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q-DIFFERENCE EQUATIONS FOR ASKEY-WILSON TYPE INTEGRALS VIA q-POLYNOMIALS

JIAN CAO1,2 AND DA-WEI NIU3

Abstract. In this paper, we show how to deduce Askey-Wilson type integrals by the method of q-difference equation. In

addition, we construct the relation between bilinear generating functions and solutions of q-difference equation. More over,

we generalize Bailey’s 6ψ6 summation from the perspective of q-integral by the method of q-difference equation. At last,

we deduce U(n + 1) type generating functions for Al-Salam-Carlitz polynomials by the method of q-difference equation.

1. Introduction

In this paper, we follow the notations and terminology in [21] and suppose that 0 < q < 1. The q-series and its

compact factorials are defined respectively by

(a; q)0 = 1, (a; q)n =

n−1∏
k=0

(1 − aqk), (a; q)∞ =
∞∏

k=0

(1 − aqk) (1.1)

and (a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n, where m ∈ N := {1, 2, 3, · · · } and n ∈ N0 := N ∪ {0}.
The q-difference operators Da and θa are defined by [14]

Da{ f (a)} = f (a) − f (aq)

a
and θa{ f (a)} = f

(
aq−1) − f (a)

aq−1
. (1.2)

The Rogers-Szegö polynomials [15]

hn(b, c|q) =

n∑
k=0

[
n
k

]
bkcn−k and gn(b, c|q) =

n∑
k=0

[
n
k

]
qk(k−n)bkcn−k (1.3)

play important roles in the theory of orthogonal polynomials. The Al-Salam-Carlitz polynomials [14, Eq. (4.4)]

Φ
(a)
n (b, c|q) =

n∑
k=0

[
n
k

]
(a; q)kbkcn−k and Ψ

(a)
n (b, c|q) =

n∑
k=0

[
n
k

]
(−1)kq(k+1

2 )−nk
(1

a
; q

)
k
(ab)kcn−k. (1.4)

are generalizations of Rogers-Szegö polynomials. For more information about q-polynomials, please refer to [8, 24,

26, 27].

Liu [29] and [30] obtained several important results by the following q-difference equations. In [31], Liu and Zeng

studied relations between q-difference equations and q-orthogonal polynomials.

Proposition 1 ([31, Eq. (2.2) and (2.3)]). Let f (a, b) be a two-variable analytic function at (0, 0) ∈ C2. Then
(A) f can be expanded in terms of hn(a, b|q) if and only if f satisfies the functional equation

b f (aq, b) − a f (a, bq) = (b − a) f (a, b). (1.5)
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(B) f can be expanded in terms of gn(a, b|q) if and only if f satisfies the functional equation

a f (aq, b) − b f (a, bq) = (a − b) f (aq, bq). (1.6)

The method of q-difference equation shows itself an effective way to deduce many important results in q-series.

For more information, please refer to [14, 29, 30].

In this paper, we generalize Liu-Zeng’s results (1.5) and (1.6) as follows.

Theorem 2. Let f (a, b, c) be a three-variable analytic function at (0, 0, 0) ∈ C3. Then
(C) f can be expanded in terms of Φ(a)

n (b, c|q) if and only if f satisfies the functional equation

ab f (a, bq, cq) − b f (a, b, cq) + (c − ab) f (a, bq, c) = (c − b) f (a, b, c). (1.7)

(D) f can be expanded in terms of Ψ(a)
n (b, c|q) if and only if f satisfies the functional equation

ab f
(
a, b, cq−1) − b f

(
a, qb, cq−1) + (

b − cq−1
)

f (a, qb, c) =
(
ab − cq−1

)
f (a, b, c). (1.8)

Remark 3. For a = 0 in Theorem 2, equations (1.7) and (1.8) reduce to (1.5) and (1.6) respectively.

Proof of Theorem 2. From the theory of several complex variables [34], we assume that

f (a, b, c) =

∞∑
k=0

Ak(a, c)bk. (1.9)

On one hand, substituting equation (1.9) into (1.7) yields

ab
∞∑

k=0

Ak(a, cq)(bq)k − b
∞∑

k=0

Ak(a, cq)bk + (c − ab)

∞∑
k=0

Ak(a, c)(bq)k = (c − b)

∞∑
k=0

Ak(a, c)bk. (1.10)

Equating coefficients of bk on both sides of equation (1.10) gives

Ak(a, c) =
1 − aqk−1

1 − qk Dc{Ak−1(a, c)}. (1.11)

Repeating the process, we obtain

Ak(a, c) =
(a; q)k

(q; q)k
Dk

c{A0(a, c)}. (1.12)

Letting f (a, 0, c) = A0(a, c) =
∑∞

n=0 μn · cn, we have

Ak(a, c) =
(a; q)k

(q; q)k

∞∑
n=0

μn
(q; q)n

(q; q)n−k
cn−k. (1.13)

Using equation (1.9), we have

f (a, b, c) =

∞∑
k=0

(a; q)k

(q; q)k

∞∑
n=k

μn
(q; q)n

(q; q)n−k
cn−kbk

=

∞∑
n=0

μn

n∑
k=0

[
n
k

]
(a; q)kbkcn−k

=

∞∑
n=0

μn · Φ(a)
n (b, c|q).

On the other hand, if f (a, b, c) can be expanded in terms of Φ
(a)
n (b, c|q), we can verify that f (a, b, c) satisfies equation

(1.7). Similarly, we assume that

f (a, b, c) =

∞∑
k=0

Bk(a, c)bk. (1.14)
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Substituting equation (1.14) into (1.8) and comparing the coefficients of bn, we have

Bk(a, c) =

(
1 − qk−1/a

)
(−ab)

1 − qk θc{Bk−1(a, c)}. (1.15)

Repeating the process and letting f (a, 0, c) = B0(a, c) =
∑∞

n=0 ηn · cn, we have

Bk(a, c) =

(
1/a; q

)
k(−ab)k

(q; q)k
θk

c{B0(a, c)} =
(
1/a; q

)
k(−ab)k

(q; q)k

∞∑
n=0

ηn · q(k+1
2 )−kn (q; q)n

(q; q)n−k
cn−k. (1.16)

Using equation (1.14), we get

f (a, b, c) =

∞∑
n=0

ηn · Ψ(a)
n (b, c|q). (1.17)

Conversely, if f (a, b, c) can be expanded in terms of Ψ
(a)
n (b, c|q), we can verify that f (a, b, c) satisfies equation (1.8).

The proof is complete.

The rest part of this paper is organized as follows. In Section 2, we give a new proof of generating functions for Al-

Salam-Carlitz polynomials by the method of q-difference equation. In Section 3, we deduce Ismail-Stanton-Viennot

type Askey-Wilson integral by the method of q-difference equation. In Section 4, we obtain reversal type Askey-

Wilson integral by the method of q-difference equation. In Section 5, we gain Ramanujan type Askey-Wilson integral

by the method of q-difference equation. In Section 6, we achieve the generalization of Bailey’s 6ψ6 summation by the

method of q-difference equation. In Section 7, we acquire U(n + 1) type generating functions for Al-Salam-Carlitz

polynomials by the method of q-difference equation.

2. Generating functions for Al-Salam-Carlitz polynomials

The following generating functions for Rogers-Szegö and Al-Salam-Carlitz polynomials are given respectively.

Lemma 4 ([11, Eq. (29)]). We have
∞∑

n=0

hn(b, c|q)
tn

(q; q)n
=

1

(bt, ct; q)∞
, max{|bt| , |ct|} < 1, (2.1)

∞∑
n=0

gn(b, c|q)
(−1)nq(n

2)tn

(q; q)n
= (bt, ct; q)∞. (2.2)

Lemma 5 ([9, Eq. (1.14) and (1.15)]). We have
∞∑

n=0

Φ
(a)
n (b, c|q)

tn

(q; q)n
=

(abt; q)∞
(bt, ct; q)∞

, max{|bt| , |ct|} < 1, (2.3)

∞∑
n=0

Ψ
(a)
n (b, c|q)

(−1)nq(n
2)tn

(q; q)n
=

(bt, ct; q)∞
(abt; q)∞

, |abt| < 1. (2.4)

Lemma 6 ([10, Eq. (2.10) and (2.11)]). For max{|btz| , |ctz| , |cty| , |bty|} < 1, we have
∞∑

n=0

Φ
(a)
n (b, c|q)Φ

(x)
n (y, z|q)

tn

(q; q)n
=

(abtz, ctxy; q)∞
(btz, ctz, cty; q)∞

3φ2

[ a, ctz, x
abtz, ctxy ; q, bty

]
. (2.5)

For F ∈ N0, if a = qF(or b = qF ) and max
{∣∣∣ctxyq1−F

∣∣∣ , ∣∣∣abtzq1−F
∣∣∣ , ∣∣∣bcyzt2q

∣∣∣} < 1, we have

∞∑
n=0

Ψ
(a)
n (b, c|q)Ψ

(x)
n (y, z|q)

(−1)nq(n+1
2 )tn

(q; q)n
=

(btzq, ctyq, ctzq; q)∞
(ctxyq, abtzq; q)∞

3φ2

[
1/a, 1/x, 1/(ctz)

1/(abtz), 1/(ctxy)
; q, q

]
. (2.6)
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There are many clever methods to deduce generating functions for Al-Salam-Carlitz polynomials (2.3)-(2.6). For

example, Al-Salam and Carlitz [1] obtained bilinear generating functions (or Poisson kernel) for Al-Salam-Carlitz

polynomials (2.5) and (2.6) with the help of certain identities. Verma and Jain [39] obtained Carlitz type bilinear

generating function for Al-Salam-Carlitz polynomials by the q-Chu-Vandermonde formula. Srivastava and Jain [36]

derived multilinear generating functions involving Al-Salam-Carlitz and Rogers-Szegö polynomials by the transfor-

mation theory. For more information, please refer to [1, 9, 36, 39].

In this section, we deduce generating functions for Al-Salam-Carlitz polynomials by the method of q-difference

equation.

Proof of lemma 5. Denoting the right-hand side (RHS) of the formula (2.3) by f (a, b, c), we check that f (a, b, c)

satisfies equation (1.7), so we have

f (a, b, c) =

∞∑
n=0

μn · Φ(a)
n (b, c|q). (2.7)

Using equation (2.1), we have

f (0, b, c) =

∞∑
n=0

μn · hn(b, c|q) =
1

(bt, ct; q)∞
=

∞∑
n=0

hn(b, c|q)
tn

(q; q)n
, (2.8)

which yields the left-hand side (LHS) of the formula (2.3). Similarly, we obtain the formula (2.4). The proof of lemma

5 is complete.

Proof of lemma 6. We denote the RHS of equation (2.5) by f (a, b, c), and check that f (a, b, c) satisfies equation (1.7),

so we have

f (a, b, c) =

∞∑
n=0

μn · Φ(a)
n (b, c|q). (2.9)

Taking b = 0 in equation (2.9), then using (2.3) gives

f (a, 0, c) =
(ctxy; q)∞

(ctz, cty; q)∞
=

∞∑
n=0

μn · cn =

∞∑
n=0

Φ
(x)
n (y, z|q)

(ct)n

(q; q)n
, (2.10)

that is, f (a, b, c) equals the LHS of (2.5). Similarly, we can deduce equation (2.6). The proof is complete.

3. Ismail-Stanton-Viennot type Askey-Wilson integral

For x = cos θ, we define the notation h(x; a) and h(x; a1, a2, . . . , am) as

h(cos θ; a) =
(
aeiθ, ae−iθ; q

)
∞, h(cos θ; a1, a2, . . . , am) = h(cos θ; a1)h(cos θ; a2) · · · h(cos θ; am). (3.1)

The following famous integral due to Askey and Wilson [3, Theorem 2.1].

Proposition 7 (Askey-Wilson integral). If max{|a| , |b| , |c| , |d|} < 1, we have∫ π

0

h(cos 2θ; 1)

h(cos θ; a, b, c, d)
dθ =

2π(abcd; q)∞
(q, ab, ac, ad, bc, bd, cd; q)∞

. (3.2)

The Ismail-Stanton-Viennot integral [22, Theorem 3.5] is a generalization of Askey-Wilson integral.

Proposition 8 (Ismail-Stanton-Viennot integral). If max{|a| , |b| , |c| , |d| , | f |} < 1, we have∫ π

0

h(cos 2θ; 1)

h(cos θ; a, b, c, d, f )
dθ =

2π(abc f , bcd f , ad; q)∞
(q, ab, ac, ad, a f , bc, bd, b f , cd, c f , d f ; q)∞

3φ2

[ bc, b f , c f
abc f , bcd f ; q, ad

]
. (3.3)

Chen and Gu [16] deduced Ismail-Stanton-Viennot type Askey-Wilson integral by the method of Cauchy operator.
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Proposition 9 ([16, Eq. (3.3)]). We have
∫ π

0

h(cos 2θ; 1) dθ

h(cos θ; a, b, c, d)

(
f geiθ; q

)
∞(

geiθ; q
)
∞

3φ2

[ f , aeiθ, beiθ

f geiθ, ab ; q, ge−iθ
]

dθ

=
2π(c f g, abcd; q)∞

(q, ab, ac, ad, bc, bd, cd, cg; q)∞
3φ2

[ f , ac, bc
c f g, abcd ; q, dg

]
, (3.4)

where max{|a| , |b| , |c| , |d| , |g|} < 1.

Those integrals play central roles in the theory of orthogonal polynomials. Different proofs can be found in [4, 7,

16, 18, 22, 23, 28, 29, 33].

In this section, we obtain the following Ismail-Stanton-Viennot type integral by the method of q-difference equation.

Theorem 10. We have
∫ π

0

h(cos 2θ; 1)

h(cos θ; a, b, c, d)

(
uveiθ, rseiθ; q

)
∞(

veiθ, seiθ; q
)
∞

∞∑
j=0

(
u, beiθ, seiθ, aeiθ; q

)
j
(
ve−iθ) j

(
q, uveiθ, rseiθ, ab; q

)
j

3φ2

[ r, aeiθq j, beiθq j

rseiθq j, abq j ; q, se−iθ
]

dθ

=
2π(cuv, crs, abcd; q)∞

(q, ab, ac, ad, bc, bd, cd, cv, cs; q)∞

∞∑
k=0

(u, bc, cs, ac; q)k(dv)k

(q, cuv, crs, abcd; q)k
3φ2

[ r, acqk, bcqk

crsqk, abcdqk ; q, sd
]
, (3.5)

where max{|a| , |b| , |c| , |d| , |s| , |v|} < 1.

Remark 11. For s = v = 0 in Theorem 10, equation (3.5) reduces to (3.2). For s = 0 in Theorem 10, equation (3.5)

reduces to (3.4).

Before we prove the main results, the following lemma is necessary.

Lemma 12. For n ∈ N0, we have

abΦ(a)
n (bq, cq|q) − bΦ(a)

n (b, cq|q) + (c − ab)Φ
(a)
n (bq, c|q) = (c − b)Φ

(a)
n (b, c|q). (3.6)

Proof of lemma 12. we can rewrite equation (3.6) by

abΦ(a)
n (bq, cq|q) − bΦ(a)

n (b, cq|q) − abΦ(a)
n (bq, c|q) + bΦ(a)

n (b, c|q) = cΦ(a)
n (b, c|q) − cΦ(a)

n (bq, c|q). (3.7)

On one hand, we have

LHS o f (3.7) =

n∑
k=0

[
n
k

]
(a; q)kbkcn−k

[
abqn − bqn−k − abqk + b

]

=

n−1∑
k=0

[
n
k

]
(a; q)kbkcn−kb

(
1 − aqk

)(
1 − qn−k

)

=
(
1 − qn) n−1∑

k=0

[
n − 1

k

]
(a; q)k+1bk+1cn−k

=
(
1 − qn) n∑

k=1

[
n − 1

k − 1

]
(a; q)kbkcn−k+1. (3.8)

On the other hand

RHS o f (3.7) =

n∑
k=0

[
n
k

]
(a; q)kbkcn−k

[
c − cqk

]

=
(
1 − qn) n∑

k=1

[
n − 1

k − 1

]
(a; q)kbkcn−k+1. (3.9)
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Comparing equations (3.8) with (3.9) yields (3.7). The proof of lemma 12 is complete.

Now we begin to prove Theorem 10.

Proof of Theorem 10. First, we denote f (u, v, a) by

f (u, v, a) =
2π

(q, bc, bd, cd; q)∞
(cuv, abcd; q)∞
(cv, ac, ad; q)∞

3φ2

[ u, ac, bc
cuv, abcd ; q, dv

]
by (2.5)

=
2π

(q, bc, bd, cd; q)∞

∞∑
n=0

Φ
(u)
n (v, a|q)Φ

(bc)
n (d, c|q)

1

(q; q)n
. (3.10)

Using lemmas 6 and 12, we check that f (u, v, a) satisfies equation (1.7), so we get

f (u, v, a) =

∞∑
n=0

μn · Φ(u)
n (v, a|q) (3.11)

and

f (u, 0, a) =
2π(abcd; q)∞

(q, ac, ad, bc, bd, cd; q)∞
=

∫ π

0

h(cos 2θ; 1)

h(cos θ; b, c, d)

(ab; q)∞(
aeiθ, ae−iθ; q

)
∞

dθ by (3.2)

=

∫ π

0

h(cos 2θ; 1)

h(cos θ; b, c, d)

⎧⎪⎪⎨⎪⎪⎩
∞∑

n=0

Φ
(beiθ)
n

(
e−iθ, eiθ|q) an

(q; q)n

⎫⎪⎪⎬⎪⎪⎭ dθ.

We have

f (u, v, a) =

∫ π

0

h(cos 2θ; 1)

h(cos θ; b, c, d)

⎧⎪⎪⎨⎪⎪⎩
∞∑

n=0

Φ
(u)
n (v, a|q)Φ

(beiθ)
n

(
e−iθ, eiθ|q) 1

(q; q)n

⎫⎪⎪⎬⎪⎪⎭ dθ by (2.5)

=

∫ π

0

h(cos 2θ; 1)

h(cos θ; a, b, c, d)

(
uveiθ, ab; q

)
∞(

veiθ; q
)
∞

3φ2

[ u, aeiθ, beiθ

uveiθ, ab ; q, ve−iθ
]

dθ.

Repeat this process, we rewrite equation (3.5) equivalently by

∫ π

0

h(cos 2θ; 1)

h(cos θ; a, b, c, d)

(
ab, uveiθ, rseiθ; q

)
∞(

veiθ, seiθ; q
)
∞

∞∑
j=0

(
u, beiθ, seiθ, aeiθ; q

)
j
(
ve−iθ) j

(
q, uveiθ, rseiθ, ab; q

)
j

3φ2

[ r, aeiθq j, beiθq j

rseiθq j, abq j ; q, se−iθ
]

dθ

=
2π(cuv; q)∞

(q, bc, bd, cd, cv; q)∞

∞∑
k=0

(u, bc; q)k(dv)k

(q, cuv; q)k

(
crsqk, abcdqk; q

)
∞(

csqk, acqk, ad; q
)
∞

3φ2

[ r, acqk, bcqk

crsqk, abcdqk ; q, sd
]
. (3.12)

We denote the RHS of equation (3.12) by F(r, s, a) and verify that F(r, s, a) satisfies equation (1.7), so we have

F(r, s, a) =

∞∑
n=0

μn · Φ(r)
n (s, a|q) (3.13)

and

F(r, 0, a) =
2π

(q, bc, bd, cd; q)∞
(cuv, abcd; q)∞
(cv, ac, ad; q)∞

3φ2

[ u, ac, bc
cuv, abcd ; q, dv

]

=

∫ π

0

h(cos 2θ; 1)

h(cos θ; a, b, c, d)

(
uveiθ, ab; q

)
∞(

veiθ; q
)
∞

3φ2

[ u, aeiθ, beiθ

uveiθ, ab ; q, ve−iθ
]

dθ

=

∫ π

0

h(cos 2θ; 1)

h(cos θ; b, c, d)

(
uveiθ; q

)
∞(

veiθ; q
)
∞

∞∑
j=0

(
u, beiθ; q

)
j
(
ve−iθ) j

(
q, uveiθ; q

)
j

(
abq j; q

)
∞(

aeiθq j, ae−iθ; q
)
∞

dθ
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=

∫ π

0

h(cos 2θ; 1)

h(cos θ; b, c, d)

(
uveiθ; q

)
∞(

veiθ; q
)
∞

∞∑
j=0

(
u, beiθ; q

)
j
(
ve−iθ) j

(
q, uveiθ; q

)
j

⎧⎪⎪⎨⎪⎪⎩
∞∑

n=0

Φ
(be−iθ)
n

(
q jeiθ, e−iθ|q) an

(q; q)n

⎫⎪⎪⎬⎪⎪⎭ dθ.

Thus

F(r, s, a) =

∫ π

0

h(cos 2θ; 1)

h(cos θ; b, c, d)

(
uveiθ; q

)
∞(

veiθ; q
)
∞

∞∑
j=0

(
u, beiθ; q

)
j
(
ve−iθ) j

(
q, uveiθ; q

)
j

⎧⎪⎪⎨⎪⎪⎩
∞∑

n=0

Φ
(r)
n (s, a|q)Φ

(be−iθ)
n

(
q jeiθ, e−iθ|q) 1

(q; q)n

⎫⎪⎪⎬⎪⎪⎭ dθ,

which equals the LHS of equation (3.12) by equation (2.5). The proof is complete.

4. Reversal type Askey-Wilson integral

By iterating functional equations, Askey [4, Eq. (3.11)] proved another remarkable integral formula as follows,

which may be considered as reversal Askey-Wilson integral.

Proposition 13 (Reversal Askey-Wilson integral). For |qabcd| < 1, there holds∫ ∞

−∞
h(i sinh x; qa, qb, qc, qd)

h(cosh 2x;−q)
d x =

(q, qab, qac, qad, qbc, qbd, qcd; q)∞
(qabcd; q)∞

log(q−1), (4.1)

where

h(i sinhαx; t) =
∞∏

k=0

(
1 − 2iqkt sinhαx + q2kt2

)
=

(
iteαx,−ite−αx; q

)
∞. (4.2)

For more information about reversal type Askey-Wilson integral, please refer to [4, 18, 31].

In this section, we generalize reversal type Askey-Wilson integral by the method of q-difference equation.

Theorem 14. For M ∈ N0 and f = qM, we have
∫ ∞

−∞
h(i sinh x; qa, qb, qc, qd)

h(cosh 2x;−q)

(
iqgex; q

)
∞(

iq f gex; q
)
∞

3φ2

[
1/ f , e−x/(ib), e−x/(ia)

e−x/(i f g), 1/(ab)
; q, q

]
d x

=
(q, qab, qac, qad, qbc, qbd, qcd, qcg; q)∞ log(q−1)

(qabcd, qc f g; q)∞
3φ2

[
1/ f , 1/(bc), 1/(ac)

1/(c f g), 1/(abcd)
; q, q

]
, (4.3)

where max
{∣∣∣q1−Mabcd

∣∣∣ , ∣∣∣q1−Mc f g
∣∣∣ , |acdgq|

}
< 1.

Corollary 15. We have∫ ∞

−∞
h(i sinh x; qa, qb, qc, qd, qg)

h(cosh 2x;−q)

1(
iqgex; q

)
∞

2φ1

[ −ex/(ia),−ex/(ib)

1/(ab)
; q,−iqge−x

]
d x

=
(q, qab, qac, qad, qbc, qbd, qcd, qcg; q)∞ log(q−1)

(qabcd; q)∞
2φ1

[
1/(bc), 1/(ac)

1/(abcd)
; q, qcg

]
, (4.4)

where max{|qabcd| , |qcg| , |acdgq|} < 1.

Remark 16. For f → 0 in Theorem 14, equation (4.3) reduces to (4.4). For f → 1 in Theorem 14, equation (4.3)

reduces to (4.1).

Proof of Theorem 14. We can rewrite equation (4.3) equivalently as

∫ ∞

−∞
h(i sinh x; qb, qc, qd)

h(cosh 2x;−q)

(
iqgex,−iqae−x, iqaex; q

)
∞(

qab, iq f gex; q
)
∞

3φ2

[
1/ f , e−x/(ib), e−x/(ia)

e−x/(i f g), 1/(ab)
; q, q

]
d x

= log(q−1)(q, qbc, qbd, qcd; q)∞
(qcg, qad, qac; q)∞
(qabcd, qc f g; q)∞

3φ2

[
1/ f , 1/(bc), 1/(ac)

1/(c f g), 1/(abcd)
; q, q

]
. (4.5)
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We check that the RHS of equation (4.5) satisfies equation (1.8), so we have

F( f , g, a) =

∞∑
n=0

μn · Ψ( f )
n (g, a|q) (4.6)

and

F( f , 0, a) =
(q, qac, qad, qbc, qbd, qcd; q)∞

(qabcd; q)∞
log(q−1) by (4.1)

=

∫ ∞

−∞
h(i sinh x; qb, qc, qd)

h(cosh 2x;−q)

{(
iqaex,−iqae−x; q

)
∞

(qab; q)∞

}
d x

=

∫ ∞

−∞
h(i sinh x; qb, qc, qd)

h(cosh 2x;−q)

⎧⎪⎪⎨⎪⎪⎩
∞∑

n=0

(−1)nq(n
2)Ψ

(ibex)
n

(−iqe−x, iqex|q) an

(q; q)n

⎫⎪⎪⎬⎪⎪⎭ d x.

Thus

F( f , g, a) =

∫ ∞

−∞
h(i sinh x; qb, qc, qd)

h(cosh 2x;−q)

⎧⎪⎪⎨⎪⎪⎩
∞∑

n=0

(−1)nq(n
2)Ψ

( f )
n (g, a|q)Ψ

(ibex)
n

(−iqe−x, iqex|q) 1

(q; q)n

⎫⎪⎪⎬⎪⎪⎭ d x,

which is equal to the LHS of equation (4.5) by equation (2.6). The proof is complete.

Proof of Corollary 15. Taking f → 0 in Theorem 14, equation (4.3) becomes

∫ ∞

−∞
h(i sinh x; qa, qb, qc, qd)

h(cosh 2x;−q)

(
iqgex; q

)
∞2φ1

[ e−x/(ib), e−x/(ia)

1/(ab)
; q, iqgex

]
d x

=
(q, qab, qac, qad, qbc, qbd, qcd, qcg; q)∞ log(q−1)

(qabcd; q)∞
2φ1

[
1/(bc), 1/(ac)

1/(abcd)
; q, qcg

]
. (4.7)

Using Heine’s 2φ1 formula [21, Eq. (III.3)]

2φ1

[ a, b
c ; q, z

]
=

(
abz/c; q

)
∞

(z; q)∞
2φ1

[ c/a, c/b
c ; q,

abz
c

]
, (4.8)

we obtain

2φ1

[ e−x/(ib), e−x/(ia)

1/(ab)
; q, iqgex

]
=

(−iqge−x; q
)
∞(

iqgex; q
)
∞

2φ1

[ −ex/(ia),−ex/(ib)

1/(ab)
; q,−iqge−x

]
(4.9)

and deduce equation (4.4). The proof of corollary 15 is complete.

5. Ramanujan type Askey-Wilson integral

With the help of Jacobi theta functions, N.M. Atakishiyev [6, Eq. (19)] discovered the following Ramanujan type

representation for the Askey-Wilson integral by the transformation q → q−1.

Proposition 17 (Atakishiyev integral). If α is a real number and q = exp
(−2α2), then we have∫ ∞

−∞
h(i sinhαx; a, b, c, d)e−x2

coshαx d x =
√
πq−

1
8

(
ab/q, ac/q, ad/q, bc/q, bd/q, cd/q; q

)
∞(

abcd/q3; q
)
∞

. (5.1)

For more information about Ramanujan type Askey-Wilson integral, please refer to [6, 19, 20, 31, 38].

In this section, we generalize the following Ramanujan type Askey-Wilson integral by the method of q-difference

equation.



q-DIFFERENCE EQUATIONS FOR ASKEY-WILSON TYPE INTEGRALS 9

Theorem 18. For M ∈ N0 and f = qM, if α is a real number and q = exp
(−2α2), then we have

∫ ∞

−∞
h(i sinhαx; a, b, c, d)

e−x2
coshαx

(
igeαx; q

)
∞(

i f geαx; q
)
∞

3φ2

[
1/ f , qe−αx/(ib), qe−αx/(ia)

qe−αx/(i f g), q2/(ab)
; q, q

]
d x

=
√
πq−

1
8

(
ab/q, ac/q, ad/q, bc/q, bd/q, cd/q, cg/q; q

)
∞(

abcd/q3, c f g/q; q
)
∞

3φ2

[
1/ f , q2/(bc), q2/(ac)

q2/(c f g), q4/(abcd)
; q, q

]
, (5.2)

where max
{∣∣∣abcdq−M−3

∣∣∣ , ∣∣∣c f gq−M−1
∣∣∣ , ∣∣∣acdgq−3

∣∣∣} < 1.

Corollary 19. We have

∫ ∞

−∞
h(i sinhαx; a, b, c, d, g)

e−x2
coshαx(

igeαx; q
)
∞

2φ1

[ −qeαx/(ia),−qeαx/(ib)

q2/(ab)
; q,−ige−αx

]
d x

=
√
πq−

1
8

(
ab/q, ac/q, ad/q, bc/q, bd/q, cd/q, cg/q; q

)
∞(

abcd/q3; q
)
∞

2φ1

[ q2/(bc), q2/(ac)

q4/(abcd)
; q,

cg
q

]
, (5.3)

where max
{∣∣∣abcdq−M−3

∣∣∣ , ∣∣∣acdgq−3
∣∣∣ , ∣∣∣cgq−1

∣∣∣} < 1.

Remark 20. For f → 1 in Theorem 18, equation (5.2) reduces to (5.1). For f → 0 in Theorem 18, equation (5.2)

reduces to (5.3).

Proof of Theorem 18. The equation (5.2) can be written equivalently by

∫ ∞

−∞
h(i sinhαx; b, c, d)e−x2

coshαx
{(

igeαx,−iae−αx, iaeαx; q
)
∞(

ab/q, i f geαx; q
)
∞

3φ2

[
1/ f , qe−αx/(ib), qe−αx/(ia)

qe−αx/(i f g), q2/(ab)
; q, q

]}
d x

=
√
πq−

1
8
(
bc/q, bd/q, cd/q; q

)
∞

{(
cg/q, ad/q, ac/q; q

)
∞(

abcd/q3, c f g/q; q
)
∞

3φ2

[
1/ f , q2/(bc), q2/(ac)

q2/(c f g), q4/(abcd)
; q, q

]}
. (5.4)

We denote the RHS of equation (5.4) by F( f , g, a), and check that F( f , g, a) satisfies equation (1.8), so does the LHS

of equation (1.8), thus

F( f , g, a) =

∞∑
n=0

μn · Ψ( f )
n (g, a|q) (5.5)

and

F( f , 0, a) =

∞∑
n=0

μnan =
√
πq−

1
8
(
bc/q, bd/q, cd/q; q

)
∞

(
ad/q, ac/q; q

)
∞(

abcd/q3; q
)
∞

by (5.1)

=

∫ ∞

−∞
h(i sinhαx; b, c, d)e−x2

coshαx
{(

iaeαx,−iae−αx; q
)
∞(

ab/q; q
)
∞

}
d x

=

∫ ∞

−∞
h(i sinhαx; b, c, d)e−x2

coshαx

⎧⎪⎪⎨⎪⎪⎩
∞∑

n=0

(−1)nq(n
2)Ψ

(
ibeαx/q

)
n

(−ie−αx, ieαx|q) an

(q; q)n

⎫⎪⎪⎬⎪⎪⎭ d x,

that is,

F( f , g, a) =

∫ ∞

−∞
h(i sinhαx; b, c, d)e−x2

coshαx

⎧⎪⎪⎨⎪⎪⎩
∞∑

n=0

(−1)nq(n
2)Ψ

( f )
n (g, a|q)Ψ

(
ibeαx/q

)
n

(−ie−αx, ieαx|q) 1

(q; q)n

⎫⎪⎪⎬⎪⎪⎭ d x,

which is equal to the LHS of (1.8) after using equation (2.6). The proof is complete.
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6. q-integral type Bailey’s 6ψ6 summation

The bilateral basic hypergeometric series rψs is defined as [21]

rψs

[ a1, a2, . . . , ar
b1, b2, . . . , bs

; q, z
]
=

∞∑
n=−∞

(
a1, a2, . . . , ar; q

)
n

(b1, b2, . . . , bs; q)n
(−1)(s−r)nq(s−r)(n

2)zn. (6.1)

The Jackson’s q-integral notation [21] ∫ ∞

0

f (t) dq t = (1 − q)

∞∑
n=−∞

f (qn)qn. (6.2)

Bailey’s identity of bilateral well-poised 6ψ6-series is one of the deepest results in the theory of basic hypergeomet-

ric series, which implies the Askey-Wilson integral [18]. The famous Bailey’s 6ψ6 have some important applications

in number theory and combinatorics. For more information, please refer to [18, 21].

Proposition 21 (Bailey’s 6ψ6). For a, b, c, d ∈ C with
∣∣∣α2abcd/q3

∣∣∣ < 1, we have

6ψ6

[ q
√
α,−q

√
α, q/a, q/b, q/c, q/d√

α,−√α, αa, αb, αc, αd ; q,
α2abcd

q3

]

=

(
q, qα, q/α, αab/q, αac/q, αad/q, αbc/q, αbd/q, αcd/q; q

)
∞(

a, b, c, d, αa, αb, αc, αd, α2abcd/q3; q
)
∞

. (6.3)

In fact, we can rewrite Bailey’s 6ψ6 as the q-integral form [21, Eq. (5.16)]∫ ∞

0

(
αat, a/t, αbt, b/t, αct, c/t, αdt, d/t; q

)
∞(

αqt2, q/(αt2); q
)
∞

dq t
t

=
(1 − q)

(
q, αab/q, αac/q, αad/q, αbc/q, αbd/q, αcd/q; q

)
∞(

α2abcd/q3; q
)
∞

. (6.4)

There are many proofs of Bailey’s 6ψ6 summation in the literature, see details in [2, 5, 17, 25, 29, 31, 35].

In this section, we generalize Bailey’s 6ψ6 summation as follows by the method of q-difference equation.

Theorem 22. For M ∈ N0 and f = qM, we have∫ ∞

0

(
αat, a/t, αbt, b/t, αct, c/t, αdt, d/t, αgt; q

)
∞(

αqt2, q/(αt2), α f gt; q
)
∞

3φ2

[
1/ f , q/(αbt), q/(αat)
q/(α f gt), q2/(αab)

; q, q
]dq t

t

=
(1 − q)

(
q, αab/q, αac/q, αad/q, αbc/q, αbd/q, αcd/q, αcg/q; q

)
∞(

α2abcd/q3, αc f g/q; q
)
∞

3φ2

[
1/ f , q2/(αbc), q2/(αac)

q2/(αc f g), q4/(α2abcd)
; q, q

]
, (6.5)

where max
{∣∣∣α2abcdq−M−3

∣∣∣ , ∣∣∣αc f gq−M−1
∣∣∣ , ∣∣∣α2acdgq−3

∣∣∣} < 1.

Remark 23. For g = 0 in Theorem 22, equation (6.5) reduces to (6.4) directly.

Proof of Theorem 22. We rewrite equation (6.5) by∫ ∞

0

(
αat, a/t, αbt, b/t, αct, c/t, αdt, d/t; q

)
∞(

αqt2, q/(αt2); q
)
∞

(
αgt; q

)
∞(

αab/q, α f gt; q
)
∞

3φ2

[
1/ f , q/(αbt), q/(αat)
q/(α f gt), q2/(αab)

; q, q
]dq t

t

= (1 − q)
(
q, αbc/q, αbd/q, αcd/q; q

)
∞

(
αcg/q, αad/q, αac/q; q

)
∞(

α2abcd/q3, αc f g/q; q
)
∞

3φ2

[
1/ f , q2/(αbc), q2/(αac)

q2/(αc f g), q4/(α2abcd)
; q, q

]
. (6.6)

Denote the RHS of equation (6.6) by F( f , g, a), we can check that both F( f , g, a) and the LHS of (6.6) satisfy

equation (1.8) respectively, thus

F( f , g, a) =

∞∑
n=0

μn · Ψ( f )
n (g, a|q), (6.7)
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and

F( f , 0, a) =

∞∑
n=0

μnan =
(1 − q)

(
q, αac/q, αad/q, αbc/q, αbd/q, αcd/q; q

)
∞(

α2abcd/q3; q
)
∞

=

∫ ∞

0

(
αbt, b/t, αct, c/t, αdt, d/t; q

)
∞(

αqt2, q/(αt2); q
)
∞

{(
αat, a/t; q

)
∞(

αab/q; q
)
∞

}
dq t

t

=

∫ ∞

0

(
αbt, b/t, αct, c/t, αdt, d/t; q

)
∞(

αqt2, q/(αt2); q
)
∞

⎧⎪⎪⎨⎪⎪⎩
∞∑

n=0

(−1)nq(n
2)Ψ

(
b/(qt)

)
n

(
αt, 1/t|q) an

(q; q)n

⎫⎪⎪⎬⎪⎪⎭
dq t

t
. (6.8)

By equation (6.7) and (6.8), we have

F( f , g, a) =

∫ ∞

0

(
αbt, b/t, αct, c/t, αdt, d/t; q

)
∞(

αqt2, q/(αt2); q
)
∞

⎧⎪⎪⎨⎪⎪⎩
∞∑

n=0

(−1)nq(n
2)Ψ

( f )
n (g, a|q)Ψ

(
b/(qt)

)
n

(
αt, 1/t|q) 1

(q; q)n

⎫⎪⎪⎬⎪⎪⎭
dq t

t
, (6.9)

which is equivalent to the LHS of (6.6) after using equation (2.6). The proof is complete.

7. U(n + 1) type generating functions for Al-Salam-Carlitz polynomials

Multiple basic hypergeometric series associated to the unitary U(n + 1) group have been investigated by various

authors, see [12, 13, 32, 37, 40, 41]. In [32], Milne initiated the theory and application of the U(n+1) generalization of

the classical Bailey transform and Bailey lemma, which involve the following nonterminating U(n+1) generalizations

of the q-binomial theorem.

Proposition 24 ([32, Theorem 5.42]). Let b, z and x1, . . . , xn be indeterminate, and let n ≥ 1. Suppose that none
of the denominators in the following identity vanishes, and that 0 < |q| < 1 and |z| < |x1 . . . xn| |xm|−n |q|(n−1)/2, for
m = 1, 2 . . . , n. Then

∑
yk≥0

k=1,2...,n

{ ∏
1≤r<s≤n

⎡⎢⎢⎢⎢⎢⎣1 − xr
xs

qyr−ys

1 − xr
xs

⎤⎥⎥⎥⎥⎥⎦
n∏

r,s=1

(
q

xr

xs
; q

)−1

yr

n∏
i=1

(xi)
nyi−(y1+...+yn)(−1)(n−1)(y1+...+yn)

× qy2+2y3+...+(n−1)yn+(n−1)
[
(y1

2 )+...+(yn
2 )

]
−e2(y1,...,yn)(b; q)y1+...+ynzy1+...+yn =

(bz; q)∞
(z; q)∞

, (7.1)

where e2(y1, . . . , yn) is the second elementary symmetric function of {y1, . . . , yn}.
In this section, we generalize U(n + 1) type generating functions for Al-Salam-Carlitz polynomials by the method

of q-difference equation.

Theorem 25. Let u, v, r, s, x, y, z and x1, . . . , xn be indeterminate, and let n ≥ 1. Suppose that none of the denominators
in the following identity vanishes, and that 0 < |q| < 1 and |z| < |x1 . . . xn| |xm|−n |q|(n−1)/2, for m = 1, 2 . . . , n. We have

∑
yk≥0

k=1,2...,n

{ ∏
1≤r<s≤n

⎡⎢⎢⎢⎢⎢⎣1 − xr
xs

qyr−ys

1 − xr
xs

⎤⎥⎥⎥⎥⎥⎦
n∏

r,s=1

(
q

xr

xs
; q

)−1

yr

n∏
i=1

(xi)
nyi−(y1+...+yn)(−1)(n−1)(y1+...+yn)

× qy2+2y3+...+(n−1)yn+(n−1)
[
(y1

2 )+...+(yn
2 )

]
−e2(y1,...,yn)

Φ
(u)
y1+...+yn

(v, x|q)Φ
(r)
y1+...+yn

(s, y|q)zy1+...+yn

=
(rsvz, uvyz; q)∞

(svz, vyz, xyz; q)∞
3φ2

[ r, vyz, uv/x
rsvz, uvyz ; q, sxz

]
, (7.2)

where max{|svz| , |vyz| , |xyz| , |sxz|} < 1 and e2(y1, . . . , yn) defined in formula (7.1).

Remark 26. For n = 1 in Theorem 25, equation (7.3) reduces to (2.5). For v = s = 0 in Theorem 25, equation (7.3)

reduces to (7.1) with b = 0.
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Proof of Theorem 25. First, we denote f (u, v, x) by

f (u, v, x) =
∑
yk≥0

k=1,2...,n

{ ∏
1≤r<s≤n

⎡⎢⎢⎢⎢⎢⎣1 − xr
xs

qyr−ys

1 − xr
xs

⎤⎥⎥⎥⎥⎥⎦
n∏

r,s=1

(
q

xr

xs
; q

)−1

yr

n∏
i=1

(xi)
nyi−(y1+...+yn)(−1)(n−1)(y1+...+yn)

× qy2+2y3+...+(n−1)yn+(n−1)
[
(y1

2 )+...+(yn
2 )

]
−e2(y1,...,yn)

Φ
(u)
y1+...+yn

(v, x|q)(zy)y1+...+yn , (7.3)

we can check that f (u, v, x) satisfies equation (1.7), so we have

f (u, v, x) =

∞∑
n=0

μn · Φ(u)
n (v, x|q) (7.4)

and

f (u, 0, x) =

∞∑
n=0

μnxn =
1

(xyz; q)∞
by (7.1)

=

∞∑
n=0

(yz)nxn

(q; q)n
.

Using equation (7.4) yields

f (u, v, x) =

∞∑
n=0

Φ
(u)
n (v, x|q)

(yz)n

(q; q)n
=

(uvyz; q)∞
(vyz, xyz; q)∞

. (7.5)

Similarly, denote F(r, s, y) by the LHS of equation (7.3), we can also check that F(r, s, y) satisfies equation (1.7). By

the same method, we have

F(r, s, y) =

∞∑
n=0

Φ
(u)
n (v, x|q)Φ

(r)
n (s, y|q)

zn

(q; q)n
, (7.6)

which is equal to the RHS of equation (7.3) by (2.5). The proof is complete.
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