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New criteria to determine the monotonicity of the ratio of two Abelian integrals are 
given. When two Abelian integrals have the forms 

∫
Γh

f1(x)ydx and 
∫
Γh

f2(x)ydx
or the forms 

∫
Γh

f1(x)
y

dx and 
∫
Γh

f2(x)
y

dx and Γh are ovals belonging to the level set 
{(x, y)|H(x, y) = h}, where H(x, y) has the form y2/2 + Ψ(x) or φ(x)y2/2 + Ψ(x), 
we give new criteria, which are defined directly by the functions which appear in the 
above Abelian integrals, and prove that the monotonicity of the criteria implies the 
monotonicity of the ratios of the Abelian integrals. The new criteria are applicable 
in a large class of problems, some of which simplify the existing proofs and some of 
which generalize known results.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

This paper concerns the weakened 16th Hilbert problem on the number of limit cycles of plane differential 
systems, proposed by V. I. Arnold. The problem states as follows.

Consider a polynomial perturbation of a Hamiltonian system

dx

dt
= ∂H(x, y)

∂y
+ εP (x, y), dy

dt
= −∂H(x, y)

∂x
+ εQ(x, y),

where H(x, y), P (x, y) and Q(x, y) are real polynomials. Then the Abelian integral associated to the above 
system is

I(h) =
∫
Γh

P (x, y)dx−Q(x, y)dy, (1)
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along a closed level set Γh ⊂ {(x, y)|H(x, y) = h, h1 < h < h2}, where Γh forms a continuous family of ovals 
as h varies in the open interval (h1, h2). The question one asks is: how large can the number of isolated 
zeros of the function I(h) be in the above open interval when P, Q and H are polynomials whose degrees are 
known? This problem is related to the estimation of the number of limit cycles of the perturbed Hamiltonian 
system. On this theme there have been many excellent works, for example, Binyamini et al. in [4] obtained 
a double exponential upper bound in n on the number of zeros of Abelian integral where degH = n + 1
and degP, Q = n. For more works, we recommend the readers the review papers [14,15] or the book [6].

In this paper we consider the case where

H(x, y) = y2

2 + Ψ(x), (2)

with Ψ(x) ∈ C2(μ, ν), μ, ν ∈ R. In this case, the Abelian integral (1) can be written as

m∑
k=1

αkIk(h),

where α1, α2, · · · , αm are real constants, and the Ik are in the form

Ik(h) =
∫
Γh

fk(x)ydx, k = 1, 2, · · · ,m,

where fk(x) are functions of class C1.
Assume that one of the first two integrals I1(h) and I2(h) is non-vanishing, without loss of generality, 

that is I1(h). We let

u(h) = I2(h)
I1(h) .

Then the monotonicity of the ratio u(h) shows that the Abelian integral (1) has at most one zero if m = 2. 
If m ≥ 2, as a first step, the monotonicity of the ratio u(h) also play an important role in determining the 
number of zeros of the Abelian integral (1). For more details, see [16].

There have been many methods to obtain the monotonicity of the ratio u(h), for example:

(i) using Picard Fuchs equations, see [19,7];
(ii) using Green formula, see [5];
(iii) direct estimation of the integral I2(h)I ′1(h) − I1(h)I ′2(h) by using some technical tools, see [18,21,17].

Each of the above methods can be only used to some special cases, and one has to repeat the whole 
procedure of calculations for each individual problem. In [16], Li and Zhang develop a direct method. 
Concretely, they give a criterion function ξ(x) depending only on f1(x), f2(x), Ψ(x) and prove that the 
monotonicity of ξ(x) implies the monotonicity of u(h). Let us revisit their result.

Consider the Hamiltonian system

ẋ = y, ẏ = −Ψ′(x), (3)

which has the Hamiltonian function H(x, y) in form (2).
Assume that there exists an number a ∈ (μ, ν) such that the following hypothesis is satisfied:

(H1) Ψ′(x)(x− a) > 0, for all x ∈ (μ, ν)\{a}.
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Obviously, (a, 0) is a center of system (3). Without any loss of generality, we can assume a = Ψ(a) = 0 so 
that center is located at the origin and Ψ(x) > 0 for x ∈ (μ, ν)\{0}.

Let Δ = (0, hs) = {h|H(x, y) = h contains an oval} and denote by

Γh = {(x, y) ∈ R
2 |H(x, y) = h, 0 < h < hs}

the compact component of the level curve.
For any h ∈ (0, hs), Γh is a closed orbit. It is easy to see that there exists an involution σ defined in (μ, ν)

such that Ψ(x) = Ψ(σ(x)). Recall that a mapping σ : I → I is an involution if σ2 = Id and σ �= Id. Note 
that here σ(0) = 0 and xσ(x) < 0 for other x ∈ (μ, ν).

Define two Abelian integrals

Ik(h) =
∫
Γh

fk(x)ydx,

where fk(x) ∈ C1(μ, ν) for k = 1, 2.
Assume that the following hypothesis is also satisfied:

(H2) f1(x)f1(σ(x)) > 0, for all x ∈ (0, ν).

Now I1(h) is non-vanishing, then one can consider the ratio of the Abelian integral I2(h) to the Abelian 
integral I1(h).

By using double integral, in [16], Li and Zhang prove the following theorem:

Theorem 1.1. Suppose that the hypotheses (H1) and (H2) are satisfied. Let

u(h) = I2(h)
I1(h) and ξ(x) = f2(x)Ψ′(σ(x)) − f2(σ(x))Ψ′(x)

f1(x)Ψ′(σ(x)) − f1(σ(x))Ψ′(x) . (4)

Then ξ′(x) < 0 (resp. > 0) in (a, ν) implies u′(h) < 0 (resp. > 0).

Remark 1.2. From the proof in [16], it is easy to check that the hypothesis (H2) can be replaced by a weaker 
form

(H2′) f1(x)
Ψ′(x) − f1(σ(x))

Ψ′(σ(x)) > 0, for all x ∈ (0, ν),

and Theorem 1.1 still holds.

Remark 1.3. In fact, in [16], the authors obtained the monotonicity of two Abelian integrals under more 
general setting: the Abelian integrals have the form Ik(h) =

∫
Γh

fk(x)g(y)dx, and H(x, y) has the form 

H(x, y) = Ψ(x) + Φ(y). In other words, Theorem 1.1 is only a special case, that is g(y) = y and Φ(y) = y2

2 , 
of Theorem 1 in [16], but in some sense it is the most important case, all the examples in [16] can be 
transformed to this case.

This method is quite convenient to use, thus it has been used for many times, for example in [9–11], 
to deal with zeros of Abelian integrals. On page 360 of V. I. Arnold’s book [2], the criterion ξ(x) in 
Theorem 1.1 is quoted as a useful tool that “despite its seemingly artificial form, it proves to be working in 
many independently arising particular cases”. But on the other hand, it is only a sufficient condition, thus 
it cannot solve all the cases and sometimes many calculations are needed.
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It is interesting to give a better criterion, which is the aim of the present paper. We shall state and 
prove our new criteria in Section 2. In Section 3, we shall give several applications of our criteria. These 
applications either generalize known results or simplify the proofs of existing results.

2. Main results and proofs

Let notations be as above. We use some idea of [22] and have the following result that gives a new 
criterion for the monotonicity of the ratio of two Abelian integrals.

Theorem 2.1. Suppose that the hypotheses (H1) and (H2′) are satisfied. Let

u(h) = I2(h)
I1(h) and ξ̄(x) =

∫ x

σ(x) f2(t)dt∫ x

σ(x) f1(t)dt
. (5)

Then ξ̄′(x) > 0 (resp. < 0) in (0, ν) implies u′(h) < 0 (resp. > 0).

The next proposition shows that for this particular case, our criterion in Theorem 2.1 is more powerful 
than the criterion in Theorem 1.1 (cf. [16]).

Proposition 2.2. Suppose that the hypotheses (H1) and (H2) are satisfied. Then ξ′(x) > 0 ( resp. < 0) in 
(0, ν) implies ξ̄′(x) > 0 ( resp. < 0) in (0, ν), where ξ(x) and ξ̄(x) have been defined in Theorem 1.1 and 
Theorem 2.1 respectively.

Then, theoretically speaking, for this particular case our method can solve all the cases that Li and 
Zhang’s method can solve, and usually our calculation will be much simpler (see Section 3 for examples).

Moreover Theorem 2.1 in [17] is a special case of our Theorem 2.1, since for f1(x) = 1, f2(x) = x, one 
has ξ̄(x) = 1

2 (x + σ(x)). In other words, Theorem 2.1 also generalizes the results in [17].
For the proof of Theorem 2.1, we introduce two new integrals

Jk(h) =
∫
Γh

gk(x)
y

dx, k = 1, 2,

where gk(x) ∈ C1(μ, ν). For x ∈ (0, ν), we define two functions

Gk(x) = Bσ( gkΨ′ )(x) = gk(x)
Ψ′(x) − gk(σ(x)

Ψ′(σ(x)) .

Here for a given function κ(x), Bσ(κ)(x) = κ(x) − κ(σ(x)) is called as its balance with respect to σ in [13].
We have the following result.

Theorem 2.3. Suppose the hypothesis (H1) and the following hypothesis are satisfied:

(H3) G1(x) > 0, G′
1(x) > 0, x ∈ (0, ν).

Let

v(h) = J2(h)
J1(h) and τ(x) = G2(x)

G1(x) .

Then τ ′(x) > 0 (resp. < 0) in (0, ν) implies v′(h) < 0 (resp. > 0).
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Remark 2.4. When g1(0) = 0, g1(x)
Ψ′(x) is well defined at x = 0, thus G1(0) = 0. Then we only need to verify 

the condition G′
1(x) > 0, which will implies that G(x) > 0.

To state another criterion, we need some new notations. In some problems, the Hamiltonian function has 
the form

H̃(x, y) = Φ(x)y2

2 + Ψ(x), (6)

where Ψ(x), Φ(x) ∈ C2 and Φ(x) > 0. We then consider the following ratio of two integrals

w(h) =
∫
Γ̃h

f2(x)ydx∫
Γ̃h

f1(x)ydx
,

where Γ̃h is the compact component {H̃(x, y) = h}, and f1(x), f2(x) are functions of class C1.
By using the transformation x̃ = x, ỹ =

√
Φ(x)y, and the results above, we can easily obtain the following.

Theorem 2.5. Let H̃(x, y) be as in (6). Suppose that Ψ(x) and f1(x) verify the hypotheses (H1) and (H2). 
Let

ζ(x) =

∫ x

σ(x)
f2(t)√
Φ(t)dt∫ x

σ(x)
f1(t)√
Φ(t)dt

. (7)

Then ζ ′(x) > 0 (resp. < 0) in (0, ν) implies w′(h) < 0 (resp. > 0).

We now give the proofs of our results. Let us first prove Theorem 2.3.

Proof of Theorem 2.3. When x ∈ (0, ν), σ(x) ∈ (μ, 0) and verifies Ψ(x) = Ψ(σ(x)). Hence dσ(x)
dx = Ψ′(x)

Ψ′(σ(x)) .
Let μ(h), ν(h) be the intersection of the curve Γh with the x-axis, then μ < μ(h) ≤ ν(h) < ν. Then for 

k = 1, 2,

Jk(h) = 2
ν(h)∫

μ(h)

gk(x)
y(x;h)dx

= 2
ν(h)∫
0

gk(x) − gk(σ(x)) Ψ′(x)
Ψ′(σ(x))

y(x;h) dx

= 2
ν(h)∫
0

Ψ′(x)Gk(x)
y(x;h) dx.

By the hypothesis (H3), when x ∈ (0, ν), G1(x) > 0, thus J1(h) > 0. To show the monotonicity of the ratio 
of J2 to J1, we only need to prove that for any constant c, the integral

K(h) � J2(h) − cJ1(h) = 2
ν(h)∫
0

Ψ′(x)(G2(x) − cG1(x))
y(x;h) dx

has at most one zero.
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Without loss of generality, we suppose that τ ′(x) > 0, that is, G2(x)
G1(x) is monotone increasing, thus G2(x) −

cG1(x) has at most one zero in (0, ν).
If G2(x) − cG1(x) has no zero, then K(h) has no zero, the proof is finished. Hence we can suppose that 

G2(x) − cG1(x) has exact one zero in (0, ν). Denote this zero by c∗, then we have that G2(x) − cG1(x) < 0
for x ∈ (0, c∗) and G2(x) − cG1(x) > 0 for x ∈ (c∗, ν).

Denote by h∗ = Ψ(c∗), then when h ∈ (0, h∗], ν(h) ≤ c∗, and

K(h) = 2
ν(h)∫
0

Ψ′(x)(G2(x) − cG1(x))
y(x;h) dx < 0,

that is, K(h) has no zero in (0, h∗].
When h > h∗, ν(h) > c∗,

K(h) = 2
c∗∫
0

Ψ′(x)(G2(x) − cG1(x))
y(x;h) dx + 2

ν(h)∫
c∗

Ψ′(x)(G2(x) − cG1(x))
y(x;h) dx

= 2
c∗∫
0

Ψ′(x)(G2(x) − cG1(x))
y(x;h) dx + 2

y(c∗)∫
0

(G2(x(y;h)) − cG1(x(y;h)))dy,

where y(c∗) > 0 satisfies that y
2(c∗)
2 + Ψ(c∗) = h.

From now on, to simplify the denotation, we will denote x and y instead of x(y; h) respectively. Then

K ′(h) = 2
c∗∫
0

−Ψ′(x)(G2(x) − cG1(x))
y2

∂y

∂h
dx + 2(G2(c∗) − cG1(c∗))

dy(c∗)
dh

+2
y(c∗)∫
0

(G′
2(x) − cG′

1(x))∂x
∂h

dy

= 2
c∗∫
0

−Ψ′(x)(G2(x) − cG1(x))
y3 dx + 2

y(c∗)∫
0

G′
2(x) − cG′

1(x)
Ψ′(x) dy

> 2
y(c∗)∫
0

G′
2(x) − cG′

1(x)
Ψ′(x) dy

= 2
ν(h)∫
c∗

G′
2(x) − cG′

1(x)
y

dx.

When x > c∗, G2(x) > cG1(x). On the other hand, τ ′(x) = (G2
G1

)′ > 0, which implies that

G′
2(x) − cG′

1(x) > G2(x)G′
1(x)

G1(x) − cG′
1(x) > cG′

1(x) − cG′
1(x) = 0,

K ′(h) > 2
ν(h)∫
c∗

G′
2(x) − cG′

1(x)
y

dx > 0.

Immediately, K(h) has at most one zero in (h∗, hs).
So K(h) has at most one zero in (0, hs). �
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To prove Theorem 2.1, we need the following lemma proved in [13].

Lemma 2.6. Let Γh be an oval inside the level curve {(x, y) : Ψ(x) + y2

2 = h}. If a function g(x) such that 
g(x)
Ψ′(x) is analytic at x = 0, then

∫
Γh

g(x)
y

dx =
∫
Γh

f(x)ydx,

where f(x) = ( g(x)
Ψ′(x) )

′, or equivalently g(x) = Ψ′(x) 
∫ x

0 f(t)dt.

Proof of Theorem 2.1. In Lemma 2.6, for k = 1, 2, set f(x) = fk(x), then we have

Ik(h) =
∫
Γh

gk(x)
y

dx,

where gk(x) = Ψ′(x) 
x∫

0

fk(t)dt. Then

Gk(x) = gk(x)
Ψ′(x) − gk(σ(x))

Ψ′(σ(x)) =
x∫

0

fk(t)dt−
σ(x)∫
0

fk(t)dt =
x∫

σ(x)

fk(t)dt.

By hypothesis (H2′), f1(x)
Ψ′(x) −

f1(σ(x))
Ψ′(σ(x)) > 0, thus

G′
1(x) = f1(x) − f1(σ(x)) Ψ′(x)

Ψ′(σ(x)) > 0.

Together with that G1(0) = 0, we have that G1(x) > 0 for x ∈ (0, ν). The hypothesis (H3) in Theorem 2.3
is satisfied.

At last, by Theorem 2.3, if ξ̄(x) = G2(x)
G1(x) is monotone, then the ratio of I2(h) to I1(h) is monotone. �

Proof of Proposition 2.2. Denote by Fk(x) = fk(x) − fk(σ(x)) Ψ′(x)
Ψ′(σ(x)) for k = 1, 2. Then ξ and ξ̄, defined 

in (4) and (5) respectively, can be written as

ξ(x) = F2(x)
F1(x) , ξ̄(x) =

∫ x

σ(x) f2(t)dt∫ x

σ(x) f1(t)dt
=

∫ x

0 F2(t)dt∫ x

0 F1(t)dt
.

By the mean value theorem for integrals, there exists δ ∈ (a, x) so that ξ̄(x) = F2(δ)
F1(δ) = ξ(δ), thus

ξ̄′(x) = F1(x)∫ x

0 F1(t)dt
(ξ(x) − ξ̄(x)) = F1(x)∫ x

0 F1(t)dt
(ξ(x) − ξ(δ)).

Since the hypotheses (H1) and (H2) are satisfied, F1(x) and 
∫ x

a
F1(t)dt are both positive, obviously, 

ξ′(x) > 0 (resp. < 0) implies ξ̄′(x) > 0 ( resp. < 0). �
At the end of this section, we introduce two lemmas about the monotonicity of S(x) �= x + σ(x) and 

T (x) �= (x − a)(σ(x) − a), which will be used in the next section. For convenience of application, we do 
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not suppose that a = 0 any more, since the center is not always at (0, 0). The first lemma has been proved 
in [17], but for convenience of readers, we still prove it here, since the denotations in the two papers are 
different.

Lemma 2.7. Let notations as above. Assume that H(x, y) has the form (2) and the hypothesis (H1) is 
satisfied. We further assume that the function Ψ(x) has the following asymptotic relation

(H4) Ψ′(x) ∼ (x− a)2k−1, as x → a,

where k is a natural number. Then S′(x) > 0 (resp. < 0) for x ∈ (a, ν) if η(x) > 0 (resp. < 0) for all 
x ∈ (μ, ν) \ {a}, where

η(x) = (x− a)
(
(2k − 1)

(
Ψ′(x)

) 2k−2
2k−1 − Ψ′′(x)

)
. (8)

Proof. Define a new function

ψ(x) �= 2kΨ(x) −
(
Ψ′(x)

) 2k
2k−1

.

By direct calculation, we have

ψ′(x) = 2k
2k − 1

(
Ψ′(x)

) 1
2k−1

(
(2k − 1)Ψ′(x)

2k−2
2k−1 − Ψ′′(x)

)
.

By the hypothesis (H1), Ψ′(x) has the same sign with (x − a). Thus, ψ′(x) has the same sign with (x −
a)
(
(2k − 1)Ψ′(x)

2k−2
2k−1 − Ψ′′(x)

)
, which is η(x). Without loss of generality, we assume that η(x) > 0 for 

x ∈ (μ, ν) \ {a}. We next verify S′(x) > 0 for x ∈ (a, ν).
When η(x) > 0 for x ∈ (μ, ν) \ {a}, we have that ψ′(x) > 0 as x ∈ (μ, ν) \ {a}. Since x > a > σ(x), we 

obtain that ψ(x) > ψ(σ(x)), that is,

2kΨ(x) − Ψ′(x)
2k

2k−1 > 2kΨ(σ(x)) − Ψ′(σ(x))
2k

2k−1 .

Note that Ψ(x) = Ψ(σ(x)). Hence, Ψ′(x)
2k

2k−1 < Ψ′(σ(x))
2k

2k−1 . This implies that

|Ψ′(x)| < |Ψ′(σ(x))| and S′(x) = 1 + Ψ′(x)
Ψ′(σ(x)) > 0. �

Lemma 2.8. Let notations be as above. Assume that H(x, y) has the form (2) and the hypothesis (H1) is 
satisfied, then T (x) is monotone decreasing in (a, ν).

Proof. By the hypothesis (H1), Ψ′(x) has the same sign with (x − a), then a direct calculation shows

dT (x)
dx = (σ(x) − a) + (x− a) Ψ′(x)

Ψ′(σ(x)) < 0,

which accomplishes the proof. �
3. Applications

We now give several applications of our results of the above section.
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Example 1. We first give an application of Theorem 2.5. Consider

H̃(x, y) = xy2 − x

4 + x3

3 and w(h) =
∫
Γ̃h

xydx∫
Γ̃h

ydx
.

The monotonicity of w(h) was firstly established in [8], then reproved in [16] by verifying their criterion, 
now we will give a simpler proof by using Theorem 2.5.

This system has two centers (±1
2 , 0). By symmetry, we only need to deal with the center (1

2 , 0). In this 
case

a = 1
2 , Φ(x) = 2x, Ψ(x) = −x

4 + x3

3 , f1(x) = 1, f2(x) = x.

The hypotheses (H1) and (H2) are both satisfied, and the involution σ satisfies the condition (x − 1
2 )(σ(x) −

1
2 ) < 0. The criterion function in Theorem 2.5 is

ζ(x) =

∫ x

σ(x)
t√
2tdt∫ x

σ(x)
1√
2tdt

=
x
√
x− σ(x)

√
σ(x)

3(
√
x−

√
σ(x))

=
x + σ(x) +

√
xσ(x)

3 =
S(x) +

√
T (x)

3 .

Recall that S(x) = x + σ(x), T (x) = xσ(x).
From Ψ(x) = Ψ(σ(x)), we obtain

σ2(x) + xσ(x) + x2 = 3
4 , T (x) = S2(x) − 3

4 .

Thus

ζ(x) = S(x) +
√

S2(x) − 3
4 ,

ζ ′(x) =
(
1 + S(x)√

S2(x) − 3
4

)
S′(x) =

(
1 + S(x)√

S2(x) − 3
4

)x2 + σ2(x) − 1
2

σ2(x) − 1
4

.

For x > 1
2 , one has 0 < σ(x) < 1

2 . Hence

3
2(x2 + σ2(x)) > x2 + σ2(x) + xσ(x) = 3

4 ,

x2 + σ2(x) − 1
2 > 0,

which implies that ζ ′(x) < 0 and the function w(h) is monotone.
In [16], it is needed to verify the monotonicity of their criterion function

x
√

σ(x)(σ2(x) − 1
4 ) − σ(x)

√
x(x2 − 1

4 )√
σ(x)(σ2(x) − 1

4 ) −√
x(x2 − 1

4 )
,

which is much more complicate than the criterion function ζ(x) here.
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Example 2. We now come back to the general case where H(x, y) = y2

2 + Ψ(x), and we consider the 

monotonicity of the ratio of the integral 
∫
Γh

xnydx to the integral 
∫
Γh

ydx, where n is a natural number.

Proposition 3.1. Let a = 0 and suppose that the hypotheses (H1) is satisfied. We consider the period annuls 
around (0, 0).

(i) If S(x) = x + σ(x) is monotone increasing in (0, ν), then for each natural number n, 
∫
Γh

xnydx∫
Γh

ydx
is 

monotone increasing.

(ii) If S(x) = x + σ(x) is monotone decreasing in (0, ν), then for each odd n, 
∫
Γh

xnydx∫
Γh

ydx
is monotone 

decreasing, while for each even n, 
∫
Γh

xnydx∫
Γh

ydx
is monotone increasing.

Proof. Without loss of generality, we assume that S(x) = x + σ(x) is monotone increasing, thus S(x) > 0
for x ∈ (0, ν).

Let I1(h) =
∫
Γh

ydx and I2(h) =
∫
Γh

xnydx, then fk(x) defined in Theorem 2.1 are

f1(x) = 1, f2(x) = xn.

Obviously, the hypothesis (H1) and (H2) are satisfied. Denote by

ξn(x) =
(n + 1)

∫ x

σ(x) f2(t)dt∫ x

σ(x) f1(t)dt
= xn + xn−1σ(x) + · · · + σn(x).

By Theorem 2.1, we only need to show that ξ′n(x) > 0 for x ∈ (0, ν).
If n = 1, then ξ1(x) = S(x), it follows that ξ′1(x) > 0.
If n = 2, then

ξ2(x) = x2 + σ2(x) = S2(x) − 2T (x),

where T (x) = xσ(x) < 0 is decreasing, thus

ξ′2(x) = 2S(x)S′(x) − 2T ′(x) > 0.

Suppose that when n = k, k + 1, ξ′n(x) > 0. With the fact that ξn(0) = 0, we have ξn(x) > 0. Then when 
n = k + 2,

ξk+2(x) = S(x)ξk+1(x) − T (x)ξk(x),

ξ′k+2 = S′(x)ξk+1(x) + S(x)ξ′k+1(x) − T ′(x)ξk(x) − T (x)ξ′k(x) > 0.

By induction, for each n, ξ′n(x) > 0. The proof is finished. �
For the examples satisfying that S(x) is monotone, we recommend the readers the paper [17]. Up to our 

knowledge, the above result cannot be obtained by existing method.

Example 3. We now consider the monotonicity of the ratios of the integrals 
∫
Γh

x
ydx to 

∫
Γh

1
ydx. It concerns 

the seventh Arnold’s problem proposed in [1]: for complete hyperelliptic integrals of the first kind
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J(h) =
∫
Γh

α0 + α1x + · · · + αg−1x
g−1

y
dx, H(x, y) = y2 + Ψ(x),

where deg Ψ = 2g+1 or 2g+2 with g ≥ 2, αi are real constants and i = 0, 1, . . . , g−1, is this g-dimensional 
family of J(h) a Chebyshev family in the open interval? Here Chebyshev family means that the number of 
the isolated zeros of J(h) is no more than g − 1.

In [12], Gavrilov and Iliev systematically studied this problem and obtained that for any g > 1, this real 
vector space of J(h) is not Chebyshev in general. They also showed that when g = 2, exceptional families 
of ovals exist, such that the corresponding vector space is Chebyshev. In fact, they proved that when g = 2
and deg Ψ = 5, there exist exceptional families of ovals Γh such that every Abelian integral of the form 
J(h) =

∫
Γh

α0+α1x
y dx is Chebyshev.

Then in [20], Wang and others considered the cases

Ψ′(x) = x3(x− 1), x(x− 1)3, x(x− 2
5)(x− 1)2,

which are all not exceptional families, and prove that the associated integrals J(h) =
∫
Γh

α0+α1x
y dx are all 

Chebyshev. By using similar method, in [3], Asheghi and Bakhshalizadeh obtain the Chebyshev property 
for Ψ′(x) = x3(x −1)3, x5(x −1). Here we will generalize the results in [20] and our proofs are much simpler.

Consider the system

ẋ = −y, ẏ = xb−1(x− 1), (9)

where b > 1. Its first integral has the form

H(x, y) = y2

2 + Ψ(x), Ψ(x) = xb+1

b + 1 − xb

b
+ 1

b(b + 1) .

The integral that we consider is

J(h) =
∫
Γh

α0 + α1x

y
dx.

System (9) has a unique center (1, 0) and the period annulus around (1, 0) is bounded by the homoclinic 
loop {(x, y) | H(x, y) = 1

b(b+1)}, which intersects x-axis at (0, 0) and (1+b
b , 0), that is, μ = 0, ν = 1+b

b . The 
cases b = 4, 6 have been solved in [20,3] respectively, here we have a more general conclusion.

Proposition 3.2. The integral J(h) has at most one zero in (0, 1
b(b+1) ).

Proof. Now a = 1, it is easy to check that the hypothesis (H1) and (H4) are satisfied if we set k = 1. Thus 
η(x) defined in (8) has the form

η(x) = (x− 1)(1 − bxb−1 + (b− 1)xb−2).

Let

l(x) = 1 − bxb−1 + (b− 1)xb−2.

Obviously l′(x) has at most one zero in (0, +∞), so l(x) has at most two zeros in (0, +∞).
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Since b > 1, l(x) ∼ −bxb−1 when x → +∞. So for sufficiently large x, l(x) < 0. On the other hand, when 
x → 0+, l(x) > −bxb−1 + (b − 1)xb−2 ∼ (b − 1)xb−2. Thus, l(x) > 0 for 0 < x � 1. l(x) has the opposite 
signs at the two endpoints of the interval (0, +∞). Hence, the number of zeros of l(x) must be odd in the 
interval (0, +∞). But l(x) has at most two zeros in (0, +∞). This implies that l(x) has exactly one zero in 
(0, +∞).

Notice that l(1) = 0. Consequently, x = 1 is the unique zero of l(x) in (0, +∞). And, η(x) = (x −1)l(x) < 0
for x ∈ (0, +∞) \ {1}. By Lemma 2.7, S(x) = x + σ(x) is monotone decreasing in (1, 1+b

b ), which implies 
that

1 + b

b
< S(x) < 2.

For k = 1, 2, denote by Jk(h) =
∫
Γh

gk(x)
y dx, where g1(x) = 1 − x and g2(x) = 1. Then J(h) =

(α0 +α1)J2(h) −α1J1(h). To finish the proof, we only need to show that the ratio of J2 to J1 is monotone. 
Gk(x) and τ(x) defined in Theorem 2.3 have the forms

G1(x) = 1
σb−1(x) − 1

xb−1 ,

G2(x) = 1
xb−1(x− 1) − 1

σb−1(x)(σ(x) − 1) ,

τ(x) = G2(x)
G1(x) .

Recall that x and σ(x) in the above three formulas satisfy that

0 < σ(x) < 1 < x <
1 + b

b

and Ψ(x) = Ψ(σ(x)), thus

dσ(x)
dx = − Ψ′(x)

Ψ′(σ(x)) = −
Ψ′(x)(Ψ(σ(x)) − 1

b(b+1) )
Ψ′(σ(x))(Ψ(x) − 1

b(b+1) )
= (x− 1)(bσ(x) − b− 1)σ(x)

x(σ(x) − 1)(bx− b− 1) .

Since b > 1, obviously G1(x) > 0 and

G′
1(x) = ∂G1

∂σ(x)
dσ(x)

dx + ∂G1

∂x
= − (b− 1)(x− 1)(bσ(x) − b− 1)

(σ(x) − 1)(bx− b− 1)xσb−3(x) + b− 1
xb−2 > 0.

The hypothesis (H3) is satisfied.
Rewrite τ(x) as τ(x) = τ1(x)τ2(x) where

τ1(x) = − 1
(x− 1)(σ(x) − 1) , τ2(x) = b(x− 1)(σ(x) − 1) + 1

b(x + σ(x)) − (b + 1) .

By Lemma 2.8, T (x) = (x − 1)(σ(x) − 1) is decreasing. On the other hand, when x → 1, σ(x) → 1, 
T (x) → 0; and x → b+1

b , σ(x) → 0, T (x) → −1
b , hence

−1
b
< T (x) < 0.

Immediately, we have that τ1(x), τ2(x) > 0 and τ ′1(x) < 0. Furthermore,

τ ′2(x) = ∂τ2 dσ(x) + ∂τ2 = bσ(x)(bσ(x) − b− 1)(x + σ(x) − 2)
2 < 0.
∂σ(x) dx ∂x (σ(x) − 1)(b(x + σ(x)) − (b + 1))
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Hence

τ ′(x) = τ ′1(x)τ2(x) + τ1(x)τ ′2(x) < 0,

which implies that the ratio of J2 to J1 is monotone. �
Example 4. Consider the system

ẋ = −y, ẏ = x2m−1(1 − x), (10)

where m is a natural number. Its first integral has the form

H(x, y) = y2

2 + Ψ(x), Ψ(x) = x2m

2m − x2m+1

2m + 1 .

The Abelian integral that we consider is

J(h) =
∫
Γh

α0 + α1x

y
dx.

System (10) has a unique degenerate center (0, 0) and the period annulus around (0, 0) is bounded by the 
homoclinic loop {(x, y)|H(x, y) = 1

2m(2m+1)}, which intersects x-axis at (1, 0) and (μ, 0), where μ < 0 is the 

only negative root of Ψ(x) = 1
2m(2m+1) . The cases m = 2, 3 have been solved in [20,3]. Here we generalize 

their results by applying our method in the above section.

Proposition 3.3. The integral J(h) has at most one zero in (0, 1
2m(2m+1) ).

Proof. Let I(h) = hJ(h) and we will show that I(h) has at most one zero in (0, 1
2m(2m+1) ).

For k = 1, 2, denote by Ik(h) = h 
∫
Γh

xk−1

y dx. By using Lemma 2.6,

I1(h) =
∫
Γh

y2

2 + Ψ(x)
y

dx =
∫
Γh

(1
2 + ( Ψ(x)

Ψ′(x) )′
)
ydx =

∫
Γh

f1(x)ydx,

I2(h) =
∫
Γh

x(y
2

2 + Ψ(x))
y

dx =
∫
Γh

(x2 + (xΨ(x)
Ψ′(x) )′)ydx =

∫
Γh

f2(x)ydx,

where

f1(x) = m(2m + 3)x2 − 2m(2m + 3)x + (m + 1)(2m + 1)
2((x− 1)2(2m + 1)m) ,

f2(x) = x(m(2m + 5)x2 + (−4m2 − 10m− 1)x + (m + 2)(2m + 1))
2((x− 1)2(2m + 1)m) .

Since the discriminant of m(2m +3)x2−2m(2m +3)x +(m +1)(2m +1) is negative, m(2m +3)x2−2m(2m +
3)x + (m + 1)(2m + 1) is positive for x ∈ R, f1(x) > 0, for all x ∈ (μ, 1). The hypothesis (H2) is satisfied. 
ξ̄(x), defined in Theorem 2.1, is

ξ̄(x) = S(x) (1 + 1 + 2mU(x)
2 ) − T (x)

2 ,
2 1 + U(x)(2m + 3m) 1 + U(x)(2m + 3m)
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where

S(x) = x + σ(x), T (x) = xσ(x), U(x) = (x− 1)(σ(x) − 1).

Similar to Example 3, one can show that S′(x) > 0, T ′(x) < 0 for x ∈ (0, 1). On the other hand, when 
x = 0, σ(x) = 0, S(0) = T (0) = 0, hence S(x) > 0, T (x) < 0 for x ∈ (0, 1). Furthermore, U(x) > 0 and 
U ′(x) = T ′(x) − S′(x) < 0.

At last,

( 1 + 2mU(x)
1 + U(x)(2m2 + 3m)

)′
= − m(2m + 1)U ′(x)

(1 + U(x)(2m2 + 3m))2 > 0,

( T (x)
1 + U(x)(2m2 + 3m)

)′
= T ′(x)

1 + U(x)(2m2 + 3m) − (2m2 + 3m)T (x)U ′(x)
(1 + U(x)(2m2 + 3m))2 < 0,

so ξ̄′(x) > 0, the ratio of the integrals of I2 to I1 is monotone, I(h) = hJ(h) has at most one zero in 
(0, 1

2m(2m+1) ). �
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