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C*-algebra

We present some generalizations of quantum information inequalities involving tra-
cial positive linear maps between C*-algebras. Among several results, we establish a
noncommutative Heisenberg uncertainty relation. More precisely, we show that if ® :
A — B is a tracial positive linear map between C*-algebras, p € A is a $-density el-
ement and A, B are self-adjoint operators of A such that sp(-ip% (A, B}pé) C [m, M]
for some scalers 0 < m < M, then under some conditions

Voo (A)iV, (B) > !

SN o Wl AU SR U 0.1)

where K., v (p[A, B]) is the Kantorovich constant of the operator -ip3 (A, B]pé and
V,,o(X) is the generalized variance of X. In addition, we use some arguments dif-
fering from the scalar theory to present some inequalities related to the generalized
correlation and the generalized Wigner—Yanase—Dyson skew information.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

In quantum measurement theory, the classical expectation value of an observable (self-adjoint operator)

A in a quantum state (density operator) p is expressed by Tr(pA). Also, the classical variance for a quantum
state p and an observable operator A is defined by V,,(A) := Tr(pA?)—(Tr(pA))?. The Heisenberg uncertainty

relation asserts that
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for a quantum state p, where [A, B] := AB — BA is the commutator of two observables A and B; see [6].
It gives a fundamental limit for the measurements of incompatible observables. A further strong result was
given by Schrodinger [15] as

V(A)V,(B) ~ [Re(Covy(A, B)) > {|Tr(o[A, B])P. (1.2)

where the classical covariance is defined by Cov,(A) := Tr(pAB) — Tr(pA)Tr(pB).

Yanagi et al. [18] defined the one-parameter correlation and the one-parameter Wigner—Yanase skew infor-
mation (is known as the Wigner—Yanase-Dyson skew information; cf. [10]) for operators A, B, respectively,
as follows

Corr( (A, B) := Tr(pA*B) — Tr(p' " A*p*B) and I7(A) := Corr( (A, A),
where « € [0,1]. They showed a trace inequality representing the relation between these two quantities as
[Re(Corr®(A, B))|* < IZ(A)I2(B). (1.3)

In the case that a = %, we get the classical notions of the correlation Corr,(A, B) and the Wigner—Yanase
skew information I,(A). The classical Wigner—Yanase skew information represents a for non-commutativity
between a quantum state p and an observable A.

Luo [11] introduced the quantity U,(A) as a measure of uncertainty by

Up(A) =V (4)2 = (V,(4) = [,(A))2.

He then showed a Heisenberg-type uncertainty relation on U,(A) as

U,(A)U,(B) > £ [Tr(plA, B))P". (1.4)

1
i
These inequalities was studied and extended by a number of mathematicians. For further information we
refer interested readers to [3,5,8,17].

Let B(#H) denote the C*-algebra of all bounded linear operators on a complex Hilbert space (H, (-, -))
with the unit I. If H = C", we identify B(C™) with the matrix algebra of n x n complex matrices M, (C).
We consider the usual Léwner order < on the real space of self-adjoint operators. Throughout the paper,
a capital letter means an operator in B(#). An operator A is said to be strictly positive (denoted by A > 0)
if it is a positive invertible operator. According to the Gelfand—Naimark—Segal theorem, every C*-algebra
can be regarded as a C*-subalgebra of B(#) for some Hilbert space H. So we may consider elements of A as
Hilbert space operators. We use A, B,--- to denote C*-algebras. We denote by Re(A) and Im(A) 1the real

and imaginary parts of A, respectively. The geometric mean is defined by AfB = Az (A_%BA_%) * A3 for
operators A > 0 and B > 0. A W*-algebra is a x-algebra of bounded operators on a Hilbert space that is
closed in the weak operator topology and contains the identity operator. The C*-algebra of complex valued
continuous functions on the compact Hausdorff space €2 is denoted by C(2).

A linear map ® : A — B between C*-algebras is said to be *-linear if ®(A*) = ®(A)*. It is positive if
®(A) > 0 whenever A > 0. It is called strictly positive if A > 0, then ®(A) > 0. We say that ® is unital if A, B
are unital and @ preserves the unit. A linear map ® is called n-positive if the map @, : M,,(A) — M, (B)
defined by @, ([ai;]) = [®(as;)] is positive, where M, (A) stands for the C*-algebra of n x n matrices with
entries in 4. A map P is said to be completely positive if it is n-positive for every n € N. According to [16,
Theorem 1.2.4] if the range of the positive linear map ® is commutative, then ® is completely positive. It
is known (see, e.g., [4]) that if ® is a unital positive linear map, then
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O(ALB) < B(A)O(B). (1.5)

A map @ is called tracial if ®(AB) = ®(BA). The usual trace on the trace class operators acting on a
Hilbert space is a tracial positive linear functional. For a given closed two sided ideal Z of a C*-algebra A,
the existence of a tracial positive linear map ® : A — A satisfying ®(®(A4)) = ®(A) and ?(A) —A €T
is equivalent to the commutativity of the quotient .4/Z; see [2] for more examples and implications of the
definition. For a tracial positive linear map ®, a positive operator p € A is said to be ®-density if ®(p) = I.
A unital C*-algebra B is said to be injective whenever for every unital C*-algebra A and for every self-adjoint
subspace S of A, each unital completely positive linear map from S into B, can be extended to a completely
positive linear map from A into B. Our investigation is based on the following definition.

Definition 1.1. Let ® : A — B be a tracial positive linear map and p be a ®-density operator. Then
Covys(A, B) i= B(pA*B) — B(pA")B(pB) and V,5(A) = Cov,.a(A, A),

are called the generalized covariance and the generalized variance A, B, respectively. Further, the generalized
correlation and the generalized Wigner—Yanase-Dyson skew information of two operators A, B are defined
by

Corr§) (A, B) := ®(pA*B) — O(p'*A*p*B) and I7 6 (A) := Corr, 4 (A, A),
respectively.

It is known that for every tracial positive linear map, the matrix

Vp,a(A) Cov,.a(B,A)
COVp’q>(A7B) Vp’cp(B)

is positive, which is equivalent to
Vpa(A) = Covpa (B, A)(Vpa(B)) ™' Covy (A, B), (1.6)

which is called the variance-covariance inequality; see [14,13] for technical discussions.

If A is a C*-algebra and B is a C*-subalgebra of A, then a conditional expectation £ : A — B is a
positive contractive linear map such that £(BAC) = BE(A)C for every A € A and all B,C € B.

If (X, (-,-)) is a semi-inner product module over a C*-algebra A, then the Cauchy—Schwarz inequality for
z,y € X asserts that (see [9.1])

(, y)(y, 2) < [y, »)[l(z, 2).

If (y,y) € Z(A), where Z(A) is the center of the C*-algebra A, then the latter inequality turns into (see [7])

(T, y)(y, z) < (Y, y)(z, ). (1.7)

In Section 1, we use some techniques in the non-commutative setting to give some generalizations of
inequalities (1.2) and (1.1) for tracial positive linear maps between C*-algebras. More precisely, for a tracial
positive linear map ® between C*-algebras under certain conditions we show that

1

Voo (A)iV,.0(B) 2 G B |@(p[A, B))]
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for every self adjoint operators A, B. Section 2 deals with generalizations of inequalities (1.3) and (1.4) for
conditional expectation maps. Among other things, we prove that

0<I;4(A) <I,a(A) <V, 0(A)
for every self-adjoint operator A. In addition, we generalize some significant inequalities for trace in the
quantum mechanical systems to inequalities for tracial positive linear maps between C*-algebras. We indeed

use some arguments differing from the classical theory to present some inequalities related to the generalized
correlation and the generalized Wigner—Yanase—Dyson skew information.

2. Inequalities for generalized covariance and variance
We start this section by giving a generalization of inequality (1.2). In fact we prove inequality (1.2) for a
tracial positive linear map between C*-algebras under some mild conditions. We need the following notions

slightly differing from the notions defined in Definition 1.1.

Definition 2.1. For a tracial positive linear map ® from a C*-algebra A into a C*-algebra B and positive
operator p € A and for operators A, B € A we set

Cov), (A, B) = ®(pA*B) — ®(pA*)®(p) ' ®(pB) and V, 5(A) = Cov/, 5(A, A).

To achieve our result we need the following lemma.

Lemma 2.2. /2, Lemma 2.1] Let A > 0, B > 0 be two operators in A. Then the block matriz {)}4* ‘g] s
positive if and only if B > X*A~'X.

We are ready to prove our first result.

Theorem 2.3. Let ® : A — B be a tracial positive linear map between C*-algebras and p € A be a positive
operator such that ®(p) > 0. If ®(A) is a commutative subspace of B, then

V, a(A)V, 5(B) — [Re(Cov), 4 (4, B))|* > Z|®(p[A, B])|?

-

for all self-adjoint operators A, B. In particular,
1
oAV, (B) > {|®(o]4, B)”
Proof. A simple calculation shows that

Cov}, 4(A, B) — Cov,, 4(B, A) = ®(pAB) — ®(pA)®(p) ' ®(pB)
— ®(pBA) + @(pB)®(p) ' @(pA)
= ®(p[A, B]) (since, ®(A) is commutative)

and

Cov/, (A, B) + Cov,, (B, A) = Cov/, (4, B) + (Cov/, (A, B))"
= 2Re(Cov,, (A, B)).
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Summing both sides of the above inequalities, we get
2Cov), (A, B) = ®(p[A, B]) + 2Re(Cov/, 4 (A, B)).

Since ®(p[A4, B])* = —®(p[A, B]) and 2Re(Cov)4(A, B)) is self-adjoint, it follows from the commutativity
of ®(A) that

Cov) (A, B)? = [Re(Covl (4, B + (1@ (s[4, B[ (21)

Moreover,

3 p%A*p% p%A 0 0 Ap% Bp% p%
p2B*Ap: p:B*Bp: p:Bip:| = |p2B* 0 0 0 0 0=>0

It follows from the complete positivity (and indeed the 3-positivity) and the tracial property of ® that

D(pA*A) P(pA*B) P(pAY)
®(pB*A) ®(pB*B) @(pB")
®(pd)  @(pB)  P(p)

Hence, by applying Lemma 2.2, we have

[‘P(pA*A) ‘b(pA*B)} . F(pA)* 0} {‘D(p)‘1 0 ] [‘P(pA) ‘P(pB)])

> 0.

®(pB*A) ®(pB*B) o(pB)* 0
whence

[‘P(pA*A) cI’(pA*B)} S [<I>(pA)*<I’(p)‘1‘I>(pA) cI’(,O'A)*<I>(p)‘1<I>(pB)]
®(pB*A) ®(pB*B)| = [ ®(pB)*®(p) ' ®(pA) P(pB)*®(p) ' ®(pB)]’

or equivalently,

VI:@(A) Cov;)’cp(B,A) -0
Cov;@(A,B) Vp’,@(B) -

It follows from Lemma 2.2 that
N -1
;7¢(A) > COVZJ,‘;,(A, B) ( p'@(B)) Cov;@(A,B).
Applying the commutativity ®(.A), we get
»a(A)V, 6(B) > |Cov,, o (A, B)*.
Consequently, if A, B are self-adjoint operators, then

(@(pA?) — @(pA)*®(p)~") (®(pB*) — ®(pB)*®(p) ")
= Vp,,<1>(A) p,,q)(B)
> [Re(Cov)y (4, B))? + 112(p14, B])

(by equality (2.1)). O



A. Dadkhah, M.S. Moslehian / J. Math. Anal. Appl. 447 (2017) 666-680 671

Corollary 2.4. Let ® : A — B be a tracial positive linear map between C*-algebras and p € A be a ®-density
operator. If ®(A) is a commutative subspace of B, then

Vp2(A)V,.0(B) — [Re(Cov,a(4, B))I* > Z|®(p[A, B)|?

RNy

for all self-adjoint operators A, B.

Proof. Obviously, if p is a ®-density operator, then ®(p)~ = I. Now Theorem 2.3 yields the required
inequality. O

Let A be a C*-algebra and B be a C*-subalgebra of A. If £ : A — B is a tracial conditional expectation,
then

BE(A)=E(BA)=E(AB)=&(A)B (2.2)
for every A € A and B € B. Using this fact we give the following corollary.

Corollary 2.5. Let A be a C*-algebra and B be a C*-subalgebra of A. If £ : A — B is a tracial conditional
expectation, then

Vy.e(A)V,.e(B) — [Re(Covye (A, B))|* = Z|€(p[A, B])|*

A~ =

for all self-adjoint operators A, B € A and each E-density operator p € A.

Now we give a version of Heisenberg’s uncertainty relation, in the case that B is not a commutative
C*-algebra. To get this result we need some lemmas.

Lemma 2.6 (Choi-Tsui). [2, pp. 59-60] Let A, B be C*-algebras such that either one of them is W*-algebra
or B is an injective C*-algebra. Let ® : A — B be a tracial positive linear map. Then there exist a
commutative C*-algebra C(X) and tracial positive linear maps ¢1 : A — C(X) and ¢2 : C(X) — B such
that ® = ¢o o ¢1. Moreover, in the case that ® is unital, then ¢1 and ¢o can be chosen to be unital. In
particular, ® is completely positive.

Lemma 2.7 (Kadison’s inequality). [/, Chapter 1] If ® : A — B is a unital 2-positive linear map between
unital C*-algebras, then

(|AP) > |2(4)?
for every A € A.

In the case that A is a positive operator of A satisfying 0 < mI < A < M1 for some scalers m < M, by
[4, Theorem 1.32], the reverse inequality

P(A?) < P(A)? (2.3)

holds.
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Lemma 2.8. Let ® : A — B be a unital 2-positive linear map between unital C*-algebras. If A is an operator
of A satisfying sp(A) C [m, M]U[—M, —m] for some scalers 0 < m < M, then

1B(A)| < (M +m)?

< e D(|Al). (2.4)

Proof. Using Lemma 2.7 and inequality (2.3), we get

(M +m)?

DA < (AP) < LT (4]

Taking square roots of both sides of the latter inequality we obtain inequality (2.4). O

M +m)?
In this paper, we denote (4% for an operator m < A < M by K m(A), which is called the
m
Kantorovich constant of A.
The next theorem gives a Heisenberg’s type uncertainty relation for tracial positive linear maps between

C*-algebras.

Theorem 2.9. Let A, B be unital C*-algebras and Q be a compact Hausdorff space. Let ¢1 : A — C(Q) be
a unital tracial positive linear map and ¢o : C(2) — B be a unital positive linear map and ® := ¢o 0 ¢1.
If p € A is a ®-density operator and A, B are self-adjoint operators of A such that sp(-ip% [A, B]p%) C [m, M]
for some scalers 0 < m < M, then

1

Vsl AVy0(B) 2 5 (0014, B, (25)

where K, v (p[A, B]) is the Kantorovich constant of the operator -ip2 [A, B]pz .

Proof. By a continuity argument we can assume that p > 0. Due to 0 < mI < -ipz[A, B]pz < MI and ¢,
is a unital and tracial positive linear map, we infer that mI < -ig;(p[A, B]) < M. It follows that

mI < |¢1(p[A, B)| < M1 (2.6)

Using the fact that ¢ is a unital positive linear map (and so strictly positive) and applying Theorem 2.3
for ¢, we get

(61(pA?%) — d1(pA)?d1(p) ") (¢1(pB?) — d1(pB)*¢1(p)~") = i|¢1(P[AvBD|2~

Applying the commutativity of range of ¢, we get

(01(pA%) = $1(pA)?01(p) 1) # (61(pB) — d1(pB)* b1 (p) ") = %Iqﬁl(p[A, BJ)|. (2.7)
Using the fact that (¢2 o ¢1)(p) = I, we can write

(®(pA?) — 2(pA)*)t (®(pB?) — ®(pB)?)
= ((¢2 0 01)(pA?) = (42 0 $1)(pA)?)
1 (920 91)(pB*) — (620 61)(pB)?)
= ((¢20 ¢1)(PA2) (¢2 0 ¢1)(pA) (2 0 1) (p) (2 © ¢1)(pA))
£ (20 61)(pB?) = (20 ¢1)(pB)(¢2 © ¢1)(p) (92 © 61)(pB)) -
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We claim that

((¢2 0 ¢1)(pA®) — (d2 0 ¢1)(pA) (¢2 0 $1)(p)(d2 © 61)(pA))
# (20 ¢1)(pB?) — (¢2 0 ¢1)(pB) (2 © ¢1)(p) (2 © ¢1)(pB))
> ¢2(¢1(pA?) — ¢1(pA)*¢1(p) ") ie2 (01 (pB?) — ¢1(pB) 1 (p)~").

Since the range of ¢ is commutative, to prove our claim, it is enough to show that

b2 (01(pX)P1(p) " d1(pX)) > (2 0 1) (pX) (2 0 ¢1)(p) (2 © ¢1)(pX) (2.8)

for every self-adjoint operator X € A and (¢o o ¢1)-density operator p € A. Clearly, matrix
<¢1(,0X)¢1(p)‘1¢1(pX) ¢1(pX)
¢1(pX) ¢1(p)

> is positive. Since @5 is completely positive (and so 2-positive), we

get

<¢2(¢1(PX)¢1(P)_1¢1(PX>) (¢20¢1)(PX)> >0
(¢2 0 ¢1)(pX) (p20d1)(p) ) — 7

which ensures the validity of inequality (2.8). Therefore,

pa(A)Vp0(B) = (2(pA?) — ®(pA)?) # (2(pB?) — ®(pB)?)
= ((¢2 0 61)(pA?) — (¢2 0 $1)(pA)?)
8 ((¢2001)(pB?) — (620 61)(pB)?)
= ((¢2 0 91)(pA?) = (¢2 0 ¢1)(pA)(d2 © ¢1)(p)(d2 © ¢1)(pA))
8 (92 0 ¢1)(pB?) — (2 0 ¢1)(pB) (2 0 ¢1)(p) (2 © $1)(pB))
> ¢ (d1(pA?) = ¢1(pA) 1 (p) ")
t02(01(pB*) — ¢1(pB)*d1(p) ")
(by inequality (2.8))
> 9 ((61(pA%) = 61(pA)*61(p) )

£(61(pB2) — 61(pB)%61(p) 7))
(by inequality (1.5))
¢2(|91(p[A, B)[) (2.9)

(by inequality (2.7))

|p2 0 ¢1(p[A, B])|

l\D\'—‘

. 1
T2 Km,M(p[A7B])

(by inequality (2.4))

1
SRy A E

Applying Lemma 2.6, we immediately get the following corollary.



674 A. Dadkhah, M.S. Moslehian / J. Math. Anal. Appl. 447 (2017) 666-680

Corollary 2.10. Let A, B be C*-algebras such that either one of them is W*-algebra or B is an injective
C*-algebra. If ® : A — B is a tracial positive linear map and p € A is a ®-density operator and A, B are
self-adjoint operators in A such that sp(-ip% [A, B]p%) C [m, M] for some scalars 0 < m < M, then

Vo (A a(B) = - Km_;(p[ 7 120l B

where K, ar(p[A, B]) is the Kantorovich constant of the operator -ip? [A,B]p%.

If ¢1 := Tr is the usual trace and ¢5 is the identity map on C, then it immediately follows from inequal-
ity (2.9) that

So we get the following result.
Corollary 2.11. For every self-adjoint operators A, B and each density operator p it holds that

Vo(A)V,(B) = 7 Tr(plA, B))I.

o~ =

Remark 2.12. Let A and B be unital C*-algebras. By readout the proof of Theorem 2.3, Theorem 2.9 and
Corollary 2.4, if we put p := I, then we can replace the condition “tracial positive linear map” with “unital
positive linear map”.

3. Inequalities for generalized correlation and Wigner—Yanase skew information

We aim to give generalizations of inequality (1.3) and inequality (1.4). In addition we generalize some
inequalities related to classical Wigner—Yanase-Dyson skew information to tracial positive linear map.

As mentioned in the introduction, in the case that a = 1 we denote I¢ by Ipe. In some cases we

2
prove our result by assuming that p is only a positive operator. To get these generalizations we need some

lemmas. The technique of the first lemma is classic.
Lemma 3.1. Let A and B be C*-algebras. If & : A — B is a tracial positive linear map, then
o (4) = B(pA) — B(p1 " Ap"4) 20 (a € 0,1)) (3.1)
for every self-adjoint operator A € A and each positive operator p € A.
Proof. Put A = {a € [0,1] : ®(pA?) > ®(p*Ap'~*A)}. Clearly {0,1} C A and the set A is closed, since

the map a — ®(p*Ap!~*A) is norm continuous. Therefore, to prove [0,1] C A it is enough to show that

a, f € A implies O‘—JQFB € A. It follows from the tracial positivity of ® that

l-a  a 1-8 B4, l=a «a 1-8 B
OS@((/) > Ap> —p 2 Ap2)i(p 7 Apz —p 2 Ap?))

a 1—a B 1—-8
:<I>((p2Ap = pSAp T ) (p T ApE — p T ApS )

a —a _ 13 a 8 _ 8
:(D(pZApl Ap% — pFApI =S ApE — p3ApI T ApE 4 p3 Ap! ﬁAPZ)

a+p a+p 1—aotb

= D(p Ap'A) — B(p"F Ap! T A) — @ (p"F Ap T A) + @ (P AP P A).
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Hence,

atpB
1-=5=

B(p® Ap' @A) + B(pP Ap' P A) > 20(p " 4p A), (3.2)

since o, 8 € A, we infer

8 +8
1—ofs

B(pA%) > ®(p"" Ap' =5 A),
which implies that O‘—JQFB eEA. O
Remark 3.2. Inequality (3.2) shows that the map o — ®(p*Ap!~*A) is convex. In addition, we have

po(A) <Ie(A) (a €R) (3.3)

for every self-adjoint operator A and each positive operator p. Indeed, using the positivity and the tracial
property of ®, we get

0<® ((p%Apl_Ta —p T Ap)(p T ApF - pgAp%))
=20(p*Ap' @A) — 2<I>(p%Ap%A).
Therefore ®(p*Ap'~*A) > ®(p2 Ap2 A) and so
sa(A) = D(pA%) — B(p* Ap' " A) < D(pA) — B(p2 Ap? A) = I,.0(A),

Let ® be a tracial positive linear map between C* algebras. It follows from Lemma 3.1 that IS"(I,(A) >0
for every self-adjoint operator A, but it is not true in general when A is an arbitrary operator. Hence even
if ® is a tracial positive functional, then Corr), (:,-) cannot induce a complex valued semi-inner product
and we cannot use the Cauchy—Schwarz inequality; see [18, Remark IV.2]. The next lemma helps us to give
a positive definite version of the generalized correlation.

Lemma 3.3. Let ® : A — B be a tracial positive linear map and p € A be a positive operator. Then
po(A)+176(A") >0

for every A € A.

~ ~ 1 ~
Proof. We define @ : Ms(A) — B by @ ({é g}) = §<I>(A+D). It is obvious that @ is a tracial positive

linear map. Take A = {81 % ] and p = {8 2} Clearly A is a self-adjoint operator in Ms(A) and j is a

&)—density operator. Using Lemma 3.1 for P, we get

(D(pA*A) + B(pAAY)) é([é 2} [91 /H L?l %D

DN | =

(by Lemma 3.1)
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(% s 416 2 )
= %(‘I’(pl‘“A*p“A) + D(p' T ApTAY)).

Hence,

I5a(A) + I75(A%) = ®(pA”A) + (pAAT)
— D(p AT PYA) — D(p Y Ap*A*) > 0. O

Definition 3.4. Let ® : A — B be a tracial positive linear map and p € A be a ®-density operator. Then
for every operators A, B € A, we set

Corr,% (A, B) := = (Corr§) 4 (A, B) + Corr§ 5(B*, A*)) and I)%(A) := Corr),% (A, A).

1
2
It is easy to check that Corr % (A, B) has the following properties:

(i) Corr)%4(A,A) >0, for every A € A (by Lemma 3.3),
(ii) Corr),% (A, B+ XC) = Corr% (A, B) 4+ ACorr),% (A, C), for all A, B € A and every X € C,
(iii) Corr),% (A, B)* = Corr’, (B A).

Next we give a generalization of inequality (1.3).

Theorem 3.5. Let A be a C*-algebra and B be C*-subalgebra of A. If £ : A — B is a tracial conditional
expectation, then

|Re(Cort® (A, B))|? < I2(A)I%e(B)
for all self-adjoint operators A, B € A and each E-density operator p € A.
Proof. Define the map (-,-) : A x A — B by (A, B) = Corr), (A, B). If A, B € Aand C € B, then

(A,BC) = Corr (4, BC)

1
=5 (Corr§ ¢ (A, BC) + Corr ¢ (C*B*, A*))
1
=3 (E(pA*BC) — E(p'~*A*p*BC) + E(pBCA*) — E(p' " *BCp™A*))
1
= 5 (E(pA"BO) = £(p' A" p* BO) + E(CA*pB) — E(Cp" A"p' = B))
(since & is tracial)
1
=3 (E(pA*B)C — E(p'~*A*p*B)C + E(pBA*)C — E(p'~*Bp*A*)C)
(since £ is a conditional expectation and by equality (2.2))
= Corr)) (A, B)C
= (4, B)C’.

Using this fact and Definition 3.4 we see that (A, (-,-)) is a semi-inner product B-module. Moreover, equal-
ity (2.2) shows that ran(Z) C Z(B). If A and B are self-adjoint operators in A, then we get
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2
‘Re(Corrpjg(A,B))’ =13 (Corrmg(A,B) + Corrp,g(B,A))
= |Corr;f’5(A,B)|2
2
= |(4, B)|
< (A, A)(B,B) (by inequality (1.7))
=1 (A e(B) (since A, B are self-adjoint). O
Let A be a self-adjoint operator and p be a density operator. According to [12, Section ITI] we have

I,(A) < V,(A). We give a generalization of this inequality for a tracial 2-positive linear map ® and a
®-density operator p. It follows from Lemma 2.2 that the matrix

=

piApipiApt  piApip
11 1
p2prAps P

is positive. Since ® is 2-positive, we have

Therefore, by using Lemma 2.2 and applying the tracial property of ® we get
®(p> Ap2 A) > D(pA)2(p) 10 (pA) = (pA)?, (3.4)

which implies that I, o(A) <V, ¢(A). Consequently, by using inequality (3.3), we reach I7'(A) <V, o(A).
For a tracial positive linear map ® and a self-adjoint operator A, we set

JP,Q(A) = QVP,(I)(A) - Ip7q>(A) and Up7q>(A) = p7q>(A)ﬁJ ,q;.(A).
Since U,.5(A) <V, &(A) (by the arithmetic-geometric mean inequality), the next theorem is a refinement
of Theorem 2.9 in the case that ® is a conditional expectation. To establish it, we model the classical

techniques (see [11]) to the non-commutative framework.

Theorem 3.6. Let A be a C*-algebra and B be a C*-subalgebra of A. If £ : A — B is a tracial conditional
expectation, then

1
Upe(A)Upe(B) = 71E(plA, B])? (3.5)
for all self-adjoint operators A, B € A and each E-density operator p € A.

Proof. Consider self-adjoint operators Ag = A — E(pA) and By = B — E(pB). A simple calculation shows
that

Tpe(4) = LE((ilo%, Ao))?) and J,.e(B) = 56({p*, Bo}?), (3.6)

where {p2, B} = p2 By + Byp?. Indeed,
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E((i[p*, Ao))?) = —E(p= Agp? Ag — p= AZp* — Agp? p= Ag + Agp? Agp?)
=28(pAf) - 25(P%A0P%Ao)
(by the tracial property of &)
=26 (p(A4 — £(pA))?) — 26 (p* (A — E(pA))p* (A — E(pA)))
= 26(pA%) = 2(E(pA))? — 2E(p> Ap? A) + 2(E(pA))?
(since & is a conditional expectation)

=28 (pA%) — 2E(p? Ap? A).

Similarly, we can establish the other inequality in (3.6).
Let Z € B. Then

£(i2lp*, Aol{p}, Bo} + i{p*, Bo}lp?, 40]2)
=ZE (i(P%AOP%BO +p2 AgBop? — Agp? p= By
— Aop® Bop?® + p* Bop? Ao
— p¥ BoAop? + Bop? pt Ag — BOP%AOP%))
(by equality (2.2))
= 21Z&(p[Ao, Bo))
=2iZE(p[A — E(pA), B — E(pB)])
= 2128 (p((A— E(pA)) (B — E(pB))
— (B—E(pB))(A—E(pA))) )
= 92iZ¢ (p(AB — AE(pB) — E(pA)B + E(pA)E(pB)
— BA+ BE(pA) + E(pB)A — 5(pB)5(pA)))
— %Z(E(pAB) - E(pAE(pB) — E(pA)E(pB)
+E(p)E(pA)E(pB) — E(pBA) + E(pB)E(pA)
+E(pB)E(pA) — E(p)E(pB)E(pA))
= 2iZ€(p|A, B))
(by equality (2.2)).

Hence,
E(iZ[PéaAo]{P%,BO} + i{P%aBo}[P%,AO]Z> = 21ZE(p[A, B]).
Let Z € B be a self-adjoint operator and X = i[pz, Ag]Z + {pz, Bo}. Then

0<EX*X) = 5((iZ[p%,Ao] +{p?, Bo}) (ilp?, 40)Z + {p%,Bo}))

(because i[p?, Ag] is self-adjoint)

(3.7)
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= &( = Zlp*, Aollpt, AdlZ +iZ]p%, Agl{p?, By}
+i{p}, Bodlp}, 40)Z + (o}, Bo}?)
=21, ¢(A)Z% + 2iE(p[A, B))Z + 2], ¢(B)
(by equality (3.6) and equality (3.7)).

Without loss of the generality we can assume that I, ¢(A) > 0. If we put Z := —% p.e(A)T1E(p[A, B]), then
we get

1

o (A EGIA B + L1, e () ElA, B + J,e(B) > 0,

or equivalently,

Tpe(A4)J,6(B) > —£(plA, B = 1IEGIA, BP, (38)

since £(p[A4, B])* = —&(p[A, B]). It follows from the fact that for every X € A, £(X) C Z(B) (equality (2.2)),
we have

Upe(A)U,e(B) = (Ip,e(A)tJ,.e(A) (Ip.e(B)t,e(B))

(Ip,e(A)Jpe(B))? (Ip,e(B)Jpe(A))?
(by the commutativity property in equality (2.2))

> 2|€(plA, B])]?

> =

(by inequality (3.8)). O
As a consequence we get the following result of Luo [11].

Corollary 3.7. [11, p. 2] If A, B are two self-adjoint operators, then
1
Up(A)U,(B) = 7| Tr(p[A, B[
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