be a closed and convex curve with length denoted by L, here θ is the

tangential angle of this curve. Set A the area bounded by X. Let rin and rout be the radius

of the maximum incircle and the minimum circumcircle, respectively. And κ(θ) represents the

curvature of the curve X at θ. We have the following inequalities for X.

Bonnesen’s inequality (c.f. [2] and [21]):

π2(rout − rin)
2 ≤ L2 − 4πA. (3.1)
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Gage’s inequality (c.f. [4]): ∫ 2π

0
κdθ ≥ πL

A
. (3.2)

Lin-Tai’s inequality (c.f. [15]): ∫ 2π

0
κ2dθ ≥ L

2A

∫ 2π

0
κdθ. (3.3)

Lemma 3.2 (Hausdorff Convergence) Under the flow (1.1), the evolving curve converges in the

Hausdorff metric to a finite circle. The center of this limiting circle is the original point of the

plane and the radius of this circle is equal to 2π
E2(0)

.

Proof. Gage’s variation formulae of length L(t) and area A(t) in [5] give us

dL

dt
= −

∫ 2π

0

(
p− E2(0)

E3(t)

)
dθ = −L+ 2π

E2(0)

E3(t)
,

dA

dt
= −

∫ 2π

0
ρ

(
p− E2(0)

E3(t)

)
dθ = −2A+

LE2(0)

E3(t)
.

The Cauchy-Schwartz inequality gives us

E2(0) =

∫ 2π

0
κdθ =

∫ L(t)

0
κ2ds ≥ 4π2

L(t)
,

dL

dt
≤ −L+ 2π

E2(0)
(E2(0))2

2π

= −L+
4π2

E2(0)
≤ 0.

So one obtains that

4π2

E2(0)
≤ L(t) ≤ L0. (3.4)

Since L(t) is monotone decreasing and it has a lower bound, one gets the limit of L(t) as t → ∞.

Denote by L∞ the limit of L(t) as t → ∞. By Lin-Tai’s inequality, one gets dA
dt ≤ 0, i.e., the

area of the domain enclosed by the evolving curve is monotone decreasing. Gage’s inequality

(3.2) and Inequality (3.4) imply that

A(t) ≥ πL

E2(0)
≥

π 4π2

E2(0)

E2(0)
=

4π3

(E2(0))2
.

Hence,

4π3

(E2(0))2
≤ A(t) ≤ A(0). (3.5)

By the evolution equation of L(t) and A(t),

d

dt
(L2 − 4πA) = 2L

(
−L+ 2π

E2(0)

E3(t)

)
− 4π

(
−2A+

LE2(0)

E3(t)

)
= −2(L2 − 4πA),
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namely,

L2 − 4πA = (L(0)2 − 4πA(0))e−2t. (3.6)

Combining with Bonnesen’s inequality (3.2) and the above equation, one has the Hausdorff

convergence of the flow (1.1).

Since the elastic energy of the limit circle equals to E2(0), the radius of the limit circle is
2π

E2(0)
. In order to determine the center of the limit circle, one needs to find the limit of the

Steiner center of the evolving curve. According to [10], the Steiner center S of a convex curve

is defined by

S =

(∫ 2π

0
p cos θdθ,

∫ 2π

0
p sin θdθ

)
.

Noticing that p(θ, t) = −〈X(θ, t), N(θ, t)〉, one has the evolution equation of the support function

as follows

∂p

∂t
(θ, t) = −

〈
∂X

∂t
(θ, t), N(θ, t)

〉
= −p(θ, t) +

E2(0)

E3(t)
.

So

d

dt

∫ 2π

0
p cos θdθ =

∫ 2π

0

(
E2(0)

E3(t)
− p

)
cos θdθ = −

∫ 2π

0
p cos θdθ.

Similarly, we have d
dt

∫ 2π
0 p sin θdθ = − ∫ 2π

0 p sin θdθ. Therefore, d
dtS(t) = −S(t), that is

S(t) = e−tS(0). (3.7)

Hence the Steiner center of the evolving curve runs to the original point of the plane as time

goes to infinity. Since the Steiner center of a circle is its center, the center of the limiting circle

is the original point of the plane. Q.E.D.

Although it is shown that the flow (1.1) has long time solution on S1 × [0,∞) by (2.6), one

can obtain better estimate of the curvature given in the following lemma.

Lemma 3.3 (Uniform Bound of the Curvature) There exist two positive constants C1, C2 such

that

C1 ≤ κ(θ, t) ≤ C2,

for all (θ, t) ∈ S1 × [0,∞).

Proof. Define κmin(t) = min{κ(θ, t)|θ ∈ [0, 2π]} and κmax(t) = max{κ(θ, t)|θ ∈ [0, 2π]}. By the

evolution equation of κ and the Cauchy-Schwartz inequality, one gets that

∂ log κ

∂t
= 1− E2

E3(t)
κ ≥ 1− 2π

E2
κ.

Since κmin(t) ≤ E2
2π , log κmin(t) is an increasing function. Thus one has a lower bound of κmin(t):

κmin(t) ≥ κmin(0) > 0.
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Compute that

d

dt

[(
∂κ

∂θ

)2
]
= 2

(
∂κ

∂θ

)2

− 4κ

(
∂κ

∂θ

)2 E2

E3
.

If
(
∂κ
∂θ

)2
> 0 holds in some interval then ∂

∂t log
(
∂κ
∂θ

)2
= 2− 4κ E2

E3(t)
and furthermore,

∂

∂t

(
log

(
∂κ

∂θ

)2

− 2 log κ

)
= −2κ

E2

E3(t)
< 0.

Hence, (
∂κ

∂θ

)2

≤
(
∂κ0
∂θ

)2 κ2

κ20
.

Now the Hanarck estimate of κ can be deduced in the following trick,

log κmax(t)− log κmin(t) =

∫ θ2

θ1

∂κ

∂θ
(θ, t)/κ(θ, t)dθ

≤
∫ 2π

0

∣∣∣∣∂κ∂θ (θ, t)
∣∣∣∣ 1

κ(θ, t)
dθ

≤
√
2π

√∫ 2π

0

∣∣∣∣∂κ∂θ (θ, t)
∣∣∣∣2 1

κ(θ, t)2
dθ

≤
√
2π

√∫ 2π

0

∣∣∣∣∂κ0∂θ

∣∣∣∣2 1

κ20
dθ � C.

So one obtains the upper bound of κ: κmax(t) ≤ κmin(t)e
C ≤ E2

2π e
C . Q.E.D.

Since both κ and ∂κ
∂θ are uniformly bounded on [0, 2π] × [0,∞), the Arzela-Ascoli Theorem

implies that there exists a convergent sequence, denoted by κ(θ, ti), as ti tends to infinity. So

one can study the C2 and C∞ convergence of the flow (1.1) by showing that κ converges to a

positive constant and all the derivatives ∂iκ
∂θi

tend to 0 as t → ∞, i = 1, 2, · · · . However, there is

another choice to give the proof of the convergence.

Lemma 3.4 (C∞ Convergence) Under the flow (1.1), the radius of the curvature ρ(θ, t) con-

verges to a constant L∞
2π and all the derivatives of the radius of curvature ∂iρ

∂θi
(θ, t) converges to

0 as time tends to infinity.

Proof. By the evolution equation of the curvature, the radius of curvature of the evolving curve

satisfies

∂ρ

∂t
(θ, t) =

E2(0)

E3(t)
− ρ(θ, t). (3.8)

So

d

dt

(
ρ(θ, t)− L(t)

2π

)
= −

(
ρ(θ, t)− L(t)

2π

)
,
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ρ(θ, t)− L(t)

2π
=

(
ρ(θ, 0)− L(0)

2π

)
e−t. (3.9)

This equation tells us

lim
t→∞ ρ(θ, t) =

L∞
2π

,

i.e., the evolving curve converges to the limiting circle in the C2 metric. Thus one gets the C2

convergence of the flow (1.1). By Equation (3.8), one gets

∂kρ

∂θk
(θ, t) =

∂kρ

∂θk
(θ, 0)e−t,

which gives us the C∞ convergence of the flow (1.1) by using the uniform bound of the curvature

in Lemma 3.3. Q.E.D.

Now, combining Theorem 2.1, Corollary 2.3, Theorem 2.4, Lemma 3.2 and Lemma 3.4 can

give us the proof the Main Theorem. As an application of the flow (1.1), we prove an inequality

for convex plane curves.

Theorem 3.5 Let X0(θ) be a smooth and strictly convex curve in the plane, where θ is the

tangential angle of the curve. Let us choose a point in the domain enclosed by X0 to be the

original point of the plane. Denote by p0 the support function of this curve, i.e., p0(θ) =

−〈X0(θ), N(θ)〉. The following inequality holds for the curve X0:∫ 2π

0
p20dθ ≥ 8π3

E2
2

+
1

2π
(L2

0 − 4πA0), (3.10)

where E2 is the elastic energy of X0, L0 and A0 are the perimeter and the area enclosed by X0,

respectively. The equality holds in (3.10) if and only if X0 is a circle and the original point of

the plane is the center of this circle.

Proof. Let X0(θ) evolve according to the flow (2.2). Then one gets a family of convex curves

denoted by X(θ, t). Under this flow the support function of the evolving curve satisfies

∂p

∂t
(θ, t) =

E2

E3(t)
− p(θ, t),

where E3(t) =
∫ 2π
0 κ2(θ, t)dθ and κ(θ, t) is the curvature of the evolving curve X at (θ, t). Since

the flow (2.2) preserves the elastic energy of X(·, t), E2(t) ≡ E2(0) =
∫ 2π
0 κ0(θ)dθ. By the

definition of p, one has the Cauchy formula
∫ 2π
0 pdθ = L. Compute that

d

dt

∫ 2π

0
p2dθ = 2

∫ 2π

0
p

(
E2

E3(t)
− p

)
dθ = 2

E2

E3(t)
L− 2

∫ 2π

0
p2dθ.

By Lin-Tai’s inequality (3.3) and the Cauchy-Schwartz inequality, one obtains that

d

dt

∫ 2π

0
p2dθ ≤ 2

2A(t)

L(t)
L(t)− L(t)2

π
=

1

π
(4πA(t)− L(t)2) =

1

2π

d

dt
(L(t)2 − 4πA(t)).
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Integrating the both sides of the above inequality with respect to t can give us:∫ 2π

0
p2dθ −

∫ 2π

0
p20dθ ≤ 1

2π
(L(t)2 − 4πA(t))− 1

2π
(L2

0 − 4πA0).

Noticing that limt→∞ p(θ, t) = L∞
2π = 2π

E2
(imitate the proof of Equation (3.9)), one obtains

8π3

E2
2

−
∫ 2π

0
p20dθ ≤ − 1

2π
(L2

0 − 4πA0).

If X0 is a circle and the original point of the plane is the center of this circle then p is equal

to the radius and the equality of (3.10) holds. Now, suppose the equality holds in (3.4). The

Cauchy-Schwartz inequality and Gage’s inequality implies that

L2
0

2π
≤

∫ 2π

0
p20dθ =

8π3

E2
2

+
1

2π
(L2

0 − 4πA0) ≤ 8πA2
0

L2
0

+
1

2π
(L2

0 − 4πA0).

Comparing the both sides can give us 0 ≤ 4πA0

L2
0

− 1. So L2
0 − 4πA0 = 0, i.e., X0 is a circle. So

the equality (3.10) is
∫ 2π
0 p20dθ = 8π3

E2
2
. Since

∫ 2π
0 p20dθ ≥ L2

0
2π and

L2
0

2π ≥ 8π3

E2
2
, the Cauchy-Schwartz

inequality tells us p is a constant, i.e., the original point of the plane is the center of the circle

X0. Q.E.D.
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