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This work deals with the direct and inverse spectral analysis for a class of infinite 
band symmetric matrices. This class corresponds to operators arising from difference 
equations with usual and inner boundary conditions. We give a characterization 
of the spectral functions for the operators and provide necessary and sufficient 
conditions for a matrix-valued function to be a spectral function of the operators. 
Additionally, we give an algorithm for recovering the matrix from the spectral 
function. The approach to the inverse problem is based on the rational interpolation 
theory.
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1. Introduction

In this paper, the direct and inverse spectral analysis of a class of infinite real symmetric band matrices, 
denoted M(n, ∞), is carried out with emphasis in the inverse problems of characterization and reconstruc-
tion. The matrices under consideration, defined in the paragraphs below, arise from difference equations 
with initial and left endpoint boundary conditions together with the so called inner boundary conditions. 
Inner boundary conditions are given by degenerations of the diagonals (see the paragraphs above Defini-
tion 1 and equation (2.4)). Each matrix in M(n, ∞) generates uniquely a closed symmetric operator for 
which we give a spectral characterization. More specifically, we provide necessary and sufficient conditions 
for a matrix-valued function to be a spectral function of the operators stemming from our class of matri-
ces (see Definition 5 and Theorems 5.1 and 5.2). As a byproduct of the spectral analysis of the operators 
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corresponding to matrices in M(n, ∞), we find an if-and-only-if criterion for degeneration in terms of the 
properties of polynomials in an L2 space (see Theorem 3.1).

Although the inverse spectral problems for Jacobi matrices have been studied extensively (see for instance 
[7–9,14,19,22–24,34–36] for the finite case and [10,11,13,14,20,21,37,38] for the infinite case), works dealing 
with band matrices, not necessarily tridiagonal, are not so abundant (see [5,17,18,27–29,32,41,42] for the 
finite case and [3,16] for the infinite case).

Let H be an infinite dimensional separable Hilbert space and fix an orthonormal basis {δk}∞k=1 in it. We 
study the symmetric operator A whose matrix representation with respect to {δk}∞k=1 is a real symmetric 
band matrix which is denoted by A (see [2, Sec. 47] for the definition of the matrix representation of an 
unbounded symmetric operator).

We assume that the matrix A has 2n +1 band diagonals (n ∈ N), that is, 2n +1 diagonals not necessarily 
zero. The band diagonals satisfy the following conditions. The band diagonal farthest from the main one, 
which is given by the diagonal matrix diag{d(n)

k }∞k=1, denoted by Dn, is such that, for some m1 ∈ N, all the 

numbers d(n)
1 , . . . , d(n)

m1−1 are positive and d(n)
k = 0 for all k ≥ m1 with

m1 > 1 . (1.1)

It may happen that all the elements of the sequence {d(n)
k }k∈N are positive which we convene to mean that 

m1 = ∞.
Now, if m1 < ∞, then the elements {d(n−1)

m1+k}∞k=1 of the diagonal next to the farthest, Dn−1, behave in 
the same way as the elements of Dn, that is, there is m2, satisfying

m1 < m2 , (1.2)

such that d(n−1)
m1+1, . . . , d

(n−1)
m2−1 > 0 and d(n−1)

k = 0 for all k ≥ m2. Here, it is also possible that m2 = ∞ in 

which case d(n−1)
k > 0 for all k > m1.

We continue applying the same rule as long as m1, . . . , mj are finite. Thus, if mj < ∞, there is mj+1, 
satisfying

mj < mj+1 , (1.3)

such that d(n−j)
mj+1, . . . , d

(n−j)
mj+1−1 > 0 (here we assume that mj + 1 < mj+1) and d(n−j)

k = 0 for all k ≥ mj+1. 
If mj = ∞, then d(n−j)

k > 0 for all k > mj . Eventually, there is j0 ≤ n − 1 such that mj0+1 = ∞. We allow 
j0 to be zero, which accordingly means that m1 = ∞.

If j0 ≥ 1, as long as j < j0, we say that the diagonal corresponding to Dn−j undergoes degeneration at 
mj+1. Note that the diagonal corresponding to Dn−j0 does not degenerate. Also, j0 defines the number of 
degenerations that the matrix A has.

Definition 1. For a natural number n, the set of matrices satisfying the above properties is denoted by 
M(n, ∞). The set of numbers {mj}j0j=1 characterizes the degenerations of the diagonals. For a matrix 
without degenerations, this set is empty.

A matrix in M(n, ∞) has the particular structure illustrated in Fig. 1. Due to transformations similar 
to the one given in [39, Lem. 1.6], this class of matrices is wider than it seems. We shall see in Section 2
that the rows where there are degenerations and the ones where there are not (cf. (2.12) and (2.10)) give 
rise to difference equations playing different roles in the spectral analysis of the operator corresponding to 
the matrix. This is so even when all entries denoted by gray squares are zero.
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Fig. 1. The structure of a matrix in M(n,∞).

Fig. 2. Mass-spring system corresponding to a Jacobi matrix.

Remark 1. Define the number n0 := n − j0. Note that the “tail” of the matrix, that is, the semi-infinite 
submatrix obtained by removing the first mj0 columns and rows, has 2n0 + 1 diagonals and the diagonal 
Dn0 has only positive numbers.

An example of a matrix in M(3, ∞), when m1 = 3 and m2 = 5, is the following.

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d
(0)
1 d

(1)
1 d

(2)
1 d

(3)
1 0 0 0 . . .

d
(1)
1 d

(0)
2 d

(1)
2 d

(2)
2 d

(3)
2 0 0

d
(2)
1 d

(1)
2 d

(0)
3 d

(1)
3 d

(2)
3 0 0

. . .

d
(3)
1 d

(2)
2 d

(1)
3 d

(0)
4 d

(1)
4 d

(2)
4 0

. . .

0 d
(3)
2 d

(2)
3 d

(1)
4 d

(0)
5 d

(1)
5 0

. . .

0 0 0 d
(2)
4 d

(1)
5 d

(0)
6 d

(1)
6

. . .

0 0 0 0 0 d
(1)
6 d

(0)
7

. . .
...

. . . . . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1.4)

For this realization of A, we say that it underwent a degeneration of the diagonal D3 in m1 = 3 and a 
degeneration of D2 in m2 = 5. Note that, in this case, j0 = 2.

It is known that the dynamics of an infinite linear mass-spring system (see Fig. 2) is characterized by the 
spectral properties of a semi-infinite Jacobi matrix [10,11] when the system is within the regime of validity 
of the Hooke law (see [15,31] for an explanation of how to obtain the matrix from the mass-spring system 
in the finite case). The entries of the Jacobi matrix are determined by the masses and spring constants of 
the system [9–11,15,31]. The movement of the mechanical system of Fig. 2 is a superposition of harmonic 
oscillations whose frequencies are the square roots of absolute values of the Jacobi operator’s eigenvalues. 
Analogously, one can deduce that a self-adjoint extension of the minimal closed operator generated by a 
matrix in M(n, ∞) models a linear mass-spring system where the interaction extends to all the n neighbors 
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Fig. 3. Mass-spring system of a matrix in M(2,∞): nondegenerated case.

Fig. 4. Mass-spring system of a matrix in M(2,∞): degenerated case.

of each mass (cf. [29, Appendix]). For instance, if the matrix is in M(2, ∞) and no degeneration of the 
diagonals occurs, viz. m1 = ∞, the corresponding mass-spring system is given in Fig. 3. If for another matrix 
in M(2, ∞), one has degeneration of the diagonals, for instance m1 = 4, the corresponding mass-spring 
system is given in Fig. 4.

In this work, the approach to the inverse spectral analysis of the operators whose matrix representation 
belongs to M(n, ∞) is based on the one used in [27–29] which deals with the finite dimensional case. As in 
those papers, an important ingredient of the inverse spectral analysis is the linear interpolation of vector 
polynomials. For this paper, as well as in [29], we use the theory of linear interpolation of n-dimensional 
vector polynomials, recently developed in [30].

This paper is organized as follows. In Section 2, we present the results obtained in [29] on the spectral 
measures of the operators corresponding to finite dimensional matrices being an upper-left corner of a 
matrix in M(n, ∞). These finite dimensional operators play an auxiliary role in the spectral analysis of 
operator A. Later, in Section 3, we construct a matrix-valued function for each element of M(n, ∞) having 
the properties of a spectral function. Section 4 deals with various criteria for the operator A to be self-adjoint 
and gives the spectral function of A, touching upon some of their properties. Finally, in Section 5, we deal 
with the problem of reconstruction and characterization.

2. Spectral analysis of submatrices

Fix N > n. The spectral analysis of the operator A is carried out by means of the auxiliary operator 
PHN

A �HN
, where HN = span{δi}Ni=1, and PHN

is the orthogonal projection onto the subspace HN . Note 
that PHN

A �HN
can be identified with the operator whose matrix representation is the finite dimensional 

submatrix corresponding to the N ×N upper-left corner of a matrix in M(n, ∞) (cf. (1.4)). We denote the 
class of these N ×N matrices by M(n, N) and the corresponding operator in HN is denoted by ÃN .

According to [29, Sec. 2], the spectral analysis of the operator ÃN can be carried out by studying a system 
of N equations, where each equation, given by a fixed k ∈ {1, . . . , N}, is of the form (cf. [29, Eq. (2.2)])

n−1∑
i=0

d
(n−i)
k−n+iϕk−n+i + d

(0)
k ϕk +

n∑
i=1

d
(i)
k ϕk+i = zϕk , (2.1)

where it has been assumed that

ϕk = 0 , for k < 1 , (2.2a)

ϕk = 0 , for k > N . (2.2b)

One can consider (2.2) as boundary conditions where (2.2a) is the condition at the left endpoint and 
(2.2b) is the condition at the right endpoint.



766 M. Kudryavtsev et al. / J. Math. Anal. Appl. 445 (2017) 762–783
The system (2.1) with (2.2), restricted to k ∈ {1, 2, . . . , N} \ {mi}j0i=1 when there are degenerations, can 
be solved recursively whenever the first n entries of the vector ϕ are given. Let ϕ(j)(z) (j ∈ {1, . . . , n}) be 
a solution of (2.1) for all k ∈ {1, 2, . . . , N} \ {mi}j0i=1 such that

〈
δi, ϕ

(j)(z)
〉

= tji, for i = 1, . . . , n , (2.3)

where T = {tji}nj,i=1 satisfies

I) T is n × n upper triangular with real entries.
II)

∏n
i=1 tii �= 0.

Each matrix T yields a system of solutions {ϕ(j)(z)}nj=1 that constitutes a basis in the space of solutions 
of (2.1) and (2.2a).

The condition given by (2.3) can be seen as the initial conditions for the system (2.1) and (2.2a). We 
emphasize that, given the boundary condition at the left endpoint (2.2a) and the initial condition (2.3), 
the system (2.1), restricted to k ∈ {1, 2, . . . , N} \ {mi}j0i=1 in the presence of degenerations, has a unique 
solution for any fixed j ∈ {1, . . . , n} and z ∈ C.

The degenerations, which the diagonals of matrices in M(n, N) undergo, are related to another kind of 
“boundary conditions”. Indeed, the equations of the system (2.1), when k ∈ {mi}j0i=1, give rise to the inner 
boundary conditions (of the right endpoint type) (cf. [29, Eq. (2.8)]).

Let {xl}Nl=1 be the spectrum of the operator ÃN , denoted spec ÃN . The eigenvector α(xl) corresponding 
to the eigenvalue xl, normalized in such a way that ‖α(xl)‖ = 1, can be decomposed as follows

α(xl) =
n∑

j=1
αj(xl)ϕ(j)(xl) , (2.4)

where αj(xl) ∈ C. It follows from (2.1), (2.2), and (2.3), that

n∑
j=1

|αj(xk)| > 0 for all k ∈ {1, . . . , N}

and

N∑
k=1

|αj(xk)| > 0 for all j ∈ {1, . . . , n} . (2.5)

The operator ÃN has a matrix-valued spectral function

σT
N (t) =

∑
xl<t

⎛
⎜⎜⎜⎜⎝

|α1(xl)|2 α1(xl)α2(xl) . . . α1(xl)αn(xl)
α2(xl)α1(xl) |α2(xl)|2 . . . α2(xl)αn(xl)

...
...

. . .
...

αn(xl)α1(xl) αn(xl)α2(xl) . . . |αn(xl)|2

⎞
⎟⎟⎟⎟⎠ (2.6)

with the following properties:

a) It is a nondecreasing monotone step function which is continuous from the left.
b) Each jump is a matrix of rank not greater than n.
c) The sum of the ranks of all jumps equals N .
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Note that the matrices in the sum on the right-hand side of (2.6) are the tensor product of the vector ⎛
⎝ α1(xl)

...
αn(xl)

⎞
⎠ with the complex conjugate of itself.

The relationship between the spectral functions σT
N for an arbitrary T and the case T = I is given by the 

following equation which is proven in [29, Pro. 2.1].

T∗
∫
R

d σT
NT =

∫
R

d σI
N = I . (2.7)

Consider the Hilbert space L2(R, σT
N ) with the usual inner product which we assume to be antilinear in 

the first argument (for the definition of L2(R, σT
N ), see [2, Sec. 72]). Clearly, property c) above implies that 

L2(R, σT
N ) is an N -dimensional space. By polynomial interpolation, one verifies that in each equivalence 

class there is an n-dimensional vector polynomial.
Define the vectors

pk := Tek for k = 1, . . . , n , (2.8)

where {ek}nk=1 is the canonical basis in Cn, i.e.,

e1 =

⎛
⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎠ , e2 =

⎛
⎜⎜⎝

0
1
...
0

⎞
⎟⎟⎠ , . . . ,en =

⎛
⎜⎜⎝

0
...
0
1

⎞
⎟⎟⎠ . (2.9)

Taking {pk}nk=1 as initial conditions of the recurrence equation

n−1∑
i=0

d
(n−i)
k−n+ipk−n+i(z) + d

(0)
k pk(z) +

n∑
i=1

d
(i)
k pk+i(z) = zpk(z) , k ∈ N \ {mj}j0j=1 , (2.10)

where it is assumed that

pk = 0 , for k < 1 , (2.11)

one obtains a sequence {pk(z)}∞k=1 of vector polynomials. The next assertion is proven in [29, Lem. 2.2].

Proposition 2.1. For any natural number N > n, the vector polynomials {pk(z)}Nk=1, defined by (2.10), 
satisfy

〈
pj ,pk

〉
L2(R,σT

N ) = δjk

for j, k ∈ {1, . . . , N}.

Let U : HN → L2(R, σT
N ) be the isometry given by Uδk 	→ pk, for all k ∈ {1, . . . , N}. Under this isometry 

the operator ÃN becomes the operator of multiplication by the independent variable in L2(R, σT
N ) (see [29, 

Sec. 2]).
Define

qj(z) := (z − d(0)
mj

)pmj
(z) −

n−1∑
k=0

d
(n−k)
mj−n+kpmj−n+k(z) −

n−j∑
k=1

d(k)
mj

pmj+k(z) (2.12)

for j ∈ {1, . . . , j0}.
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Using the same reasoning as in [29, Thm. 3.1], one proves that, for any natural number N ≥ n0 + mj0

(see Remark 1), the vector polynomials {qj(z)}j0k=1 satisfy
〈
qj , qj

〉
L2(R,σT

N ) = 0 . (2.13)

The existence of polynomials of zero norm in L2(R, σT
N ) is related to a linear interpolation problem 

consisting in the following: Given collections of numbers {zk}Nk=1 and {αj(k)}nj=1 (k = 1, . . . , N), find the 
scalar polynomials Rj(z), (j = 1, . . . , n), which satisfy the equation

n∑
j=1

αj(k)Rj(zk) = 0 , ∀k ∈ {1, . . . , N} .

This is equivalent (see [30, Sec. 4]) to finding n-dimensional vector polynomials satisfying

〈r(z), r(z)〉L2(R,σT
N ) = 0 , r(z) = (R1(z), R2(z), . . . , Rn(z))t . (2.14)

In [30], it was found that the solutions of the linear interpolation problem given by (2.14) are determined 
by a set of n vector polynomials called generators [30, Thm. 5.3]. Let us introduce some concepts related 
to the generators of a linear interpolation problem (for a detailed account of this, see [30, Secs. 2 and 4]).

Definition 2. Let r(z) = (R1(z), R2(z), . . . , Rn(z))t be an n-dimensional vector polynomial. The height of 
r(z) is the number

h(r) := max
j∈{1,...,n}

{n deg(Rj) + j − 1} ,

where it is assumed that deg 0 := −∞ and h(0) := −∞.

Note that we have defined the vector polynomials {ek}nk=1 so that

h(ek) = k − 1 . (2.15)

The following assertion is proven in [30, Thm. 2.1] (see also [29, Prop. 3.1]). We reproduce it here for the 
reader’s convenience.

Proposition 2.2. If a collection of n-dimensional vector polynomials {gi(z)}ji=1 (j ≥ 1) satisfy h(gi) = i − 1
for all i ∈ {1, . . . , j}, then any vector polynomial r(z) with height j − 1 can be written as follows

r(z) =
j∑

i=1
cigi(z) ,

where ci ∈ C for all i ∈ {1, . . . , n} and cj �= 0.

Definition 3. The first generator of the linear interpolation problem given by (2.14) is the n-dimensional 
vector polynomial satisfying (2.14) and having the least height. For k > 1, the k-th generator qk of the 
linear interpolation problem is a solution of (2.14) with least height such that it cannot be written as a 
linear combination of

{Rj(z)qj(z)}k−1
j=1 ,

where qj(z) is the j-th generator of the linear interpolation problem and Rj(z) is a scalar polynomial.
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Having the concepts of height of a vector polynomial and generator of the interpolation problem (2.14)
at hand, we invoke results from [29] and [30]. First we agree on the following.

Convention 1. From now on, we consider the natural number N to be no less than n0 +mj0 (see Remark 1).

Proposition 2.3. ([29, Thm. 3.1]) The vector polynomials {qj(z)}j0j=1 are the first j0 generators of the linear 
interpolation problem given by (2.14) (see [29, Sec. 3]). Moreover, for j = 1, . . . , j0, the numbers h(qj) are 
different elements of the factor space Z/nZ [30, Lem. 4.3].

The heights of the vector polynomials {pk}∞k=n+1 are determined recursively by means of the sys-
tem (2.10). Indeed, for any mj < k < mj+1, with j = 0, . . . , j0, one has the equation

· · · + d
(0)
k pk + d

(1)
k pk+1 + · · · + d

(n−j)
k pk+n−j = zpk ,

where we have assumed that m0 = 0. Since d(n−j)
k never vanishes, the height of pk+n−j coincides with the 

one of zpk. Thus

h(pk+n−j) = n + h(pk) . (2.16)

If there are no degenerations of the diagonals, then (2.16) implies that

h(pk) = k − 1 , for all k ∈ N . (2.17)

On the other hand, in the presence of degenerations, one verifies from (2.12) and (2.16) that

h(pk) �= h(pmj
) + n = h(qj) , (2.18)

for any k ∈ N and j = 1, . . . , j0.

Lemma 2.1. For any nonnegative integer s, there exist k ∈ N or a pair j ∈ {1, . . . , j0} and l ∈ N ∪ {0} such 
that either s = h(pk) or s = h(qj) + nl.

Proof. This proof repeats the one of [29, Lem. 3.3]. We have reproduced it here for the reader’s convenience. 
Due to (2.16), it follows from (2.8) and (2.15) that

h(pk) = k − 1 for k = 1, . . . , h(q1) (2.19)

(cf. (2.17)).
Suppose that there is s ∈ N (s > n) such that s �= h(pk) for all k ∈ N and s �= h(qj) + nl for 

all j ∈ {1, . . . , j0} and l ∈ N ∪ {0}. Let l̂ be an integer such that s − nl̂ ∈ {h(pk)}∞k=1 ∪ {h(qj) + nl}
(j ∈ {1, . . . , j0} and l ∈ N ∪ {0}). There is always such an integer due to (2.19) and h(q1) > n (see (2.18)). 
We take l̂0 to be the minimum of all l̂’s. Thus, there is k′ ∈ N or j′ ∈ {1, . . . , j0}, respectively, such that 
either

a) s − nl̂0 = h(pk′) or
b) s − nl̂0 = h(qj′) + nl, with l ∈ N ∪ {0}.

In the case a), we prove that l̂0 is not the minimum integer, this implies the assertion of the lemma. Indeed, 
if there is j ∈ {1, . . . , j0} such that k′ = mj , then s − nl̂0 + n = h(pmj

) + n = h(qj) due to (2.18). If there 

is not such j, then mj < k′ < mj+1 and (2.16) implies s − nl̂0 + n = h(pk′) + n = h(pk′+n−j).
For the case b), if s − nl̂0 = h(qj′) + nl, then s = h(qj′) + n(l + l̂0) which is a contradiction. �
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As a consequence of Proposition 2.2, the above lemma yields the following result.

Corollary 2.1. Any vector polynomial r(z) is a finite linear combination of

{pk(z) : k ∈ N} ∪ {zlqj(z) : l ∈ N ∪ {0}, j ∈ {1, . . . , j0}} , (2.20)

where if j0 = 0, the second set in (2.20) is empty.

To conclude this section, we use the canonical basis of Cn (see (2.9)) to define a family of vector polyno-
mials for k ∈ N and i = 1, . . . , n.

enk+i(z) := zkei . (2.21)

Observe that

〈enk+i(t),enl+j(t)〉L2(R,σT
N ) =

∫
R

tk+ld σT
N (i, j) , (2.22)

where σT
N (i, j) is given by 

〈
ei, σ

T
N (t)ej

〉
(the entry at i, j of the matrix-valued function (2.6)).

For k = 0, 1, . . . , 
⌈

2h(pN )
n

⌉
, where �·� is the ceiling function, denote the matrix moments of σT

N by

Sk(T) :=
∫
R

tk dσT
N . (2.23)

On the basis of Corollary 2.1, one verifies that the matrix moments of σT
N coincide with the ones of σT

Ñ
for any Ñ ≥ N . This explains why we have dropped the N in the notation of Sk(T).

Remark 2. Note that, for any natural number k, there exists N ∈ N such that S2k(T) is given by (2.23) and 
it is a positive definite matrix.

3. Spectral analysis of infinite symmetric band matrices

In this section, we construct a matrix-valued function for each element of M(n, ∞) having the properties 
of a spectral function. To this end, we give defining criteria for a measure to be a spectral function of a 
matrix in the class M(n, ∞). By our definition, any spectral function σ of A in M(n, ∞) is the spectral 
function of some self-adjoint extension of the minimal closed operator A generated by A (see [2, Sec. 47]) 
so that this self-adjoint operator is transformed by a unitary isometric map, which can be regarded as a 
Fourier transform, into the operator of multiplication by the independent variable defined on its maximal 
domain in some space L2(R, σ) (for the definition of this space, see [2, Sec. 72]). It is worth remarking 
that not all the spectral functions of a matrix in M(n, ∞) correspond to a self-adjoint extension Ã of the 
minimal closed operator generated by A such that Ã ⊂ A∗ (see Remark 4).

The results of this section and the next one provide a complete description of all possible spectral functions 
that can be associated with some element of M(n, ∞) by our criteria.

Definition 4. A nondecreasing n × n matrix-valued function σ with finite moments, such that 
∫
R
dσ is 

invertible, is called a spectral function of a matrix A in M(n, ∞) if and only if there exists T satisfying I) 
and II) (see (2.3)) such that {pk}∞k=1 is an orthonormal sequence in L2(R, σ) and, for each j ∈ {1, . . . , j0}, 
qj is in the equivalence class of zero in L2(R, σ).
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Remark 3. The spectral function σ of a matrix in M(n, ∞) has an infinite number of growth points. 
Indeed, if σ had a finite number of growth points, then L2(R, σ) would be a finite dimensional space and 
correspondingly the sequence of vector polynomials {pk}k would be finite.

As a consequence of Corollary 2.1, all the vector polynomials are in L2(R, σ) when σ is a spectral 
function of a matrix in M(n, ∞). Moreover the polynomials are dense in L2(R, σ) when the orthonormal 
system {pk}∞k=1 turns out to be complete.

On the basis of Definition 4, one can construct an isometric map between the original space H and 
the subspace being the closure of the polynomials in L2(R, σ). This isometric map, which will be denoted 
by U , is realized by associating the orthonormal basis {δk}∞k=1 with the orthonormal system {pk}∞k=1, i.e., 
Uδk = pk for all k ∈ N. Furthermore, under this map, the operator A is transformed into some restriction of 
the operator of multiplication by the independent variable. Indeed, if ϕ =

∑∞
k=1 ϕkδk is an element of the 

domain of A, then f =
∑∞

k=1 ϕkpk is in the domain of the operator of multiplication by the independent 
variable and

UAU−1f(t) = tf(t) .

Lemma 3.1. Let A be an element of M(n, ∞) and σT
N be the matrix-valued spectral function of the corre-

sponding operator AN for a fixed matrix T satisfying I) and II). Then, there exists a subsequence {σT
Ni
}∞i=1

converging pointwise to a matrix-valued function σT.

Proof. In view of (2.7), the hypothesis of Helly’s first theorem for bounded operators [6, Thm. 4.3] is 
satisfied in any bounded interval (cf. [33, Sec. 8.4] for the scalar case), therefore the statement follows. The 
generalization of Helly’s first theorem given in [6, Thm. 4.3] is based on applying the scalar theorem to the 
bilinear form of the sequence of operators (for fixed elements in the Hilbert space) in a diagonal process 
fashion using the boundedness of the operators and the separability of the space. This yields the assertion 
in the sense of weak convergence. Using the fact that uniform and weak convergence are equivalent in finite 
dimensional spaces, one obtains the assertion. �

The following proposition is obtained by applying [6, Thm. 4.4] to the result above and taking into 
account that the matrix σT

N is finite dimensional for any N > n.

Proposition 3.1 (Helly’s generalized second theorem). Suppose that the function f(t) is continuous in the 
real interval [a, b], where a and b are points of continuity of σT(t) (see Lemma 3.1). Then there exists a 
subsequence {σT

Ni
}∞i=1 such that

b∫
a

f(t) dσT
Ni

(t) −−−→
i→∞

b∫
a

f(t) dσT(t) .

With these results at hand, we prove the following assertions.

Lemma 3.2. There exists a subsequence {σT
Ni
}∞i=1 such that

∫
R

tk dσT
Ni

=
∫
R

tk dσT

for any nonnegative integer k ≤
⌈ 2h(pNi

)
n

⌉
(see (2.23)).
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Proof. If one assumes that −a < 0 and b > 0 are two points of continuity of σT(t), then, it follows from 
Proposition 3.1 that

b∫
−a

tk dσT = lim
i→∞

b∫
−a

tk dσT
Ni

.

On the other hand, given a number r such that r > k, then for r <
⌈ 2h(pNi

)
n

⌉
∥∥∥∥∥∥

∞∫
−∞

−
b∫

−a

tk dσT
Ni

∥∥∥∥∥∥ =

∥∥∥∥∥∥
−a∫

−∞

+
∞∫
b

tk dσT
Ni

∥∥∥∥∥∥ =

∥∥∥∥∥∥
−a∫

−∞

+
∞∫
b

tr

tr−k
dσT

Ni

∥∥∥∥∥∥
≤ 1

cr−k

∥∥∥∥∥∥
−a∫

−∞

+
∞∫
b

tr dσT
Ni

∥∥∥∥∥∥ ≤ ‖Sr(T)‖
cr−k

,

where c = min{a, b} and Sr(T) =
∫
R
tr dσT

Ni
(the integral is convergent due to Proposition 2.1). Thus,

∥∥∥∥∥∥Sk(T) −
b∫

−a

tk dσT

∥∥∥∥∥∥ ≤ ‖Sr(T)‖
cr−k

.

This yields the assertion when one makes a and b tend to ∞ in such a way that −a and b are all the time 
points of continuity of σT(t). �

From the previous lemma, one directly obtains the following result.

Corollary 3.1. The spectral function σT to which a subsequence of {σT
N}∞N=2 converges according to 

Lemma 3.1 is a solution of a certain matrix moment problem given by {Sk(T)}∞k=0.

Lemma 3.3. Any A ∈ M(n, ∞) has at least one spectral function (in the sense of Definition 4).

Proof. It follows directly from Proposition 2.1 and Lemma 3.2 that the vector polynomials {pk(z)}∞k=1, 
defined by (2.9) and (2.10), satisfy

〈
pj ,pk

〉
L2(R,σT) = δjk

for j, k ∈ N, where σT is the function given by Lemma 3.1. Now, fix j ∈ {1, . . . , j0} and consider N according 
to Convention 1. Thus,

0 =
∥∥qj

∥∥2
L2(R,σT

N ) =
∫
R

〈
qj , dσ

T
Nqj

〉
.

By Lemma 3.2 there is a subsequence {σT
Ni
}∞i=1 such that, beginning from some i ∈ N,

0 =
∫
R

〈
qj , dσ

T
Ni

qj

〉
=

∫
R

〈
qj , dσ

Tqj

〉
=

∥∥qj

∥∥2
L2(R,σT) . �
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Remark 4. Let A be in M(n, ∞) and σ be the spectral function of A according to Definition 4. If the 
moment problem associated with σ turns out to be determinate, then there is just one solution of the 
moment problem and this solution, i.e. σ, corresponds to a spectral function of the operator A which turns 
out to be self-adjoint [12, Sec. 2]. In this case, the function σT given by Lemma 3.1 will be the unique 
solution to its corresponding moment problem. Note that one could associate another spectral function 
to A by considering a different matrix T (see (2.3)), but the moment problem for it would be different 
(and also determinate). If the moment problem is indeterminate, then there are various solutions of the 
moment problem and each solution σ̂ is a spectral function of A since the sequence of polynomials {pk}∞k=1
is orthonormal in L2(R, ̂σ) for any solution σ̂. In this case, σ̂ not necessarily corresponds to the spectral 
function of a canonical self-adjoint extension of the operator A (by a canonical self-adjoint extension of the 
symmetric operator A we mean a self-adjoint restriction of A∗). Indeed, the solution σ̂ is the spectral function 
of a canonical self-adjoint extension if and only if the polynomials are dense in L2(R, ̂σ). We expect that the 
spectral function σT, to which a subsequence of {σT

N}∞N=2 converges according to Lemma 3.1, be such that 
the polynomials are dense in L2(R, σT). This matter, together with other questions on characterization of 
the functions σT will be dealt with in a forthcoming paper.

Definition 5. The set of all n × n-matrix-valued functions with an infinite number of growing points such 
that all the moments {Sk}∞k=1 exist and S0 is invertible is denoted by M(n, ∞). Besides, Md(n, ∞) denotes 
the subset of M(n, ∞) for which the sequence of matrix moments generates a determinate matrix moment 
problem.

Theorem 3.1. Let A be in M(n, ∞) and j0 be the number of degenerations of A (see the paragraph above 
Definition 1). For any spectral function σ of A, it holds true that:

i) (Nondegenerate case) If j0 = 0, i.e., the matrix A does not undergo degenerations, then there are no 
vector polynomials in the equivalence class of the zero of the space L2(R, σ), i.e.,

〈r(z), r(z)〉L2(R,σ) = 0 ⇐⇒ r ≡ 0 .

ii) (Degenerate case) If j0 > 0, then all the polynomials q1, . . . , qj0 are in the equivalence class of zero and 
any polynomial r(z) in this equivalence class can be written as

r(z) =
j0∑
j=1

Rj(z)qj(z) , (3.1)

where Rj(z) is a scalar polynomial.

Proof. First one proves ii). The first part of the assertion follows immediately from Definition 4. Suppose 
that there is a nontrivial vector polynomial r(z) in the equivalence class of zero with height r. Therefore, 
by Corollary 2.1

r(z) =
l∑

k=1

ckpk(z) +
j0∑
j=1

Rj(z)qj(z) , (3.2)

where max{h(pl), max
j=1,...,j0

{h(Rjqj)}} = r. Furthermore,

ck = 〈r(z),pk(z)〉 for all k ∈ {1, . . . , l} . (3.3)
L2(R,σ)
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Fig. 5. Tail of matrix A.

And, since r(z) is in the zero class, the right-hand side of the equality in (3.3) is always zero. Hence, 
(3.1) holds true.

To prove i), one uses again (3.2) taking into account Corollary 2.1. Then (3.3) shows that the only vector 
polynomial in the zero class is the zero polynomial. �
Remark 5. The assertion ii) of Theorem 3.1 can be interpreted as follows. If the spectral function of A
has a countable set of growth points not accumulating anywhere, then the spectrum of the operator of 
multiplication consists only of eigenvalues which, due to the fact that σ is an n ×n matrix, have multiplicity 
not greater than n. Let {xl}∞l=1 be the eigenvalues of the multiplication operator by the independent variable 
in L2(R, σ) enumerated taking into account their multiplicity. Hence the vector polynomials {qj}j0j=1 are 
generators of the interpolation problem

〈r(xl), σlr(xl)〉Cn = 0 , l ∈ N, (3.4)

where σl is a matrix of the same form as right-hand side of (2.6) and has the same properties. Note that 
(3.4) yields a linear interpolation problem with an infinite set of nodes of interpolation.

4. Spectral functions in the self-adjoint case

The operator A is symmetric and, by definition, closed. In this section, we are interested in the case when 
A = A∗. So let us touch upon some criteria for self-adjointness of A.

Our first criterion is based on the fact that any semi-infinite band matrix can be considered as a block 
semi-infinite Jacobi matrix. Indeed, any semi-infinite band matrix with 2n + 1 diagonals is equivalent to 
a semi-infinite Jacobi matrix where each entry is a p × p matrix with p ≥ n. Since the operator A∗ is 
the operator defined by the matrix A in the maximal domain [2, Sec. 47], the fact that the operator A
is self-adjoint depends exclusively on the asymptotic behavior of the diagonal sequences {d(n)

k }∞k=1 of its 
matrix representation A.

For any matrix in M(n, ∞), consider the semi-infinite submatrix after the last degeneration, which we 
called the “tail of the matrix” (see Remark 1). This “tail” can be seen as a semi-infinite block Jacobi matrix 
(see Fig. 5).
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Let us denote

⎛
⎜⎜⎜⎜⎜⎜⎝

Q1 B∗
1 0 0 · · ·

B1 Q2 B∗
2 0

0 B2 Q3 B∗
3

. . .

0 0 B3 Q4
. . .

...
. . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎠

:=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d
(0)
mj0+1

. . . d
(n0)
mj0+1 0 0 · · ·

. . . d
(0)
mj0+2

. . . d
(n0)
mj0+2 0

d
(n0)
mj0+1

. . . d
(0)
mj0+3

. . . d
(n0)
mj0+3

. . .

0 d
(n0)
mj0+2

. . . d
(0)
mj0+4

. . . . . .

0 0 d
(n0)
mj0+3

. . . d
(0)
mj0+5

. . .
...

. . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where each entry is an n0 × n0 matrix (n0 := n − j0). Clearly, the elements of the block diagonal adjacent 
to the main diagonal, i.e., the matrices {Bk}k∈N and {B∗

k}k∈N, are upper and, respectively, lower triangular 
matrices such that the main diagonal entries are positive numbers.

The following proposition is the analogue of the Carleman criterion [1, Chap. 1, Addenda and Problems]
for block Jacobi matrices.

Proposition 4.1. ([4, Ch. 7, Thm. 2.9]) If 
∑∞

j=1 1/ ‖Bj‖ diverges, then A is self-adjoint.

In [26, Cor. 2.5], the following necessary conditions for self-adjointness are given. These conditions gen-
eralize well known criteria for a Jacobi operator to be self-adjoint.

Proposition 4.2. Suppose that, starting from some k0, all the matrices Qk are invertible. If

lim
k→+∞

∥∥Q−1
k

∥∥ = 0 , and lim sup
k→+∞

{
∥∥Q−1

k Bk

∥∥ +
∥∥Q−1

k B∗
k

∥∥} < 1 ,

then the operator A is self-adjoint.

Another criterion is given by perturbation theory and is related to the if-and-only-if criterion given above. 
Indeed, consider the operators Dj (j = 0, 1, . . . , n), whose matrix representation with respect to {δk}k∈N

is a diagonal matrix, i.e., Djδk = d
(j)
k δk for all k ∈ N, where d(j)

k is a real number (see [2, Sec. 47]). Note 
that Dj , given in the Introduction, is the matrix representation of the operator Dj with respect to {δk}k∈N. 
Define the shift operator S as follows

Sδk = δk+1 , for all k ∈ N ,

where by linearity, it is defined on span{δk}∞k=1 and then extended to H by continuity. Consider the sym-
metric operator

A′ := D0 +
n∑

j=1
SjDj +

n∑
j=1

Dj(S∗)j . (4.1)

Now, if the operator 
∑n

j=1 S
jDj +

∑n
j=1 Dj(S∗)j is D0-bounded with D0-bound smaller than 1 (see [40, 

Sec. 5.1]), one can resort to the Rellich–Kato theorem [25, Thm. 4.3] to show that A′ is self-adjoint. When 
this happens, it can be shown that A = A′.

Let us assume from this point to the end of this section that the operator A is self-adjoint. Our approach 
to constructing the spectral functions of A is based on techniques of perturbation theory related to the 
strong resolvent convergence (see [40, Sec. 9.3]).
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We begin by recalling the following definition.

Definition 6. A subset D of the domain of a closeable operator B is called a core of B when B �D = B.

Also, we recur to the following known results (cf. [25, Chap. 8, Cor. 1.6 and Thm. 1.15]):

Proposition 4.3. [40, Thm. 9.16] Let {BN}N∈N and B be self-adjoint operators on H. If there is a core 
D of B such that for every ϕ ∈ D there is an N0 ∈ N which satisfies ϕ ∈ dom(BN ) for N ≥ N0 and 
BNϕ −−−−→

N→∞
Bϕ, then the sequence {(BN − zI)−1}N∈N converges strongly to (B − zI)−1 (denoted (BN −

zI)−1 s−−−−→
N→∞

(B − zI)−1) for all z ∈ C \ R.

Proposition 4.4. [40, Thm. 9.19] Let {BN}N∈N and B be self-adjoint operators on H, such that the sequence 
{(BN − iI)−1}N∈N converges strongly to (B − iI)−1. Then

EBN
(t) s−−−−→

N→∞
EB(t)

EBN
(t + 0) s−−−−→

N→∞
EB(t)

, for all t ∈ R such that EB(t) = EB(t + 0) .

Here, EBN
(t) and EB(t) are the spectral resolutions of the identity of BN and B, respectively.

Recall the finite dimensional operator ÃN studied in Section 2 and define

AN := ÃN ⊕O ,

where O is the zero-operator in the infinite dimensional space H�HN . For any N > n, the operator AN is 
self-adjoint, so we take advantage of the spectral theorem. Let us introduce the following notation for the 
matrix-valued spectral functions

σN (t) := {〈δi, EAN
(t)δj〉}∞i,j=1 for any N > n (4.2)

σ(t) := {〈δi, EA(t)δj〉}∞i,j=1 . (4.3)

Lemma 4.1. The matrix-valued functions σN (t) given in (4.2) converge to the matrix-valued function σ(t), 
defined by (4.3), at all points of continuity of σ(t), i.e.,

σN (t) −−−−→
N→∞

σ(t) , t being a point of continuity of σ(t) . (4.4)

Proof. Let lfin(N) be the linear space of sequences with a finite number of nonzero elements. This space is a 
core of the operator A. Given an element ϕ =

∑s
k=1 ϕkδk ∈ lfin(N), one verifies that, for all N ≥ N0 = s +n, 

ANϕ = Aϕ. Therefore, the conditions of Proposition 4.3 are satisfied. So, by Proposition 4.4, one obtains 
the result. �
Corollary 4.1. For any k ∈ N ∪ {0}, the integral

∫
R

tkdσ

converges. Moreover, 
∫
R
dσ is the identity matrix.
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Proof. The first part of the assertion is a consequence of Lemmas 3.2 and 4.1. The second part follows from 
the fact that σ is the spectral function of the self-adjoint operator A. �

On the basis of the previous result, let us denote

Sk :=
∫
R

tkdσ

for any k ∈ N ∪ {0}.

Definition 7. Given the spectral function σ of the self-adjoint operator A, denote

σT := TσT∗ ,

where T is a matrix satisfying I) and II) (see (2.3)).

Using (2.7), one obtains

σT
N (t) −−−−→

N→∞
σT(t) , for t being a point of continuity of σ(t) , (4.5)

where σT
N is the function given in (2.6). To verify this, observe that σN , given by (4.2), corresponds to σI

N

(cf. the paragraph below [29, Remark 2.2]). It also holds that

TSkT
∗ =

∫
R

tk dσT . (4.6)

Lemma 4.2. For any matrix T satisfying I) and II), the function σT, given in Definition 7, is in Md(n, ∞)
(see Definition 5).

Proof. It follows from [12, Sec. 2] that the sequence {Sk}∞k=0 defines a determinate moment problem. In 
view of (4.6), the sequence {TSkT

∗}∞k=0 also has only one solution for any T. �
5. Reconstruction of the matrix

In this section, the starting point is a matrix-valued function σ̃ ∈ M(n, ∞) (see Definition 5) and we 
construct a matrix A in the class M(n, ∞) from this function. Furthermore, we verify that, for some matrix T
which gives the initial conditions (see (2.3)), σ̃ is a spectral function of the reconstructed matrix A according 
to Definition 4. Hence, any matrix in M(n, ∞) can be reconstructed from its function in M(n, ∞).

Consider the Hilbert space L2(R, ̃σ) with σ̃ ∈ M(n, ∞). All n-dimensional vector polynomials are in 
L2(R, ̃σ) and either there are polynomials of zero norm in this space or there are not. Let us apply the 
Gram–Schmidt procedure of orthonormalization to the sequence of vector polynomials given by (2.21). 
If there exist nonzero polynomials whose norm is zero, then the Gram–Schmidt algorithm yields vector 
polynomials of zero norm. Indeed, let r �≡ 0 be a vector polynomial of zero norm of minimal height h1 (that 
is, any nonzero polynomial of zero norm has height no less than h1), and let {p̃k}h1

k=1 be the orthonormalized 
vector polynomials obtained by the first h1 iterations of the Gram–Schmidt procedure. Hence, if one defines

s = eh1+1 −
h1∑
i=1

〈p̃i, eh1+1〉 p̃i ,

then, in view of the fact that h(p̃k) = k − 1 for k = 1, . . . , h1, and taking into account Proposition 2.2, one 
has
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eh1+1 = ar +
h1∑
i=1

aip̃i

which in turn leads to

s = ar +
h1∑
k=1

ãkp̃k . (5.1)

This implies that ‖s‖L2(R,σ̃) = 0 since r has zero norm and s ⊥ p̃k for k = 1, . . . , h1 by construction. Thus, 
the Gram–Schmidt procedure yields vector polynomials of zero norm.

Having found a vector polynomial of zero norm, one continues with the procedure taking the next vector 
of the sequence (2.21). Observe that if the Gram–Schmidt technique has produced a vector polynomial of 
zero norm q of height h, then for any integer number l, the vector polynomial t that is obtained at the 
h + 1 + nl-th iteration of the Gram–Schmidt process, viz.,

t = eh+1+nl −
∑

h(p̃i)<h+nl

〈p̃i, eh+1〉 p̃i ,

satisfies that ‖t‖L2(R,σ̃) = 0 (for all l ∈ N). Indeed, due to Proposition 2.2, one has

eh+1+nl = zlq +
∑

h(p̃i)<h+nl

cip̃i +
∑

h(r)<h+nl

r ,

where each r is a vector polynomial of zero norm obtained from the Gram–Schmidt procedure.

Remark 6. Since σ̃ has an infinite number of growth points, the Hilbert space L2(R, ̃σ) is infinite dimensional 
[2, Sec. 72]. Thus, the Gram–Schmidt procedure renders an infinite sequence of orthonormal vectors.

The following flow chart shows that the Gram–Schmidt procedure applied to the sequence (2.21) gives 
not only the orthonormalized sequence, but also a sequence of null vector polynomials such that at any 
step of the algorithm these two sequences together are a basis of the space of vector polynomials (see 
Proposition 2.2 and compare with (2.20)).
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Remark 7. Another consequence of the fact that the measure has an infinite number of growth points is that 
one cannot obtain more than n − 1 null vectors from the Gram–Schmidt procedure applied to the sequence 
of vector polynomials given by (2.21). Indeed, if one finds the n-th vector polynomial q̃n, by repeating the 
argument described above and taking into account

{h(q̃1), . . . , h(q̃n)} = Z/nZ ,

one obtains that all the vectors provided by this procedure have zero norm beginning from some vector. 
This would correspond to an infinite loop in the left side of the flow chart and to a measure with finite 
support since L2(R, ̃σ) would be finite dimensional.

Lemma 5.1. Any vector polynomial r(z) is a finite linear combination of

{p̃k(z) : k ∈ N} ∪ {zlq̃j(z) : l ∈ N ∪ {0}, j ∈ {1, . . . , j0}} .

Proof. Note that the vector polynomials defined in (2.21) satisfy that h(ei) = i − 1. Due to the fact that

h

⎛
⎝ek −

∑
h(p̃i)<k−1

〈p̃i, ek〉 p̃i

⎞
⎠ = h(ek) , (5.2)

one concludes that the heights of the set {p̃k(z)}∞k=1 ∪ {zlq̃i(z)}ni=1 (l ∈ N ∪ {0}) are in one-to-one corre-
spondence with the set N ∪ {0}. To complete the proof, it only remains to use Proposition 2.2. �

By the argumentation given above and the same reasoning used in the proof of Theorem 3.1 ii), one 
arrives at the following assertion.

Proposition 5.1. Let σ̃ be in M(n, ∞). There exist at most n − 1 vector polynomials {q̃i}j0i=1 (j0 ≤ n − 1) 
such that any vector polynomial r of zero norm can be written as

r =
j0∑
i=1

Riq̃i ,

where Ri is a scalar polynomial for any i ∈ {1, . . . , j0}.

Let σ̃(t) be a matrix valued function in M(n, ∞) and consider the sequences {p̃k}k∈N and {q̃i}j0i=1 obtained 
by applying the Gram–Schmidt process to the sequence (2.21). Since for any k ∈ N there exists l ∈ N such 
that h(zp̃k) ≤ h(p̃l), one has by Lemma 5.1 that

zp̃k(z) =
l∑

i=1
cikp̃i(z) +

j0∑
j=1

Rkj(z)q̃j(z) , (5.3)

where cik ∈ C and Rkj(z) is a scalar polynomial.

Remark 8. By comparing the heights of the left and right hand sides of (5.3), one obtains the following 
relations given in items i) and ii) below. To verify item iii), one has to take into account that the leading 
coefficient of ek is positive for k ∈ N and therefore the Gram–Schmidt procedure yields the sequence {p̃k}∞k=1
with its elements having positive leading coefficients (cf. [29, Rem. 4]).

i) clk = 0 if h(zp̃k) < h(p̃l),
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ii) Rkj(z) = 0 if h(zp̃k) < h(Rkj(z)q̃j),
iii) clk > 0 if there is l ∈ N such that h(zp̃k) = h(p̃l).

Clearly (recall that our inner product is antilinear in its first argument),

clk = 〈p̃l, zp̃k〉L2(R,σ̃) = 〈zp̃l, p̃k〉L2(R,σ̃) = ckl . (5.4)

In [29, Sec. 3], a reconstruction algorithm is provided for recovering the finite band matrix associated to 
the operator AN from its spectral function. The proof of [29, Lem. 4.1] proves the following assertion

Proposition 5.2. If |l − k| > n. Then, the complex numbers cki in (5.3) obey

ckl = clk = 0 .

Proposition 5.2 shows that {clk}∞l,k=1 is a band matrix. Let us turn to the question of characterizing the 
diagonals of the matrix {clk}∞l,k=1. It will be shown that they undergo the kind of degeneration given in the 
Introduction.

For a fixed number i ∈ {0, . . . , n}, we define the numbers

d
(i)
k := ck+i,k = ck,k+i (5.5)

for k ∈ N. The proof of the following assertion repeats the one of [29, Lem. 4.2].

Proposition 5.3. Fix j ∈ {0, . . . , j0 − 1}.

i) If k is such that h(q̃j) < h(zp̃k) < h(q̃j+1), then d(n−j)
k > 0. Here one assumes that h(q0) := n − 1.

ii) If k is such that h(zp̃k) ≥ h(q̃j+1), then d(n−j)
k = 0.

Corollary 5.1. If cik are the coefficients given in (5.3), then the matrix {ckl}∞k,l=1 is in M(n, ∞) and it is the 
matrix representation with respect to {p̃k}∞k=1 of a symmetric restriction of the operator of multiplication 

by the independent variable in span{p̃k}∞k=1 ⊂ L2(R, ̃σ). (The restriction of the operator could be improper, 
i.e., the case when the restriction coincides with the multiplication operator is not excluded.)

Proof. Taking into account (5.5), it follows from Propositions 5.2 and 5.3 that the matrix {ckl}∞k,l=1 is in 
the class M(n, ∞). Now, in view of (5.4), the operator of multiplication by the independent variable is an 
extension of the minimal closed symmetric operator B in span{p̃k}∞k=1 ⊂ L2(R, ̃σ) satisfying

ckl = 〈p̃k, Bp̃l〉 . �
Remark 9. It follows from (2.5) that ei(z) is not in the equivalence class of zero in L(R, ̃σ) for i ∈ {1, . . . , n}. 
Therefore, if one defines

tij :=
〈
δi, p̃j

〉
Cn , ∀i, j ∈ {1, . . . , n} , (5.6)

the matrix T = {tij}ni,j=1 satisfies I) and II) (Section 2). Now, for this matrix T and the matrix {ckl}∞k,l=1
construct the polynomials {pk}∞k=1 according to (2.8)–(2.11). By means of the constructed sequence {pk}∞k=1, 
one defines {qk}j0k=1 using (2.12).

Theorem 5.1. Let σ̃ be an element of M(n, ∞) and cik be the coefficients given in (5.3). Then σ̃ is a spectral 
function of the matrix {ckl}∞k,l=1 according to Definition 4.
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Proof. Since the recurrence equation for the orthonormal sequence {p̃k}∞k=1 and the sequence of polynomials 
{pk}∞k=1 given by Remark 9 are related in the same way as in the finite dimensional case (see [29, Eqs. (2.17)
and (4.15)]), one can use the argumentation of the proofs of [29, Lem. 4.3] to obtain that the vector 
polynomials {pk(z)}∞k=1 and {p̃k(z)}∞k=1 satisfy

pk(z) = p̃k(z) + rk(z) , (5.7)

where ‖rk‖L2(R,σ̃) = 0. Analogously, when j0 �= 0 it can also be proven that the vector polynomials 
{q̃j(z)}j0j=1 and the vector polynomials {qj(z)}j0j=1 given in Remark 9 satisfy

qj(z) =
∑
i≤j

Ri(z)q̃i(z) , Rj �= 0 , (5.8)

where Ri(z) are scalar polynomials (see [29, Lem. 4.4]). Due to (5.7) and (5.8) {pk}∞k=1 is an orthonormal 
sequence in L2(R, ̃σ) and qj is in the equivalence class of zero in this space for any j ∈ {1, . . . , j0}. �
Theorem 5.2. Consider the space L2(R, ̃σ) and let Ã be the operator of multiplication by the independent 
variable in it, defined on its maximal domain. If σ̃ is in Md(n, ∞), then {cik}∞i,k=1 (where cik are the 

coefficients given in (5.3)) is the matrix representation of Ã with respect to {p̃k}∞k=1. Moreover, there is T
satisfying I) and II) such that σT, given in Definition 7, coincides with σ̃.

Proof. According to Remark 9 and Theorem 5.1, there is T such that the vector polynomials {pk}∞k=1, 
generated by {ckl}∞k,l=1 and T, are orthonormal in L2(R, ̃σ). Since σ̃ is the unique solution of the moment 
problem

⎧⎨
⎩
∫
R

tkdσ̃

⎫⎬
⎭

∞

k=0

,

it follows from Remark 4 (see [12, Sec. 2]) that the orthonormal system {pk}∞k=1 is a basis and {ckl}∞k,l=1
is the corresponding matrix representation of the operator of multiplication by the independent variable 
with respect to {pk}∞k=1 or, equivalently, {p̃k}∞k=1. For proving the second part of the assertion, first observe 
that, due to (4.5), one can apply Lemma 3.2 to the sequence {σT

N}N>n and the function σT. This yields the 
existence of a sequence {Ni}∞i=1 such that

∫
R

tk dσT
Ni

=
∫
R

tk dσT .

This equality and the fact that, for any k, l ∈ N and N sufficiently large,

〈pk,pl〉L2(R,σT
N ) = δkl

imply that {pk}∞k=1 is orthonormal in L2(R, σT). Thus, by Corollary 2.1 and Lemma 5.1, σ̃ and σT have 
the same moments. �
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