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In this paper, we are concerned with the following Choquard equation in R3 that

−ε2Δu + V (x)u

= εμ−3
[( ∫

R3

P (y)|u(y)|p
|x− y|μ

)
P (x)|u|p−2u +

( ∫
R3

Q(y)|u(y)|q
|x− y|μ

)
Q(x)|u|q−2u

]
,

where ε > 0 is a parameter, 0 < μ < 3, 6−μ
3 < q < p < 6 −μ, the functions V and P

are positive and Q may be sign-changing. Via variational methods, we establish the 
existence of ground states for small ε, and investigate the concentration behavior 
of ground states and show that they concentrate at a global minimum point of the 
least energy function as ε → 0.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction and main results

The Choquard equation

−Δu + u =
(∫
R3

|u(y)|2
|x− y|

)
u, u ∈ H1(R3), (1.1)

was proposed by Choquard in 1976, and can be described as an approximation to Hartree–Fock theory of a 
one-component plasma, see [13]. It was also proposed by Penrose in [21] as a model for the self-gravitational 
collapse of a quantum mechanical wave function. In [13], Lieb proved the existence and uniqueness of a 
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minimizer to problem (1.1) by using symmetric decreasing rearrangement inequalities. Later, in [15], Lions 
showed the existence of infinitely many radially symmetric solutions of (1.1). In [16], Ma and Zhao considered 
the generalized Choquard equation

−Δu + u =
( ∫
RN

|u(y)|q
|x− y|μ

)
|u|q−2u, u ∈ H1(RN ), (1.2)

for q ≥ 2 and N ≥ 3. Under some assumptions on N, μ, and q, they proved that every positive solution 
of (1.2) is radially symmetric and monotone decreasing about some point. Cingolani et al. [8] obtained 
some existence and multiplicity results in the electromagnetic case, and established the regularity and some 
decay at infinity of ground states for (1.2). Moroz and Van Schaftingen [17] investigated the qualitative 
properties of solutions of (1.2) and showed the regularity, positivity and radial symmetry of ground states. 
The authors [19,20] established the existence of ground states for (1.2) with general nonlinearity in the spirit 
of Berestycki and Lions and studied the existence of solutions for (1.2) with lower critical exponent due to 
the Hardy–Littlewood–Sobolev inequality.

On the other hand, some people focused on the semiclassical problem

−ε2Δu + u = εμ−N
( ∫
RN

G(u(y))
|x− y|μ

)
g(u), u ∈ H1(RN ), (1.3)

where G is the primitive function of g, and there are many results about the existence, multiplicity and 
concentration of solutions for (1.3) and similar problems as ε small. For N = 3, μ = 1 and G(s) = s2, 
Cingolani et al. [10] applied the penalization arguments and showed that there exists a family of solutions 
having multiple concentration regions which are located around the minimum points of the potential. For 
N ≥ 3 and G(u) = |u|q with q ∈ [2, 2N−μ

N−2 ), Moroz and Van Schaftingen in [18] developed a nonlocal 
penalization technique and showed that equation (1.3) has a family of solutions concentrating around 
the local minimum of V which satisfies a certain decay at infinity. Alves and Yang [5] dealt with the 
equation (1.3) with general function G, and obtained the multiplicity and concentration of solutions for the 
equation (1.3) by assuming that V has a global minimum, g ∈ C1(R) is of subcritical growth and satisfies 
Ambrosetti–Rabinowitz type condition. Later, Alves and Yang [6,7] studied the existence and concentration 
of solutions for (1.3) with both linear and nonlinear potentials which have a global minimum or maximum, 
and also proved the existence, multiplicity and concentration of solutions for (1.3) with linear potential 
which has a local minimum. Very recently, Alves et al. [2] considered (1.3) with critical growth that

−ε2Δu + V (x)u = εμ−3
(∫
R3

|u(y)|6−μ + f(u(y))
|x− y|μ

)(
|u|4−μu + f(u)

)
, in R

3,

where 6 − μ is the upper critical exponent due to the Hardy–Littlewood–Sobolev inequality, and they 
investigated the existence, multiplicity and concentration behavior of solutions by variational methods. For 
the reader’s convenience, we recall the definitions of critical exponent for the problem (1.3) with N = 3. 
Firstly we give an important inequality:

Proposition 1.1 (Hardy–Littlewood–Sobolev inequality). (See [14].) Let s, r > 1 and 0 < μ < 3 with 1
s + μ

3 +
1
r = 2, f ∈ Ls(R3) and h ∈ Lr(R3). There exists a sharp constant C(s, μ, r), independent of f , h, such that

∫
R3

∫
R3

f(x)h(y)
|x− y|μ ≤ C(s, μ, r)|f |s|h|r.
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Remark 1.1. By Proposition 1.1, the term
∫
R3

∫
R3

|u(x)|r|u(y)|r
|x− y|μ

is well defined if ur ∈ Ls(R3) satisfies 2
s + μ

3 = 2. Therefore, for u ∈ H1(R3) we will require that s ·r ∈ [2, 6]. 
Then 6−μ

3 ≤ r ≤ 6 − μ. Thus 6−μ
3 is called the lower critical exponent and 6 − μ is called the upper critical 

exponent in the sense of Hardy–Littlewood–Sobolev inequality. For details, see [2].

For a Schrödinger equation of the form

−ε2Δu + V (x)u = K(x)|u|p−2u + Q(x)|u|q−2u, x ∈ R
N ,

Wang and Zeng [24] proved that the concentration points are located on the middle ground of the competing 
potential functions and in some cases are given explicitly in terms of these functions. Cingolani and Lazzo 
[9] obtained multiple solutions and related the number of solutions with the topology of the global minima 
set of a suitable least energy function. We also mention that, some mathematicians studied other problems 
with competing potentials, for instance, see [4,23].

By motivation of the above works, we consider a Choquard equation with competing potentials. More 
precisely, we are devoted to studying the existence and concentration of ground states for the Choquard 
equation in R3 that

−ε2Δu + V (x)u = εμ−3
[( ∫

R3

P (y)|u(y)|p
|x− y|μ

)
P (x)|u|p−2u +

(∫
R3

Q(y)|u(y)|q
|x− y|μ

)
Q(x)|u|q−2u

]
, (1.4)

where 0 < μ < 3, 6−μ
3 < q < p < 6 − μ, V and P are continuous and positive functions, Q is a continuous 

function and may be sign-changing. A simple model of (1.4) is the case that Q = 0, V has a global minimum 
and P has a global maximum, there is possibly a competition between V and P , and V would attract ground 
states to its minimum point but P would attract ground states to its maximum point. The competition will 
be more complex when Q �= 0, and this causes finding the concentration points become more difficult. As 
we know, there is no work concerning this case.

Throughout the paper, we always assume that:

(V) V (x) ∈ C(R3) ∩ L∞(R3) and V0 := infx∈R3 V (x) > 0.
(P) P (x) ∈ C(R3) ∩ L∞(R3) is a positive function.
(Q) Q(x) ∈ C(R3) ∩ L∞(R3).

To state the main result, we need two auxiliary problems. For each ξ ∈ R
3, consider the following problem 

in R3 that

−Δu + V (ξ)u =
(∫
R3

P 2(ξ)|u(y)|p
|x− y|μ

)
|u|p−2u +

(∫
R3

Q2(ξ)|u(y)|q
|x− y|μ

)
|u|q−2u. (P )ξ

Denote the corresponding functional of (P)ξ by Iξ and the least energy by C(ξ) := c(V (ξ), P (ξ), Q(ξ)). In 
addition, we consider the limit problem in R3 that

−Δu + V∞u =
(∫

P 2
∞|u(y)|p
|x− y|μ

)
|u|p−2u +

(∫
Q2

∞|u(y)|q
|x− y|μ

)
|u|q−2u, (P )∞
R3 R3
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and denote the corresponding functional of (P)∞ by I∞ and least energy by c∞ := c(V∞, P∞, Q∞), where

V∞ := lim inf
|x|→∞

V (x), P∞ := lim sup
|x|→∞

P (x), Q∞ := lim sup
|x|→∞

Q(x).

Now we state the main results.

Theorem 1.1. Let (V), (P) and (Q) hold and suppose that 0 < μ < 2 and 2 < q < p < 6 − 2μ. If

inf
ξ∈R3

C(ξ) < c∞, (1.5)

then for any ε > 0 small,
(1) the equation (1.4) has a positive ground state wε in H1(R3),
(2) if additionally V , P and Q are uniformly continuous, then wε satisfies:
(i) wε possesses a global maximum point xε ∈ R

3 such that

lim
ε→0

C(xε) = inf
ξ∈R3

C(ξ).

Setting vε(x) = wε(εx + xε), for any sequence xε → y0, ε → 0, vε converges in H1(R3) to a ground state v
of the equation in R3 that

−Δu + V (y0)u =
(∫
R3

P 2(y0)|u(y)|p
|x− y|μ

)
|u|p−2u +

(∫
R3

Q2(y0)|u(y)|q
|x− y|μ

)
|u|q−2u.

(ii) There exists C1, C2 > 0 such that

wε(x) ≤ C1e
−C2

ε |x−xε|.

Remark 1.2. We would like to point out that, (1.5) will hold in some cases. Here we give two examples.
(1) There exists a point s0 ∈ R

3 such that

V∞ ≥ V (s0), P∞ ≤ P (s0), and Q∞ ≤ Q(s0),

with one of the above inequalities being strict.
(2) There exists a point s0 ∈ R

3 such that

V
− 1

2+ 5−μ
2(p−1)

∞ P
− 2

p−1
∞ ≥ V − 1

2+ 5−μ
2(p−1) (s0)P− 2

p−1 (s0),

V
5−μ

2(p−1) (q−p)
∞ Q2

∞P
2(1−q)
p−1

∞ ≤ V
5−μ

2(p−1) (q−p)(s0)Q2(s0)P
2(1−q)
p−1 (s0),

with one of the above inequalities being strict. For more details, see Corollary 3.1.

Remark 1.3. As in [6,7], we make some comments on the restrictions that 0 < μ < 2 and 2 < q < p < 6 −2μ
in Theorem 1.1. To obtain the existence results for the autonomous equation (P)ξ, we can eliminate the 
above restrictions and the parameters μ, p, q just are satisfied that 0 < μ < 3 and 6−μ

3 < q < p < 6 − μ. 
However, to obtain the existence and concentration results about the equation (1.4), we need the restrictions 
to ensure that the nonlocal part 1

|x|μ ∗ |u|q and 1
|x|μ ∗ |u|p are bounded terms.

The proof is based on variational methods. Comparing with the previous existence and concentration 
results about Choquard equation, for example [5–7], we do not assume that the potentials has a minimum 
or maximum, and so the previous results cannot be applied to (1.4) even when Q = 0. However, the Nehari
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manifold is still well defined even Q(x) is sign-changing. Hence, we first use the method of Nehari manifold 
to find ground states as ε small and then we find these ground states concentrate at a global minimum point 
of the least energy function C(ξ) as ε → 0 by virtue of concentration-compactness lemma.

The paper is organized as follows. In Section 2 we introduce the variational framework. In Section 3 we 
study the autonomous problem. In Section 4 we give a compactness lemma. In Section 5, we are devoted to 
proving Theorem 1.1.

2. Variational setting

In this paper, we use the following notations. For 1 ≤ p ≤ ∞, the norm in Lp(R3) is denoted by | · |p. ∫
R3

f(x)dx will be represented by 
∫
R3

f(x). For any r > 0 and x ∈ R
3, Br(x) denotes the ball centered at x

with the radius r.
For the proof of our theorem, we shall consider an equivalent equation to (1.4). By making the change 

of variable x → εx, the problem (1.4) turns out to be

−Δu + V (εx)u =
(∫
R3

P (εy)|u(y)|p
|x− y|μ

)
P (εx)|u|p−2u +

(∫
R3

Q(εy)|u(y)|q
|x− y|μ

)
Q(εx)|u|q−2u. (P)∗

H1(R3) is the Sobolev space with norm ‖u‖ =
(∫
R3

|∇u|2 + u2) 1
2 . By (V), the norms

‖u‖2
ε =

∫
R3

(
|∇u|2 + V (εx)u2), ‖u‖2

ξ =
∫
R3

(
|∇u|2 + V (ξ)u2),

are equivalent norms in H1(R3). Sε and Sξ are the unit sphere of H1(R3) under norms ‖ · ‖ε and ‖ · ‖ξ
respectively. The functional associated with the equation (P)∗ is

Iε(u) = 1
2‖u‖

2
ε −

1
2p

∫
R3

∫
R3

P (εy)|u(y)|p
|x− y|μ P (εx)|u(x)|p − 1

2q

∫
R3

∫
R3

Q(εy)|u(y)|q
|x− y|μ Q(εx)|u(x)|q. (2.1)

Now we state the variational setting. We shall apply the method of Nehari manifold developed by Szulkin 
and Weth [22] to Choquard equation. The Nehari manifold corresponding to (P)∗ is

Mε = {u ∈ H1(R3) \ {0} : 〈I ′ε(u), u〉 = 0},

and the least energy on Mε is defined by cε := infMε
Iε. Since the argument of the following results are 

similar to [25], we omit most of the proof.

Lemma 2.1. There exists ρ > 0 such that inf‖u‖ε=ρ Iε > 0.

Proof. The Hardy–Littlewood–Sobolev inequality implies that
∣∣∣
∫
R3

∫
R3

|u(y)|s
|x− y|μ |u(x)|s

∣∣∣ ≤ C|u|2ss· 6
6−μ

, (2.2)

where s = p or q. Then

Iε(u) ≥ 1
2‖u‖

2
ε − C(|u|2q

q· 6
6−μ

+ |u|2p
p· 6

6−μ

),

from which the conclusion yields since 2 < q · 6 < p · 6 < 6 and q, p > 1. �
6−μ 6−μ
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Similar to [25, Lemma 3.1], we have that:

Lemma 2.2. (i) For all u ∈ H1(R3) \ {0}, there exists a unique tε := tε(u) > 0 such that tεu ∈ Mε and 
Iε(tεu) = maxt>0 Iε(tu).

(ii) Mε is bounded away from 0, and there is � > 0 such that tε ≥ � for each u ∈ Sε.
(iii) For each compact subset W ⊂ Sε, there exists CW > 0 such that tε ≤ CW , for all u ∈ W .

By Lemmas 2.1 and 2.2 (i), one easily get that:

Lemma 2.3. cε = infMε
Iε ≥ inf‖u‖ε=ρ Iε > 0.

Define the mapping mε : Sε → Mε by mε(w) := tεw, where tε is as in Lemma 2.2 (i). Similar to [22, 
Proposition 3.1], we have:

Lemma 2.4. The mapping mε is a homeomorphism between Sε and Mε.

By Lemma 2.4, the least energy cε has the following minimax characterization:

cε := inf
u∈Mε

Iε(u) = inf
u∈H1(R3)\{0}

max
t≥0

Iε(tu). (2.3)

Considering the functional Ψε : Sε → R given by Ψε(w) := Iε(mε(w)), as [22, Corollary 3.3] we deduce that:

Lemma 2.5. (1) If {wn} is a PS sequence for Ψε, then {mε(wn)} is a PS sequence for Iε. If {un} ⊂ Mε is 
a bounded PS sequence for Iε, then {m−1

ε (un)} is a PS sequence for Ψε.
(2) w is a critical point of Ψε if and only if mε(w) is a nontrivial critical point of Iε. Moreover, infMε

Iε =
infSε

Ψε.

Remark 2.1. By Lemma 2.5, we will use the differential structure of Sε to find the PS sequence of Iε. We 
would like to point out that, Mε is indeed a C1 regular manifold, and one can make use of the differential 
structure of Mε to find the PS sequence of Iε.

Lemma 2.6. Assume that {un} is a PS sequence of Iε, that is

Iε(un) → c < ∞, I ′ε(un) → 0,

as n → ∞. Then {un} is bounded in H1(R3).

Proof. Observe that

c + on(1) + on(1)‖un‖ε

= Iε(un) − 1
2q 〈I

′
ε(un), un〉

=
(1
2 − 1

2q
)
‖un‖2

ε +
( 1
2q − 1

2p
) ∫
R3

∫
R3

P (εy)|un(y)|p
|x− y|μ P (εx)|un(x)|p,

(2.4)

from which one easily has that ‖un‖ε is bounded. �
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3. The autonomous problem

In this section we are concerned with the autonomous equation (P)ξ, giving in Section 1. The functional 
Iξ of (P)ξ is

Iξ(u) = 1
2‖u‖

2
ξ −

1
2p

∫
R3

∫
R3

P 2(ξ)|u(y)|p
|x− y|μ |u(x)|p − 1

2q

∫
R3

∫
R3

Q2(ξ)|u(y)|q
|x− y|μ |u(x)|q.

The Nehari manifold corresponding to (P)ξ is defined by

Mξ = {u ∈ H1(R3)\{0} : 〈I ′ξ(u), u〉 = 0},

and the least energy C(ξ) is defined by C(ξ) = infMξ
Iξ. As Lemma 2.3, C(ξ) > 0. Similar to (2.3), we get

C(ξ) = inf
u∈Mξ

Iξ(u) = inf
w∈H1(R3)\{0}

max
t>0

Iξ(tw). (3.1)

Defined the mapping mξ : Sξ → Mξ by mξ(w) := t(w)w, and Ψξ(w) = Iξ(mξ(w)). Replaced Iε, Ψε, mε

and Sε, by Iξ, Ψξ, mξ and Sξ, Lemma 2.5 still hold.

Lemma 3.1. For any ξ ∈ R
3, the problem (P)ξ has a positive ground state u with Iξ(u) = C(ξ).

Proof. Assume that {wn} ⊂ Sξ is a minimizing sequence satisfying Ψξ(wn) → infSξ
Ψξ. By the Ekeland 

variational principle, we suppose Ψ′
ξ(wn) → 0. Then, from Lemma 2.5 it follows that I ′ξ(un) → 0 and 

Iξ(un) → cξ, where un = mξ(wn) ∈ Mξ. Similar to Lemma 2.6, we obtain that {un} is bounded in H1(R3). 
Up to a subsequence, we assume that un ⇀ ũ in H1(R3), un → ũ in L2

loc(R3) and un → ũ a.e. on R3. 
Then I ′ξ(ũ) = 0. Suppose {un} is vanishing, then P. L. Lions compactness lemma implies that un → 0
in Lp· 6

6−μ (R3) and Lq· 6
6−μ (R3). By (2.2), we easily have that C(ξ) = 0. This is impossible. Hence {un} is 

non-vanishing. Then there exists xn ∈ R
3 and δ0 > 0 such that

∫
B1(xn)

u2
n(x) > δ0.

Without loss of generality, we assume that xn ∈ Z
3. Since the invariant of the functional Iξ and Mξ under 

the translation of the form v(·) → v(· − xn), we can assume that {xn} is bounded. Then ũ �= 0. So ũ ∈ Mξ

and Iξ(ũ) ≥ C(ξ). As (2.4), from Fatou lemma we easily infer that

Iξ(ũ) ≤ lim inf
n→∞

(
Iξ(un) − 1

2q 〈I
′
ξ(un), un〉

)
= C(ξ). (3.2)

Therefore, Iξ(ũ) = C(ξ). By standard arguments, we can assume that ũ > 0. This ends the proof. �
Next we study the continuity of C(ξ).

Lemma 3.2. ξ → C(ξ) is continuous.

Proof. We shall borrow the idea in [3, Lemma 2.2] to give the proof. For ξ ∈ R
3, let {ξn}, {λn} be sequences 

in R3 such that
(a) ξn → ξ, and for any n, C(ξn) ≥ C(ξ);
(b) λn → ξ, and for any n, C(λn) ≤ C(ξ).
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It suffices to show that C(ξn), C(λn) → C(ξ). First, we show that C(ξn) → C(ξ). By Lemma 3.1, there 
exists w ∈ H1(R3) such that Iξ(w) = C(ξ) and I ′ξ(w) = 0. Let tn > 0 be such that tnw ∈ Mξn . Since 
w ∈ Mξ and tnw ∈ Mξn , we get tn → 1. Then Iξn(tnw) → Iξ(w). So

lim sup
n→∞

C(ξn) ≤ lim sup
n→∞

Iξn(tnw) = Iξ(w) = C(ξ).

On the other hand, since C(ξn) ≥ C(ξ), we have lim infn→∞ C(ξn) ≥ C(ξ). Hence, C(ξn) → C(ξ). Below 
we show that C(λn) → C(ξ). Let {wn} ∈ Mλn

be such that Iλn
(wn) = C(λn) and I ′λn

(wn) = 0. As (2.4), 
one has that {wn} is bounded in H1(R3) and we may assume that wn ⇀ w0 in H1(R3). Since λn → ξ, the 
Hardy–Littlewood–Sobolev inequality implies that I ′ξ(wn) ⇀ 0. Then I ′ξ(w0) = 0. Since Mλn

is bounded 
away from 0, it is easy to see that wn is non-vanishing. Moreover, as in the proof of Lemma 3.1, using the 
invariant of Iξ and Mξ, we can assume that w0 �= 0. As (2.4), Fatou lemma implies that

lim inf
n→∞

Iλn
(wn) ≥ Iξ(w0).

Then C(ξ) ≤ lim inf C(λn). On the other hand, using (b), lim supC(λn) ≤ C(ξ). Thus C(λn) → C(ξ). This 
ends the proof. �

We now present an expression for C(ξ) which, in particular, enables us to express C(ξ) explicitly in terms 
of V (ξ), P (ξ) and Q(ξ).

Let v is a ground state of the equation (P)ξ. Then I ′ξ(v) = 0 and Iξ(v) = C(ξ). Substituting v = tw(sx)
with s2 = V (ξ) and t2 = V

5−μ
2(p−1) (ξ)P− 2

p−1 (ξ), and

α(ξ) = V
5−μ

2(p−1) (q−p)(ξ)Q2(ξ)P
2(1−q)
p−1 (ξ),

into the equation (P)ξ, we have

−Δw + w =
(∫
R3

|w(y)|p
|x− y|μ

)
|w|p−2w + α(ξ)

(∫
R3

|w(y)|q
|x− y|μ

)
|w|q−2w, x ∈ R

3, (3.3)

whose functional we denoted by Iα(ξ). Then 〈I ′α(ξ)(w), w〉 = 0. Moreover, it is easy to see that Iξ(v) =
V − 1

2+ 5−μ
2(p−1) (ξ)P− 2

p−1 (ξ)Iα(ξ)(w). Let cα(ξ) := c(1, 1, α(ξ)), i.e. the least energy associated with (3.3). Then

V − 1
2+ 5−μ

2(p−1) (ξ)P− 2
p−1 (ξ)cα(ξ) ≤ C(ξ).

The reverse inequality is obtained in the same way. Then

C(ξ) = V − 1
2+ 5−μ

2(p−1) (ξ)P− 2
p−1 (ξ)cα(ξ).

Thus we have the following lemma.

Lemma 3.3. cα(ξ) is a decreasing function of α(ξ) and

C(ξ) = V − 1
2+ 5−μ

2(p−1) (ξ)P− 2
p−1 (ξ)cα(ξ).

As a byproduct of the last lemma, we have the following corollary.

Corollary 3.1. By Lemma 3.3, if there exists a point s0 ∈ R
3 such that

V
− 1

2+ 5−μ
2(p−1)

∞ P
− 2

p−1
∞ ≥ V − 1

2+ 5−μ
2(p−1) (s0)P− 2

p−1 (s0),
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V
5−μ

2(p−1) (q−p)
∞ Q2

∞P
2(1−q)
p−1

∞ ≤ V
5−μ

2(p−1) (q−p)(s0)Q2(s0)P
2(1−q)
p−1 (s0),

with one of the above inequalities being strict, then (1.5) holds.

4. A compactness lemma

In this section we shall prove some compactness results for the functional Iε. Firstly, by a nonlocal version 
of Brezis–Lieb lemma [1, Lemma 3.2], we have the following lemma.

Lemma 4.1. Fixed ε > 0, let {un} be a bounded (PS)c sequence for Iε with c > 0, then replacing un, if 
necessary, with a subsequence, there exists u ∈ H1(R3) with I ′ε(u) = 0, such that

(1) Iε(un − u) → c − Iε(u);
(2) I ′ε(un − u) → 0.

Lemma 4.2. Fixed ε > 0, let 0 < μ < 2 and 2 < q < p < 6 − 2μ. Then, for any (PS)c sequence un for Iε
with un ⇀ u in H1(R3), either un → u in H1(R3) along a subsequence or

c− Iε(u) ≥ c∞.

Proof. Define vn = un − u and suppose that vn � 0 in H1(R3). Let tn > 0 be such that tnvn ∈ M∞ , where

M∞ = {u ∈ H1(R3)\{0} : 〈I ′∞(u), u〉 = 0}.

We claim that lim supn→∞ tn ≤ 1. Otherwise, there exist δ > 0 and a subsequence still denoted by tn, such 
that tn ≥ 1 + δ for all n ∈ N. Since 0 < μ < 2 and 2 < q < p < 6 −2μ, as in [6], there exists C > 0 such that

∣∣∣
∫
R3

|vn(y)|p
|x− y|μ

∣∣∣
∞

≤ C,
∣∣∣
∫
R3

|vn(y)|q
|x− y|μ

∣∣∣
∞

≤ C. (4.1)

Then it is easy to see that
∫
R3

∫
R3

P (εy)|vn(y)|p
|x− y|μ P (εx)|vn(x)|p =

∫
R3

∫
R3

P 2
∞|vn(y)|p
|x− y|μ |vn(x)|p + on(1),

∫
R3

∫
R3

Q(εy)|vn(y)|p
|x− y|μ Q(εx)|vn(x)|p =

∫
R3

∫
R3

Q2
∞|vn(y)|p
|x− y|μ |vn(x)|p + on(1).

By Lemma 4.1, 〈I ′ε(vn), vn〉 = on(1). Then

∫
R3

(|∇vn|2 + V∞|vn|2) =
∫
R3

∫
R3

P 2
∞|vn(y)|p
|x− y|μ |vn(x)|p +

∫
R3

∫
R3

Q2
∞|vn(y)|q
|x− y|μ |vn(x)|q + on(1).

Combining with tnvn ∈ M∞, we get

(t2p−2q
n − 1)

∫
R3

∫
R3

P 2
∞|vn(y)|p
|x− y|μ |vn(x)|p + (1 − t2−2q

n )
∫
R3

(|∇vn|2 + V∞|vn|2) = on(1). (4.2)

If {vn} is vanishing, then P.L. Lions compactness lemma implies vn → 0 in Lq· 6
6−μ (R3) and Lp· 6

6−μ (R3). 
Note that 〈I ′ε(vn), vn〉 = on(1), one easily gives vn → 0 in H1(R3), which contradicts with the above 
assumption. Then there exist yn ∈ R

3 and δ > 0 such that
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∫
B1(yn)

|vn|2 ≥ δ. (4.3)

Set ṽn = vn(x + yn), we may suppose that, up to a subsequence, ṽn ⇀ ṽ in H1(R3) and ṽn → ṽ a.e. in R3. 
By (4.3) we get ṽ �= 0. Then there exists a subset Ω ⊂ R

3 with positive measure such that |ṽ(x)| > 0 for all 
x ∈ Ω. By tn ≥ 1 + δ and (4.2), letting n → ∞ we infer

0 <

∫
Ω

∫
Ω

|ṽ(y)|p
|x− y|μ |ṽ(x)|p = 0,

which is absurd. We next distinguish the following two cases:
Case 1: lim supn→∞ tn = 1. In this case, there exists a subsequence, still denoted by tn, such that tn → 1. 

From (1) of Lemma 4.1, we have

c− Iε(u) + on(1) = Iε(vn) ≥ Iε(vn) + c∞ − I∞(tnvn) = on(1) + c∞.

Consequently, c − Iε(u) ≥ c∞.
Case 2. lim supn→∞ tn = t0 < 1. In this case, without loss of generality, we suppose that tn → t0 < 1. 

Then as (2.4) we obtain

c∞ ≤
(1
2 − 1

2q
) ∫
R3

(
|∇vn|2 + V∞v2

n

)
+
( 1
2q − 1

2p
) ∫
R3

∫
R3

P 2
∞|vn(y)|p
|x− y|μ |vn(x)|p

=
(1
2 − 1

2q
)
‖vn‖2

ε +
( 1
2q − 1

2p
) ∫
R3

∫
R3

P (εy)|vn(y)|p
|x− y|μ P (εx)|vn(x)|p + on(1)

= Iε(vn) − 1
2q 〈I

′
ε(vn), vn〉 + on(1) = c− Iε(u) + on(1).

Hence, c − Iε(u) ≥ c∞. �
By Lemmas 2.6 and 4.2, we get:

Lemma 4.3. Iε satisfies the (PS)c condition with c < c∞.

5. Proof of Theorem 1.1

Lemma 5.1. lim supε→0 cε ≤ infξ∈R3 C(ξ). Moreover, lim supε→0 cε < c∞.

Proof. Since (P)ξ has a positive ground state for each ξ ∈ R
3, we can take u ∈ Mξ such that Iξ(u) = C(ξ)

and I ′ξ(u) = 0. Then for small ε > 0, there holds

|∇u|22 +
∫
R3

V (εx + ξ)|u|2 =
∫
R3

∫
R3

P (εy + ξ)|u(y)|p
|x− y|μ P (εx + ξ)|u(x)|p

+
∫
R3

∫
R3

Q(εy + ξ)|u(y)|q
|x− y|μ Q(εx + ξ)|u(x)|q + oε(1).

(5.1)

Set wε(x) = u(x − ξ
ε ). By (5.1), we have that

〈I ′ε(wε), wε〉 = oε(1). (5.2)
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There exists tε > 0 such that tεwε ∈ Mε. Then 〈I ′ε(tεwε), tεwε〉 = 0. By (5.2), it is easy to see that tε → 1
as ε → 0. Then

Iε(tεwε) = Iξ(w) + oε(1) = C(ξ) + oε(1).

Note that tεwε ∈ Mε, one has that lim supε→0 cε ≤ C(ξ). Since ξ is arbitrary, we get

lim sup
ε→0

cε ≤ inf
ξ∈R3

C(ξ).

Using (1.5), lim supε→0 cε < c∞. This ends the proof. �
By Lemma 5.1, we may assume that

cε < c∞, (5.3)

as ε small enough.

Lemma 5.2. The minimax value cε is achieved if ε is small enough. Hence, problem (P)∗ has a positive 
ground state if ε is small enough.

Proof. Assume that wn ∈ Sε satisfies that Ψε(wn) → infSε
Ψε. By the Ekeland variational principle, we 

may suppose that Ψ′
ε(wn) → 0. Then from Lemma 2.5 it follows that I ′ε(un) → 0 and Iε(un) → cε, where 

un = mε(wn) ∈ Mε. By (5.3), Lemma 4.3 implies that there exists ũε such that un → ũε in H1(R3). Then 
I ′ε(ũε) = 0 and Iε(ũε) = cε. By standard arguments, we can further assume that ũε > 0. This ends the 
proof. �
Lemma 5.3. Suppose that 0 < μ < 2, 2 < q < p < 6 −2μ and V, P Q are uniformly continuous. Let uε be the 
positive ground state obtained in Lemma 5.2. Then there is yε ∈ R

3 such that limε→0 C(εyε) = infξ∈R3 C(ξ), 
and for each sequence εyε → y0, vε(x) := uε(x + yε) converges in H1(R3) to a ground state v of

−Δu + V (y0)u =
(∫
R3

P 2(y0)|u(y)|p
|x− y|μ

)
|u|p−2u +

(∫
R3

Q2(y0)|u(y)|q
|x− y|μ

)
|u|q−2u. (5.4)

Proof. Let un be the positive ground states of problem (P)∗ with parameter εn → 0. Since lim supn→∞ cεn <

c∞, as Lemma 2.6 we infer that {un} is bounded in H1(R3). Moreover, since cεn ≥ c(V0, |P |∞, |Q|∞), it is 
easy to see that {un} is non-vanishing. Then there exists δ > 0 such that

∫
B1(yn)

|un(x)|2 ≥ δ. (5.5)

Setting vn(x) = un(x +yn), Ṽεn(x) = V (εn(x +yn)) and P̃εn(x) = P (εn(x +yn)), and Q̃εn(x) = Q(εn(x +yn)), 
we see that vn solves the below problem

−Δu + Ṽεn(x)u =
(∫
R3

P̃εn(y)|u(y)|p
|x− y|μ

)
P̃εn(x)|u|p−2u +

(∫
R3

Q̃εn(y)|u(y)|q
|x− y|μ

)
Q̃εn(x)|u|q−2u.

Since {vn} is also bounded in H1(R3), from (5.5), we may assume that vn ⇀ v �= 0 in H1(R3).



170 F. Zhang, H. Zhang / J. Math. Anal. Appl. 465 (2018) 159–174
Claim 1. The sequence {εnyn} must be bounded.
Otherwise if εnyn → ∞, then V (εnyn) → V∞, P (εnyn) → P∞ and Q(εnyn) → Q∞. Since V , P and Q

are uniformly continuous functions, it follows that for R > 0 and |x| ≤ R,

|Ṽεn(x) − V∞| ≤ |V (εn(x + yn)) − V (εnyn)| + |V (εnyn) − V∞| → 0.

Similarly,

|P̃εn(x) − P∞| → 0, |Q̃εn(x) −Q∞| → 0, ∀|x| ≤ R.

Then for each η ∈ C∞
0 (R3), we claim that

∫
R3

Ṽεn(x)vnη →
∫
R3

V∞vη,

∫
R3

∫
R3

P̃εn(y)|vn(y)|p
|x− y|μ P̃εn(x)|vn|p−2vnη →

∫
R3

∫
R3

P 2
∞|v(y)|p
|x− y|μ |v|p−2vη,

∫
R3

∫
R3

Q̃εn(y)|vn(y)|p
|x− y|μ Q̃εn(x)|vn|p−2vnη →

∫
R3

∫
R3

Q2
∞|v(y)|p
|x− y|μ |v|p−2vη .

(5.6)

Below we only prove the second limit of (5.6) since the others can be similarly obtained. Note that

∫
R3

∫
R3

P̃εn(y)|vn(y)|p
|x− y|μ P̃εn(x)|vn|p−2vnη −

∫
R3

∫
R3

P 2
∞|v(y)|p
|x− y|μ |v|p−2vη

=
∫
R3

∫
R3

P̃εn(y)|vn(y)|p − P∞|v(y)|p
|x− y|μ P̃εn(x)|vn|p−2vnη

+
∫
R3

∫
R3

P∞|v(y)|p
|x− y|μ

(
P̃εn(x)|vn|p−2vnη − P∞|v|p−2vη

)

:= I1 + I2.

For I1, since vn(x) → v(x) a.e. in R3, then for any x ∈ R
3, P̃εn(x)|vn|p → P∞|v|p, therefore P̃εn(x)|vn|p

converges weakly to P∞|v|p in L
6

6−μ (R3). Using the Hardy–Littlewood–Sobolev inequality we know the 
convolution term

1
|x|μ ∗ w(x) ∈ L

6
μ (R3)

for all w ∈ L
6

6−μ (R3). Then
∫
R3

P̃εn(y)|vn(y)|p
|x− y|μ ⇀

∫
R3

P∞|v(y)|p
|x− y|μ in L

6
μ (R3).

Since |v|p−2vη ∈ L
6

6−μ (R3), we infer that I1 → 0. Observe that P̃εn(x)|vn|p−2vn → P∞|v|p−2v in 

L
6

6−μ · p
p−1

loc (R3). Then

I2 ≤ C|vn|p· 6
6−μ

∣∣∣P̃εn(x)|vn|p−2vn − P∞|v|p−2v
∣∣∣

6
6−μ · p

p−1 ,Ω
|η|p· 6

6−μ
→ 0,

where Ω = suppη. Thus, from (5.6) v solves
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−Δu + V∞u =
(∫
R3

P 2
∞|u(y)|p
|x− y|μ

)
|u|p−2u +

(∫
R3

Q2
∞|u(y)|q
|x− y|μ

)
|u|q−2u.

Therefore,

c∞ ≤ I∞(v) − 1
2q 〈I

′
∞(v), v〉

=
(1

2 − 1
2q

)(
|∇v|22 +

∫
R3

V∞v2
)

+
( 1

2q − 1
2p

)∫
R3

∫
R3

P 2
∞|v(y)|q
|x− y|μ |v|q

≤ lim inf
n→∞

(1
2 − 1

2q

)(
|∇vn|22 +

∫
R3

Ṽεn(x)v2
n

)
+
( 1

2q − 1
2p

)∫
R3

∫
R3

P̃εn(y)|vn(y)|q
|x− y|μ P̃εn(x)|vn|q

= lim inf
n→∞

[Ĩεn(vn) − 1
2q 〈Ĩ

′
εn(vn), vn〉]

= lim inf
n→∞

[Iεn(un) − 1
2q 〈I

′
εn(un), un〉] = lim inf

n→∞
cεn .

(5.7)

This contradicts with lim supn→∞ cεn < c∞. Hence {εnyn} is bounded and we suppose that εnyn → y0.
Claim 2. C(y0) = infξ∈R3 C(ξ), and vn converges strongly to v in H1(R3).
In fact, following the proof of Claim 1, we know that v is a solution of the equation (5.4). Moreover, as 

(5.7) we have

C(y0) ≤ Iy0(v) −
1
2q 〈I

′
y0

(v), v〉

=
(1

2 − 1
2q

)(
|∇v|22 +

∫
R3

V (y0)v2
)

+
( 1

2q − 1
2p

)∫
R3

∫
R3

P 2(y0)|v(y)|q
|x− y|μ |v|q

≤ lim inf
n→∞

(1
2 − 1

2q

)(
|∇vn|22 +

∫
R3

Ṽεn(x)v2
n

)
+
( 1

2q − 1
2p

)∫
R3

∫
R3

P̃εn(y)|vn(y)|q
|x− y|μ P̃εn(x)|vn|q

= lim inf
n→∞

cεn .

(5.8)

By Lemma 5.1, we know that lim supn→∞ cεn ≤ infξ∈R3 C(ξ). Then

inf
ξ∈R3

C(ξ) = C(y0) = lim
n→∞

cεn .

Using (5.8) we have that

lim
n→∞

∫
R3

(
|∇vn|2 + Ṽεn(x)|vn|2

)
=

∫
R3

(
|∇v|2 + V (y0)v2

)
,

which yields that vn → v in H1(R3). In addition, form (5.8) we know that Iy0(v) = C(y0). So v is a ground 
state of the equation (5.4). �
Lemma 5.4. Assume that 0 < μ < 2, 2 < q < p < 6 − 2μ and V, P, Q are uniformly continuous. Set 
vn := un(x + yn), where un is the positive ground state obtained in Lemma 5.2 and yn is given in (5.5). 
Then:

(i) there exist δ′ and M > 0 such that δ′ ≤ |vn|∞ ≤ M for all n ∈ N.
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(ii)

lim
|x|→∞

vn(x) = 0 uniformly in n ∈ N.

Moreover, there exist C1, C2 > 0 such that

vn(x) ≤ C1e
−C2|x|, ∀x ∈ R

3.

Proof. As in the proof of Lemma 5.3, we have that vn is the solution of

−Δu + Ṽεn(x)u =
(∫
R3

P̃εn(y)|u(y)|p
|x− y|μ

)
P̃εn(x)|u|p−2u +

(∫
R3

Q̃εn(y)|u(y)|q
|x− y|μ

)
Q̃εn(x)|u|q−2u,

and vn → v �= 0 in H1(R3). Then

lim
R→∞

∫
|x|≥R

(v2
n + v6

n) = 0, uniformly for n ∈ N. (5.9)

Denote

K̃n(x) :=
∫
R3

P̃εn(y)|vn(y)|p
|x− y|μ , ˜̃Kn(x) :=

∫
R3

Q̃εn(y)|vn(y)|q
|x− y|μ .

As (4.1), there exists C > 0 such that |K̃n|∞, | ˜̃Kn|∞ ≤ C for all n ∈ N. Using [12, Proposition 3.3], we get 
that vn ∈ Lt(R3) for all t ≥ 2. Then for t = 12

3−μ > 3, vp−1
n , vq−1

n ∈ L
t
2 (R3) for all n. Note that

−Δvn ≤ K̃n(x)P̃εn(x)|vn|p−2vn + ˜̃Kn(x)Q̃εn(x)|vn|q−2vn.

Thus by [11, Theorem 8.17], we infer that for all y ∈ R
3,

sup
B1(y)

vn(x) ≤ C
(
|vn|L2(B2(y)) + |vp−1

n |
L

t
2 (B2(y))

+ |vq−1
n |

L
t
2 (B2(y))

)
. (5.10)

Hence |vn|∞ is uniformly bounded. Recall that by (5.5),

δ ≤
∫

B1(yn)

|un(x)|2 ≤ |B1||vn|2∞.

Then |vn| ≥ δ′, for all n. Moreover, by (5.9) we get

lim
|x|→∞

vn(x) = 0 uniformly for all n ∈ N.

Then we can take ρ0 > 0 such that

K̃n(x)P̃εn(x)|vn|p−2vn ≤ V0

4 vn,
˜̃Kn(x)Q̃εn(x)|vn|q−2vn ≤ V0

4 vn,

for all |x| > ρ0. Thus,

−Δvn + Ṽεn(x)
vn ≤ V0

vn − Ṽεn(x)
vn ≤ 0,
2 2 2
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for all |x| ≥ ρ0. Let s and T be positive constants such that s2 < V0
2 and vn(x) ≤ Te−sρ0 , for all |x| = ρ0. 

Hence, the function ψ(x) = Te−s|x| satisfies

−Δψ + Ṽεn(x)
2 ψ ≥ (V0

2 − s2)ψ > 0,

for all x �= 0. Thereby, taking η = max{vn − ψ, 0} ∈ H1
0 (|x| > ρ0) as a test function, we have

0 ≥
∫
R3

(
∇vn∇η + Ṽεn(x)

2 vnη
)

≥
∫
R3

(
(∇vn −∇ψ)∇η + Ṽεn(x)

2 (vn − ψ)η
)

≥ V0

2

∫
{x∈R3:vn>ψ}

(vn − ψ)2 ≥ 0,

for all |x| > ρ0. Therefore, the set Ωn := {x ∈ R
3 : |x| > ρ0 and vn > ψ(x)} is empty. Then we know that 

there exists C1, C2 > 0 such that

vn(x) ≤ C1e
−C2|x|, ∀x ∈ R

3.

This ends the proof. �
Proof of Theorem 1.1. Going back to the equation (1.4) with the variable substitution: x �→ x

ε , Lemma 5.2
implies that (1.4) has a positive ground state wε = uε(xε ) for ε > 0 small. Set εn → 0 as n → ∞. If bn
denotes a maximum point of vn, then from Lemma 5.4, it follows that it is bounded. Then we assume that 
bn ∈ BR(0). Thereby, the global maximum point of un is zn := bn+yn and then xn := εnzn is the maximum 
point of wn. From the boundedness of bn, by Lemma 5.3 we get that limn→∞ xn = y0, which together with 
Lemma 3.2 gives

lim
n→∞

C(xn) = C(y0) = inf
ξ∈R3

C(ξ).

Then from Lemma 5.3, the proof of the conclusion (2) (i) in Theorem 1.1 is completed. Moreover, from 
Lemma 5.4, by the boundedness of bn we get

wn(x) = un( x
εn

) = vn( x
εn

− yn) = vn( x
εn

− xn

εn
− bn) ≤ C1e

−C2| x
εn

−xn
εn

−bn| ≤ C1e
−C2

εn
|x−xn|.

Thus, for small ε > 0, we have that

wε(x) ≤ C1e
−C2

ε |x−xε|.
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