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NEW INTEGRAL REPRESENTATIONS FOR THE FOX-WRIGHT FUNCTIONS

AND ITS APPLICATIONS

KHALED MEHREZ

Abstract. Our aim in this paper is to derive several new integral representations for the Fox–Wright
functions. In particular, we give new Laplace and Stieltjes transforms for this special function under
some restrictions on parameters. From the positivity conditions on the weight in these representations,

we found sufficient conditions to be imposed on the parameters of the Fox–Wright functions which allow
us to conclude that it is completely monotonic. As applications, we derive a class of functions that are
related to the Fox H-functions and are positive definite. Moreover, we extended the Luke’s inequalities
and we establish new Turán type inequalities for the Fox-Wright function. Finally, by appealing to each
of the Luke’s inequalities, two sets of two–sided bounding inequalities for the generalized Mathieu’s type
series are proved.

1. Introduction

In this paper, we use the Fox-Wright generalized hypergeometric function pΨq[.] with p numerator
parameters α1, ..., αp and q denominator parameters β1, ..., βq, which are defined by [39, p. 4, Eq. (2.4)]

(1.1) pΨq

[(α1,A1),...,(αp,Ap)

(β1,B1),...,(βq,Bq)

∣∣∣z] = pΨq

[(αp,Ap)

(βq,Bq)

∣∣∣z] = ∞∑
k=0

∏p
i=1 Γ(αl + kAl)∏q
j=1 Γ(βl + kBl)

zk

k!
,

(
αi, βj ∈ C, and Ai, Bj ∈ R

+ (i = 1, ..., p, j = 1, ..., q)
)
,

where, as usual,

N = {1, 2, 3, ...} , N0 = N ∪ {0} ,
R, R+ and C stand for the sets of real, positive real and complex numbers, respectively. The convergence
conditions and convergence radius of the series at the right-hand side of (1.1) immediately follow from
the known asymptotic of the Euler Gamma–function. The defining series in (1.1) converges in the whole
complex z-plane when

(1.2) Δ =

q∑
j=1

Bj −
p∑

i=1

Ai > −1.

If Δ = −1, then the series in (1.1) converges for |z| < ρ, and |z| = ρ under the condition �(μ) > 1
2 , (see

[17] for details), where

(1.3) ρ =

(
p∏

i=1

A−Ai
i

)⎛⎝ q∏
j=1

B
Bj

j

⎞
⎠ , μ =

q∑
j=1

βj −
p∑

k=1

αk +
p− q

2

If, in the definition (1.1), we set

A1 = ... = Ap = 1 and B1 = ... = Bq = 1,

we get the relatively more familiar generalized hypergeometric function pFq[.] given by

(1.4) pFq

[
α1,...,αp

β1,...,βq

∣∣∣z] =
∏q

j=1 Γ(βj)∏p
i=1 Γ(αi)

pΨq

[(α1,1),...,(αp,1)

(β1,1),...,(βq ,1)

∣∣∣z]
The Fox-Wright function appeared recently as a fundamental solutions of diffusion-like equations

containing fractional derivatives in time of order less than 1. In the physical literature, such equations
are in general referred to as fractional sub-diffusion equations, since they are used as model equations
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2 K. MEHREZ

for the kinetic description of anomalous diffusion processes of slow type, characterized by a sub-linear
growth of the variance (the mean squared displacement) with time (see for example [22]).

The H-function was introduced by Fox in [11] as a generalized hypergeometric function defined by an
integral representation in terms of the Mellin-Barnes contour integral

Hm,n
q,p

(
z
∣∣∣(Bq,βq)

(Ap,αp)

)
= Hm,n

q,p

(
z
∣∣∣(B1,β1),...,(Bq,βq)

(A1,α1),...,(Ap,αp)

)

=
1

2iπ

∫
L

∏m
j=1 Γ(Ajs+ αj)

∏n
j=1 Γ(1− βj −Bjs)∏q

j=n+1 Γ(Bks+ βk)
∏p

j=m+1 Γ(1− αj −Ajs)
z−sds.

(1.5)

Here L is a suitable contour in C and z−s = exp(−s log |z|+ i arg(z)), where log |z| represents the natural
logarithm of |z| and arg(z) is not necessarily the principal value.

The definition of the H-function is still valid when the Ai’s and Bj ’s are positive rational numbers.
Therefore, the H-function contains, as special cases, all of the functions which are expressible in terms
of the G–function. More importantly, it contains the Fox-Wright generalized hypergeometric function
defined in (1.1), the generalized Mittag-Leffler functions, etc. For example, the function pΨq[.] is one of
these special case of H-function. By the definition (1.1) it is easily extended to the complex plane as
follows [18, Eq. 1.31],

(1.6) pΨq

[(αp,Ap)

(βq,Bq)

∣∣∣z] = H1,q
p,q+1

(
−z
∣∣∣(Ap,1−αp)

(0,1),(Bq,1−βq)

)
.

The representation (1.6) holds true only for positive values of the parameters Ai and Bj .
The special case for which the H-function reduces to the Meijer G-function is when A1 = ... = Ap =

B1 = ... = Bq = A, A > 0. In this case,

(1.7) Hm,n
q,p

(
z
∣∣∣(Bq,βq)

(Ap,αp)

)
=

1

A
Gm,n

p,q

(
z1/A

∣∣∣Bq

αp

)
.

Additionally, when setting Ai = Bj = 1 in (1) (or A = 1 in (1.7)), the H- and Fox-Wright functions turn
readily into the Meijer G-function.

Each of the following definitions will be used in our investigation.

A real valued function f, defined on an interval I, is called completely monotonic on I, if f has
derivatives of all orders and satisfies

(1.8) (−1)nf (n)(x) ≥ 0, n ∈ N0, and x ∈ I.

The celebrated Bernstein Characterization Theorem gives a necessary and sufficient condition that the
function f should be completely monotonic for 0 < x < ∞ is that

(1.9) f(x) =

∫ ∞

0

e−xtdμ(t),

where μ(t) is non-decreasing and the integral converges for 0 < x < ∞.
A function f is said to be absolutely monotonic on an interval I, if f has derivatives of all orders and

satisfies

f (n)(x) ≥ 0, x ∈ I, n ∈ N0.

A positive function f is said to be logarithmically completely monotonic on an interval I if its logarithm
log f satisfies

(1.10) (−1)n(log f)(n)(x) ≥ 0, n ∈ N, and x ∈ I.

In [4, Theorem 1.1] and [13, Theorem 4], it was found and verified once again that a logarithmically
completely monotonic function must be completely monotonic, but not conversely.

An infinitely differentiable function f : I −→ [0,∞) is called a Bernstein function on an interval I, if
f ′ is completely monotonic on I. The Bernstein functions on (0,∞) can be characterized by [31, Theorem
3.2] which states that a function f : (0,∞) −→ [0,∞) is a Bernstein function if and only if it admits the
representation

(1.11) f(x) = a+ bx+

∫ ∞

0

(1− e−xt)dμ(t),
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where a, b ≥ 0 and μ is a measure on (0,∞) satisfying
∫∞
0

min{1, t}dμ(t) < ∞. The formula (6) is called
the Lévy–Khintchine representation of f. In [7, pp.161–162, Theorem 3] and [31, Proposition 5.25], it was
proved that the reciprocal of a Bernstein function is logarithmically completely monotonic.

In [31, Definition 2.1], it was defined that a Stieltjes transform is a function f : (0,∞) −→ [0,∞)
which can be written in the following form:

(1.12) f(x) =
a

x
+ b+

∫ ∞

0

dμ(t)

t+ x
,

where a, b are non-negative constant and μ is a non-negative measure on (0,∞) such that the integral∫∞
0

dμ(t)
t+1 < ∞. In [4, Theorem 2.1] it was proved that a positive Stieltjes transform must be a logarith-

mically completely monotonic function on (0,∞), but not conversely. We define S to be the class of
functions representable by (1.12). Functions representable in one of the forms

(1.13) f(z) = a+

∫ ∞

0

dμ(t)

(z + t)α
=

b

zα
+

∫ ∞

0

dν(t)

(1 + zt)α
,

are known as generalized Stieltjes functions of order α. Here, α > 0, μ and ν are non-negative measures
supported on [0,∞), a, b ≥ 0 are constants and we always choose the principal branch of the power func-
tion. The measures μ and ν are assumed to produce convergent integrals (1.13) for each z ∈ C \ (−∞, 0].
We denote by Sα to be the class of functions representable by (1.13).

The present sequel to some of the aforementioned investigations is organized as follows. In Section
2, we derive the Laplace integral representations for the Fox H-function Hp,0

q,p and for the Fox-Wright
function pΨq. We give a numbers of consequences, some monotonicity and log-convexity properties for
the Fox-Wright function are researched, and an Turán type inequality are proved. In Section 3, we find
the generalized Stieltjes transform representation of the Fox-Wright function p+1Ψp. As applications, we
present some class of completely monotonic functions related to the Fox-Wright function. In addition,
we deduce new Turán type inequalities for this special function. In Section 4, some further applications
are proved, firstly, a class of positive definite function related to the Fox H-function are given. As
consequences, we find the non-negativity for a class of function involving the Fox H-function. Next, we
show that the Fox-Wright function pΨq[z] has no real zeros and all its zeros lie in the open right half
plane �(z) > 0. Moreover, two-sided exponential inequalities for the Fox-Wright function are given, in
particular, we gave a generalization of Luke’s inequalities. Finally, by appealing to each of these two-sided
exponential inequalities, two sets of two-sided bounding inequalities for generalized Mathieu’s type series
are proved.

2. Laplace transform representation and completely monotonic functions for the

Fox-Wright functions

In the first main result we will need a particular case of Fox’s H-function defined by

(2.14) Hp,0
q,p

(
z
∣∣∣(Bq,βq)

(Ap,αp)

)
=

1

2iπ

∫
L

∏p
j=1 Γ(Ajs+ αj)∏q
k=1 Γ(Bks+ βk)

z−sds,

where Aj , Bk > 0 and αj , βk are real. The contour L can be either the left loop L− starting at −∞+ iα
and ending at −∞+ iβ for some α < 0 < β such that all poles of the integrand lie inside the loop, or the
right loop L+ starting ∞+ iα at and ending ∞+ iβ and leaving all poles on the left, or the vertical line
Lic, �(z) = c, traversed upward and leaving all poles of the integrand on the left. Denote the rightmost
pole of the integrand by γ :

γ = min
1≤j≤p

(αj/Aj).

Existence conditions of Fox’s H-function under each choice of the contour L have been thoroughly con-
sidered in the book [18]. Let z > 0 and under the conditions:

p∑
j=1

Aj =

q∑
k=1

Bk, ρ ≤ 1,

we get that the function Hp,0
q,p (z) exists by means of [18, Theorem 1.1], if we choose L = L+ or L = Lic

under the additional restriction μ > 1. Only the second choice of the contour ensures the existence of the
Mellin transform of Hp,0

q,p (z), see [18, Theorem 2.2]. In [15, Theorem 6], the author extend the condition
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μ > 1 to μ > 0 and proved that the function Hp,0
q,p (z) is a compact support.

In the course of our investigation, one of the main tools is the following result providing the Laplace
transform of the Fox’s H-function z−1Hp,0

q,p (z).

Theorem 1. Suppose that μ > 0, γ ≥ 1, and
∑p

j=1 Aj =
∑q

k=1 Bk. Then, the following integral
representation

(2.15) pΨq

[(αp,Ap)

(βq,Bq)

∣∣∣z] = ∫ ρ

0

eztHp,0
q,p

(
t
∣∣∣(Bq,βq)

(Ap,αp)

)
dt

t
, (z ∈ R),

hold true. Moreover, the function

z 	→ pΨq

[(αp,Ap)

(βq,Bq)

∣∣∣− z
]

is completely monotonic on (0,∞), if and only if, the function Hp,0
q,p (z) is non-negative on (0, ρ).

Proof. Upon setting k = s, k ∈ N0 in the Mellin transform for the Fox’s H-function Hp,0
q,p (z) [15, Theorem

6]:

(2.16)

∏p
i=1 Γ(Ais+ αi)∏q
k=1 Γ(Bks+ βk)

=

∫ ρ

0

Hp,0
q,p

(
t
∣∣∣(Bq,βq)

(Ap,αp)

)
ts−1dt, �(s) > γ,

we get

pΨq

[(αp,Ap)

(βq,Bq)

∣∣∣z] = ∞∑
k=0

∏p
i=1 Γ(Aik + αi)z

k

k!
∏q

j=1 Γ(Bjk + βj)

=
∞∑
k=0

∫ ρ

0

Hp,0
q,p

(
t
∣∣∣(Bq,βq)

(Ap,αp)

)
(zt)k

k!

dt

t

=

∫ ρ

0

Hp,0
q,p

(
t
∣∣∣(Bq,βq)

(Ap,αp)

)( ∞∑
k=0

(zt)k

k!

)
dt

t

=

∫ ρ

0

eztHp,0
q,p

(
t
∣∣∣(Bq,βq)

(Ap,αp)

)
dt

t
.

For the exchange of the summation and integration, we use the asymptotic relation [18, Theorem 1.2,
Eq. 1.94]

(2.17) Hm,n
q,p (z) = θ(zγ), |z| −→ 0.

Now, suppose that the function is completely monotonic on (0,∞), therefore by means of Bernstein Char-
acterization Theorem and using the fact of the uniqueness of the measure with given Laplace transform
(see [38, Theorem 6.3]), we deduce that Hp,0

q,p (z) is non-negative on (0, ρ), which evidently completes the
proof of Theorem 1. �

We next calculate the finite Laplace transform of several special functions. In the following example,
we present the finite Laplace transform of the function

ta2−2(1− t)b1+b2−1

Γ(b1 + b2)
2F1

[
a2+b2−a1,b1
b1+b2

∣∣1− z
]
.

Example 1. Suppose that a1, a2 > 1 and b1, b2 > 0. Then the following identity holds:∫ 1

0

ezt
ta2−2(1− t)b1+b2−1

Γ(b1 + b2)
2F1

[
a2+b2−a1,b1

b1+b2

∣∣1− t
]
dt = 2Ψ2

[ (a1−1,1),(a2−1,1)

(a1+b1−1,1),(a2+b2−1,1)

∣∣∣z]

=
Γ(a1 − 1)Γ(a2 − 1)

Γ(a1 + b1 − 1)Γ(a2 + b2 − 1)

× 2F2

[
a1−1,a2−2

a1+b1−1,a2+b2−1

]
.

(2.18)

In particular, the following formula∫ 1

0

eztta−1
2F1

[
2/3,1/3

1

∣∣1− t
]
dt = 2Ψ2

[ (a,1),(a,1)

(a+1/3,1),(a+2/3,1)

∣∣∣z]

=
Γ2(a)

Γ(a+ 1/3)Γ(a+ 2/3)
2F2

[
a, a

a+ 1
3 ,a+

2
3

]
.

(2.19)
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is valid for all a > 0. Indeed, we combined the following formula [18, Eq. (1.142)]

(2.20) H2,0
2,2

(
t
∣∣∣(a1+b1−1,1),(a2+b2−1,1)

(a1−1,1),(a2−1,1)

)
=

ta2−1(1− t)b1+b2−1

Γ(b1 + b2)
2F1

[
a2+b2−a2,b1
b1+b2

∣∣1− t
]

with (2.15) we get (2.18).

Example 2. Keeping (2.15) and the formula [18, Eq. (1.143)] in mind, we arrive at

(2.21)
1√
π

∫ ∞

0

etztα−1(1− t)−
1
2 dt = 1Ψ1

[
(α,1)

(α+ 1
2 ,1)

|z
]
.

Example 3. The four parameters Wright function is defined by the series (in the case it is a convergent
one)

(2.22) φ ((μ, a), (ν, b); z) =
∞∑
k=0

zk

Γ(a+ kμ)Γ(b+ kν)
, μ, ν ∈ R, a, b ∈ C.

The series from the right-hand side of (2.22) is absolutely convergent for all z ∈ C if μ + ν > 0. If
μ + ν = 0, the series is absolutely convergent for |z| < |μ|μ|ν|ν and z| = |μ|μ|ν|ν under the condition
�(a+ b) > 2. Some of the basic properties of the four parameters Wright function was proved in [20]. So,
by means of Theorem 1 we deduce that the four parameters Wright function φ ((μ, a), (ν, b); z) possess the
following integral representation:

(2.23) φ ((μ, a), (ν, b); z) =

∫ μμνν

0

eztH1,0
2,1

[
t
∣∣∣(μ,a),(ν,b)
(1,1)

]
dt

t
,

where a, b, μ and ν be a real number such that μ+ ν = 1 and a+ b > 3/2.

Corollary 1. Suppose that the hypotheses of Theorem 1 are satisfied. We define the sequence (ψn,m)n,m≥0

by

ψn,m =

∏p
i=1 Γ(αi + (n+m)Ai)∏q
j=1 Γ(βj + (n+m)Bj)

, n,m ∈ N0.

If (Hn
1 ) : ψn,2 < ψn,1 and ψ2

n,1 < ψn,0ψn,2, for all n ∈ N0, then the function

z 	→ pΨq

[(αp,Ap)

(βq,Bq)

∣∣∣− z
]

is completely monotonic on (0,∞), and consequently, the function Hp,0
q,p (z) is non-negative on (0, ρ).

Proof. In [28, Theorem 4], the authors proved that the function pΨq

[(αp,Ap)

(βq,Bq)

∣∣∣z] satisfying the following

inequality

(2.24) ψ0,0e
ψ0,1ψ

−1
0,0|z| ≤ pΨq

[(αp,Ap)

(βq,Bq)

∣∣∣z] ≤ ψ0,0 − ψ0,1(1− e|z|), z ∈ R,

if ψ0,1 > ψ0,2 and ψ2
0,1 < ψ0,0ψ0,2. On the other hand, by the left hand side of the above inequalities, we

get for n ≥ 0

(−1)n
dn

dzn
pΨq

[
(αp,Ap)

(βp,Bq)

∣∣∣− z
]
= pΨq

[
(αp+nAp,Ap)

(βq+nBq,Bq)

∣∣∣− z
]
≥ ψn,0e

ψn,1ψ
−1
n,0|z| > 0.

So, the function z 	→ pΨq

[(αp,Ap)

(βq,Bq)

∣∣∣−z
]
is completely monotonic on (0,∞), and consequently, the function

Hp,0
q,p (z) is non-negative on (0, ρ), by means of Theorem 1. �

Remark 1. a. Combining (2.15) with (1.6), we obtain

(2.25) H1,q
p,q+1

(
z
∣∣∣(Ap,1−αp)

(0,1),(Bq,1−βq)

)
=

∫ ρ

0

e−ztHp,0
q,p

(
t
∣∣∣(Bq,βq)

(Ap,αp)

)
dt

t
.

b. In view of (2.15) and (1.7), we get

(2.26) pΨp

[(αp,A)

(βq,A)

∣∣∣z] = A−1

∫ 1

0

euzGp,0
p,p

(
u1/A

∣∣∣βp

αp

)
du

u
, A > 0, z ∈ R.
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Letting in the above formula, the value A = 1, we get [16, Corollary 1, Eq. 11]

(2.27) pFp

[α1,...,αp

β1,...,βp

∣∣∣z] = p∏
j=1

Γ(βi)

Γ(αi)

∫ 1

0

eztGp,0
p,p

(
t
∣∣∣βp

αp

)
dt

t
.

Theorem 2. Let αi, βi, i = 1, ..., p be a real number such that

(H2) : 0 < α1 ≤ ... ≤ αp, 0 < β1 ≤ ... ≤ βp,

k∑
j=1

βj −
k∑

j=1

αj ≥ 0, for k = 1, ..., p

In addition, assume that ψ =
∑p

j=1(βj − αj) > 0. Then, the function

z 	→ pΨp

[(αp,A)

(βq,A)

∣∣∣− z
]
,

is completely monotonic on (0,∞).

Proof. In [14, Lemma 2], the authors proved that the function Gp,0
p,p

(
t
∣∣∣βp

αp

)
is non-negative on (0, 1), and

since the hypotheses of thus Theorem implies the hypotheses of Theorem 1 and so we can used the integral
representation (2.26). Therefore, we deduce that all prerequisites of the Bernstein Characterization

Theorem for the complete monotone functions are fulfilled, that is, the function pΨp

[(αp,A)

(βq,A)

∣∣∣ − z
]
, is

completely monotonic on (0,∞). It is important to mention here that there is another proof for proved

the completely monotonic for the function pΨp

[(αp,A)

(βq,A)

∣∣∣ − z
]
, without using the integral representation

(2.26). For this we make use the inequalities (2.24). In our case, we have

ψn,m =

p∏
j=1

Γ(αj + (m+ n)A)

Γ(βj + (m+ n)A)
.

Under the condition (H2), Alzer [1, Theorem 10] proved that the function

ϕ : z 	→
p∏

j=1

Γ(αj + z)

Γ(βj + z)
,

is completely monotonic on (0,∞) this yields that ϕ(A) ≥ ϕ(2A) and consequently ψ0,1 > ψ0,2. On the
other hand, Bustoz and Ismail [6] proved that the function

p(z; a, b) =
Γ(z)Γ(z + a+ b)

Γ(z + a)Γ(z + b)
, a, b ≥ 0,

is completely monotonic on (0,∞), then the function z 	→ p(z; a, b) is decreasing on (0,∞). Now, we
choosing a = b = A, we obtain p(βj ;A,A) < p(αj ;A,A), thus implies that ψ2

0,1 < ψ0,0ψ0,2. So, from the

inequality (2.24), we deduce that the function pΨp

[
(αp,A)

(βp,A)

∣∣∣− z
]
is non-negative on (0,∞). On the other

hand, for n ∈ N0 we have

(−1)n
dn

dzn
pΨp

[
(αp,A)

(βp,A)

∣∣∣− z
]
= pΨp

[
(αp+nA,A)

(β+nA,A)

∣∣∣− z
]
= pΨp

[
(δp,A)

(λp,A)

∣∣∣− z
]
≥ 0,

where δp = αp + nA and λp = βp + nA satisfying the hypothesis (H2). Thus implies that the func-

tion pΨp

[
(αp+nA,A)

(β+nA,A)

∣∣∣− z
]
is non-negative on (0,∞), and consequently the function pΨp

[(αp,A)

(βp,A)

∣∣∣ − z
]
is

completely monotonic on (0,∞). This completes the proof of Theorem 2. �
Remark 2. We see in the second proof of the above Theorem that the condition ψ > 0 is not necessary for

proved the complete monotonicity property for the function pΨp

[(αp,A)

(βp,A)

∣∣∣−z
]
, and consequently this property

is also true under the conditions hypotheses (H2) only, and consequently the H-function Hp,0
p,p

[
t|(A,βp)

(A,αp)

]
is

non-negative under thus hypotheses.

Remark 3. We see that the conditions of hypotheses (Hn
1 ) are satisfied in the cases when p = q, αi ≤ βi

and Ai = Bi for i = 1, ..., p. Indeed, under this conditions, we get ϕ((n + 1)A) ≥ ϕ((n + 2)A), n ≥ 0
and consequently ψn,1 > ψn,2. Moreover, we have p(βj + nAj ;Aj , Aj) ≤ p(αj + nAj ;Aj , Aj), n ≥ 0, i.e.,
ψ2
n,1 < ψn,0ψn,2.
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Conjecture 1. We suppose that p = q, αi ≤ βi, Ai ≤ Bi and βi + Bi > x∗ for i = 1, ..., p, where x∗ is

the abscissa of the minimum of Gamma function. Since the function z 	→ Γ(z+a)
Γ(z) , a > 0 is increasing on

(0,∞), we get

Γ(z + a)Γ(z + b) ≤ Γ(z)Γ(z + a+ b), a, b > 0.

We set z = αi + nAi, a = Ai and b = βi − αi + (n+ 1)(Bi −Ai) in the above inequality, we get

(2.28)
Γ(αi + (n+ 2)Ai)

Γ(βi + (n+ 1)Bi +Ai)
<

Γ(αi + (n+ 1)Ai)

Γ(αi + (n+ 1)Bi)
.

Since the Gamma function Γ(z) is increasing on (x∗,∞), we get Γ(βi+(n+1)Bi+Ai) < Γ(βi+(n+2)Bi)
and consequently

(2.29)
Γ(αi + (n+ 2)Ai)

Γ(βi + (n+ 2)Bi)
<

Γ(αi + (n+ 1)Ai

Γ(αi + (n+ 1)Bi)
,

i.e the condition ψn,2 < ψn,1 in (Hn
1 ) holds true. We were not able to show that the inequality ψ2

n,1 <
ψn,0ψn,2. For this we state the following conjecture: Proved a sufficient condition imposed on the param-
eters αi, βj , Ai and Bj (Ai �= Bj) such that the conditions of hypotheses (Hn

1 ) are satisfied.

Corollary 2. Keeping the notation and constraints of hypotheses (H2) of Theorem 2. Then, the function

A 	→ pΨp

[(αp,A)

(βq,A)

∣∣∣z],
is log-convex on (0,∞) for all z ∈ R. Furthermore, then the following Turán type inequality

(2.30) pΨp

[(αp,A)

(βq,A)

∣∣∣z]pΨp

[(αp,A+2)

(βq,A+2)

∣∣∣z]− (
pΨp

[(αp,A+1)

(βq,A+1)

∣∣∣z])2

≥ 0,

holds true for all A ∈ (0,∞) and z ∈ R.

Proof. Rewriting the integral representation (2.26) in the following form:

(2.31) pΨp

[(αp,A)

(βq,A)

∣∣∣z] = ∫ 1

0

et
AzGp,0

p,p

(
t
∣∣∣βp

αp

)
dt

t
, A > 0, z ∈ R.

Let us recall the Hölder inequality [24, p. 54], that is

(2.32)

∫ b

a

|f(t)g(t)|dt ≤
[∫ b

a

|f(t)|pdt
]1/p [∫ b

a

|g(t)|pdt
]1/q

,

where p ≥ 1, 1
p +

1
q = 1, f and g are real functions defined on (a, b) and |f |p, |g|q are integrable functions

on (a, b). From the Hölder’s inequality and integral representation (2.31) and using the fact that the
function A 	→ xA is convex on (0,∞) when x > 0. For A1, A2 > 0 and t ∈ [0, 1], we thus get

pΨp

[
(αp, tA1+(1−t)A2

(βp, tA1+(1−t)A2)

∣∣∣z] = ∫ 1

0

ezu
tA1+(1−t)A2

Gp,0
p,p

(
u
∣∣∣βp

αp

)
du

u

≤
∫ 1

0

etzu
A1

e(1−t)zuA2
Gp,0

p,p

(
u
∣∣∣βp

αp

)
du

u

=

∫ 1

0

[
ezu

A1

u
Gp,0

p,p

(
u
∣∣∣βp

αp

)]t [
ezu

A2

u
Gp,0

p,p

(
u
∣∣∣βp

αp

)]1−t

du

≤
[∫ 1

0

ezu
A1

Gp,0
p,p

(
u
∣∣∣βp

αp

)
du

u

]t [∫ 1

0

ezu
A2

Gp,0
p,p

(
u
∣∣∣βp

αp

)
du

u

]1−t

=
[
pΨp

[
(αp, A1)

(βp, A1)

∣∣∣z]]t [pΨp

[
(αp, A2)

(βp, A2)

∣∣∣z]]1−t

,

(2.33)

and hence the required result follows. Now, choosing A1 = A,A2 = A + 2 and t = 1
2 in the above

inequality we get the Turán type inequality (2.30). �

Corollary 3. Let λ, ω > 0. Suppose that the hypotheses (H2) of Theorem 2 are satisfied. , we deduce
that the function

z 	→ z−λ
p+1Ψp

[(λ,1),(αp,A)

(βq,A)

∣∣∣− 1

z

]
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is completely monotonic on (0,∞), and consequently, the Hypergeometric function

z 	→ z−λ
p+1Fp

[ λ,α1,...,αp

β1,...,βp

∣∣∣− 1

z

]
is completely monotonic on (0,∞). (see [16, Theorem 3].)

Proof. From the integral representation [28, Eq. 7]

z−λ
p+1Ψp

[(λ,1),(αp,A)

(βp,A)

∣∣∣− ω

z

]
=

∫ ∞

0

e−zttλ−1
pΨp

[(αp,A)

(βp,A)

∣∣∣− ωt
]
dt,

and using the fact that the function pΨp

[(αp,A)

(βp,A)

∣∣∣ − z
]
dt, is non-negative on (0,∞), we deduce that the

function z−λ
p+1ΨP

[(λ,1),(αp,A)

(βp,A)

∣∣∣− ω
z

]
is completely monotonic on (0,∞). �

Remark 4. Let λ, ω > 0. Repeating the same calculations in Corollary 3 and under the assumptions
of Theorem 1 such that the conditions of hypotheses (Hn

1 ) ( or the function Hp,0
q,p [.] is non-negative) are

satisfied, we get that the function

z 	→ z−λ
p+1Ψq

[(λ,1),(ap,Ap)

(bq,Bq)

∣∣∣− ω

z

]
is completely monotonic on (0,∞).

In the following example we present some new properties for the τ−Kummer hypergeometric ϕτ defined
by [34]

ϕτ (b, c, z) =
∞∑
k=0

Γ(b+ kτ)

Γ(c+ kτ)

zk

k!
, (c > b > 0, τ > 0, |z| < 1.)

Example 4. The following assertions are true:
1. In view of Theorem 1 and the identity [23, p.127]

zα(1− z)β = Γ(β + 1)G1,0
1,1

(
z
∣∣∣α+β+1

α

)
, |z| < 1,

we deduce that the τ−Kummer hypergeometric ϕτ admits the following integral representation:

ϕτ (b, c, z) =
Γ(c)

τΓ(b)

∫ 1

0

eztG1,0
1,1

(
t

1
τ

∣∣∣c
b

) dt

t

=
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

ezt
τ

tb−1(1− t)c−b−1dt.

(2.34)

2. The function z 	→ ϕτ (b, c,−z) is completely monotonic on (0, 1). Moreover, the τ 	→ ϕτ (b, c, z) is
log-convex on (0,∞) and satisfies the following Turán type inequality

ϕτ+2(b, c, z)ϕτ (b, c, z)− ϕτ+1(b, c, z)2 ≥ 0.

Theorem 3. The function z 	→ pΨq

[
(αp,Ap)

(βq,Bq)

∣∣∣ 1z ] admits the following Laplace integral representation

(2.35) pΨq

[(αp,Ap)

(βq,Bq)

∣∣∣1
z

]
=

∫ ∞

0

e−zt

(
pΨq+1

[ (αp+1,Ap)

(βq+1,Bq),(2,1)

∣∣∣t]+ ∏p
i=1 Γ(αi)∏q
j=1 Γ(βj)

δ0

)
dt,

where δ0 is the Dirac measure with mass 1 concentrated at zero. Moreover, the function

z 	→ pΨq

[
(αp,Ap)

(βq,Bq)

∣∣∣1
z

]

is completely monotonic on (0,∞).

Proof. Straightforward calculation would yield∫ ∞

0

e−zt

(
pΨq+1

[ (αp+1,Ap)

(βq+1,Bq),(2,1)

∣∣∣t]+ ∏p
i=1 Γ(αi)∏q
j=1 Γ(βj)

δ0

)
dt =
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=
∞∑

m=0

∏p
i=1 Γ(αi +Aim+ 1)∏q

j=1 Γ(βi +Bim+ 1)Γ(m+ 2)m!

∫ ∞

0

tme−ztdt+

∏p
i=1 Γ(αi)∏q
j=1 Γ(βj)

=
∞∑

m=0

∏p
i=1 Γ(αi +Aim+ 1)∏q

j=1 Γ(βj +Bjm+ 1)(m+ 1)!zm+1
+

∏p
i=1 Γ(αi)∏q
j=1 Γ(βj)

=

∞∑
m=1

∏p
i=1 Γ(αi +Aim)∏q

j=1 Γ(βj +Bjm)m!zm
+

∏p
i=1 Γ(αi)∏q
j=1 Γ(βj)

=

∞∑
m=0

∏p
i=1 Γ(αi +Aim)∏q

j=1 Γ(βj +Bjm)m!zm

= pΨq

[(αp,Ap)

(βq,Bq)

∣∣∣1
z

]
.

Therefore, the integral representation (2.35) of the function Fox-Wright function pΨq

[(αp,Ap)

(βq,Bq)

∣∣∣ 1z ] is ful-

filled. Simultaneously, the function pΨq+1

[(αp+1,Ap)

(βq+1,Bq),(2,1)

∣∣∣t] being positive, all prerequisites of the Bern-

stein Characterization Theorem for the complete monotone functions are fulfilled, that is, the function

pΨq

[(αp,Ap)

(βq,Bq)

∣∣∣ 1z ] is completely monotone on (0,∞). It is important to mention here that there is another

proof for the completely monotone of the Fox-Wright function pΨq

[(αp,Ap)

(βq,Bq)

∣∣∣ 1z ]. By using the fact that if the

function f(x) is absolutely monotonic then the function f(1/x) is completely monotonic [38, p. 151], and

since the function pΨq

[(αp,Ap)

(βq,Bq)

∣∣∣z] is absolutely monotonic and consequently the function pΨq

[(αp,Ap)

(βq,Bq)

∣∣∣ 1z ]
is completely monotonic on (0,∞), which evidently completes the proof of Theorem 3. �
Example 5. The four parameters Wright function φ ((μ, a), (ν, b); 1/z) is completely monotonic on
(0,∞), and admits the following integral representation:

(2.36) φ ((μ, a), (ν, b); 1/z) =

∫ ∞

0

e−zt

(
1Ψ3

[ (2,1)

(a+1,μ),(b+1,ν),(2,1)

∣∣∣t]+ 1

Γ(a+ 1)Γ(b+ 1)
δ0

)
dt.

3. Stieltjes transform representation for the Fox-Wright functions and its

consequences

In this section, we show that the Fox-Wright function

p+1Ψq

[
(σ,1),(αp,Ap)

(βp,Bp)

∣∣∣− z
]

is a generalized Stieltjes functions of order σ. As applications, some class of logarithmically completely
monotonic functions related to the Fox-Wright function are derived. Moreover, we deduce new Turán
type inequalities for thus special function.

Theorem 4. Let σ > 0 and z ∈ C such that | arg z| < π and |z| < 1. Assume that the hypotheses (H2) of
Theorem 2 are satisfied. Then, the following Stieltjes transform hold true:

(3.37) p+1Ψp

[
(σ,1),(αp,A)

(βP ,A)

∣∣∣− z
]
=

∫ 1

0

dμ(t)

(1 + tz)σ
,

where

(3.38) dμ(t) = Hp,0
p,p

(
t
∣∣∣(A,βp)

(A,αp)

)
dt

t
.

Furthermore, the function

z 	→ p+1Ψp

[
(σ,1),(αp,A)

(βp,A)

∣∣∣− z
]

is completely monotonic on (0, 1).

Proof. Consider the right-hand side of (3.40) with dμ(t) is given by (3.41). We make use of the formula
(2.16) and applying the binomial expansion to

(1 + z)−σ =

∞∑
k=0

(σ)k
(−1)kzk

k!
, z ∈ C such that |z| < 1,
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and integrating term by term we obtain the left-hand side of (3.40). Finally, its easy to see that the

function z 	→ p+1Ψp

[
(σ,1),(αp,A)

(βp,A)

∣∣∣− z
]
is completely monotonic on (0, 1). �

Corollary 4. Let 0 < σ ≤ 1. Assume that the hypotheses (H2) of Theorem 2 are satisfied. Then the
following assertions are true:
a.The function

z 	→ p+1Ψp

[
(σ,1),(αp,A)

(βp,A)

∣∣∣− z
]

is logarithmically completely monotonic on (0, 1).
b.The function

(3.39) z 	→ 1
/

p+1Ψp

[
(σ,1),(αp,A)

(βp,A)

∣∣∣− z
]

is a Bernstein function on (0, 1). In particular, the function

z 	→ p+1Ψp

[
(σ+1,1),(αp+A,A)

(βp+A,A)

∣∣∣− z
]/

p+1Ψq

[
(σ,1),(αp,A)

(βp,A)

∣∣∣− z
]

is completely monotonic on (0, 1).

Proof. a. By using the fact that Sα ⊆ Sβ whenever α ≤ β (see [30]), we deduce

p+1Ψp

[
(σ,1),(αp,A)

(βp,A)

∣∣∣− z
]
∈ S1 = S,

where 0 < σ ≤ 1. On the other hand, it was proved in [4, Theorem 1.2] that the set of Stieltjes transforms
S \ {0} is a proper subset of the class of logarithmically completely monotonic functions.
b. The result follows from Theorem 4 and Proposition 1.3 [5]. �

Example 6. We consider the τ−Gauss hypergeometric function 2ϕ
τ
1(a, b, c, z) defined by [35]:

2ϕ
τ
1(a, b, c, z) =

Γ(c)

Γ(a)Γ(b)

∞∑
k=0

Γ(a+ k)Γ(a+ τk)

Γ(c+ τk)

zk

k!
, a, b, c > 0, c > b, |z| < 1.

Then, the following assertions are true:

(1) The τ−Gauss hypergeometric function possesses the following integral representation:

2ϕ
τ
1(a, b, c,−z) =

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1 + ztτ )a
dt.

(2) The τ−Gauss hypergeometric function 2ϕ
τ
1(a, b, c,−z) is logarithmically completely monotonic on

(0, 1).

Remark 5. Assume that the assumption of Theorem 1 and the hypotheses (Hn
1 ) are satisfied (or the

function Hp,0
q,p [.] is non-negative). Then, the following Stieltjes transform hold true:

(3.40) p+1Ψq

[
(σ,1),(αp,Ap)

(βq,Bq)

∣∣∣− z
]
=

∫ ρ

0

dμ(t)

(1 + tz)σ
,

where

(3.41) dμ(t) = Hp,0
q,p

(
t
∣∣∣(Bq,βq)

(Ap,αp)

)
dt

t
.

Moreover, the following assertions are true:

(1) The function

z 	→ p+1Ψq

[
(σ,1),(αp,Ap)

(βq,Bq)

∣∣∣− z
]

is logarithmically completely monotonic on (0, 1).
(2) The function

(3.42) z 	→ 1
/

p+1Ψq

[
(σ,1),(αp,Ap)

(βq,Bq)

∣∣∣− z
]

is a Bernstein function on (0, 1). In particular, the function

z 	→ p+1Ψq

[
(σ+1,1),(αp+Ap,Ap)

(βq+Bq,Bq)

∣∣∣− z
]/

p+1Ψq

[
(σ,1),(αp,Ap)

(βq,Bq)

∣∣∣− z
]

is completely monotonic on (0, 1).
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Theorem 5. Under the assumptions (H2) stated in Theorem 2. The function

σ 	→ Ξ(σ) = p+1Ψp

[
(σ,1),(αp,A)

(βp,A)

∣∣∣z]
is log-convex on (0,∞) for each z ∈ (0, 1). Furthermore, the following Turán type inequality

(3.43) p+1Ψp

[
(σ,1),(αp,A)

(βp,A)

∣∣∣z] p+1Ψp

[
(σ+2,1),(αp,A)

(βp,A)

∣∣∣z]− (
p+1Ψp

[
(σ+1,1),(αp,A)

(βp,A)

∣∣∣z])2 ≥ 0,

holds true for all σ ∈ (0,∞) and z ∈ (0, 1).

Proof. Recall the Chebyshev integral inequality [24, p. 40]: if f, g : [a, b] −→ R are synchoronous (both
increasing or decreasing) integrable functions, and p : [a, b] −→ R is a positive integrable function, then

(3.44)

∫ b

a

p(t)f(t)dt

∫ b

a

p(t)g(t)dt ≤
∫ b

a

p(t)dt

∫ b

a

p(t)f(t)g(t)dt.

Note that if f and g are asynchronous (one is decreasing and the other is increasing), then (3.44) is
reversed. Let σ2 > σ1 ≥ 0 and arbitrary ε > 0 and we consider the functions p, f, g : [0, 1] −→ R defined
by:

p(t) =

t−1Hp,0
p,p

(
t
∣∣∣(A,βp)

(A,αp)

)
(1− zt)σ1

, f(t) =
1

(1− zt)σ2−σ1
, g(t) =

1

(1− zt)ε
.

Since the function p is non-negative on (0, 1) and the functions f and g are increasing on (0, 1) if z ∈ (0, 1),
we gave

Ξ(σ1 + ε)Ξ(σ2) ≤ Ξ(σ1)Ξ(σ2 + ε).

The above inequality is equivalent to log-convexity for the function σ 	→ Ξ(σ) on (0,∞) for each z ∈ (0, 1)
(see [25, Chapter I.4]). Now, focus on the Turán type inequality (3.45). Since the function σ 	→ Ξ(σ) is
log-convex on (0,∞) for each x ∈ (0, 1). it follows that for all σ1, σ2 > 0, t ∈ [0, 1] and x ∈ (0, 1), we have

Ξ(tσ1 + (1− t)σ2) ≤ [Ξ(σ1)]
t[Ξ(σ2)]

1−t.

Upon setting

σ1 = σ, σ2 = σ + 2 and t =
1

2
,

the above inequality reduces to the Turán type inequality (3.45), which evidently completes the proof of
Theorem 5. �

Remark 6. Under the assumptions stated in Theorem 1 and hypotheses (Hn
1 ) (or the function Hp,0

q,p [.] is
non-negative) and by repeating the same calculations as above we deduce that The function

σ 	→ Ξ(σ) = p+1Ψq

[
(σ,1),(αp,Ap)

(βq,Bq)

∣∣∣z]
is log-convex on (0,∞) for each z ∈ (0, 1). Furthermore, the following Turán type inequality

(3.45) p+1Ψq

[
(σ,1),(αp,Ap)

(βq,Bq)

∣∣∣z] p+1Ψq

[
(σ+2,1),(αp,Ap)

(βq,Bq)

∣∣∣z]− (
p+1Ψq

[
(σ+1,1),(αp,Ap)

(βq,Bq)

∣∣∣z])2 ≥ 0,

holds true for all σ ∈ (0,∞) and z ∈ (0, 1).

4. Further Applications

4.1. A class of positive definite functions related to the Fox H-function. The purpose of this
section is to prove a class of positive definite functions related to the Fox H-function. As an application,
we derive a class of function involving the Fox H-function is non-negative. Let us remind the reader that
a continuous function f : Rd −→ C is called positive definite function, if for all N ∈ N, all sets of pairwise
distinct centers X = {x1, ..., xN} ⊆ R

d and z = {ξ1, ..., ξN} ⊂ C
N , the quadratic form

N∑
j=1

N∑
k=1

ξj ξ̄kf(xj − xk)

is non-negative.
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Theorem 6. Let the parameters ρ, ν ∈ C, satisfy the conditions

�(ρ) + �(ν) + min
1≤j≤p

[αj

A

]
> −1,

�(ν) > −1

2
and �(ρ) + �(ν) < 3

2
.

Moreover, assume that the hypotheses (H2) of Theorem 2 are satisfies. Then the function

(4.46) χ : z 	→ z−(ρ+ν)H1,p
p,p+2

[
2z
∣∣∣ (A,1−αp)

( 1
2 ,

ρ+ν
2 ),(A,1−βp),(

1
2 ,

ρ−ν
2 )

]
is positive definite function on R.

Proof. We can write the following formula [18, Eq. (2.45), pp. 57]

(4.47)

∫ ∞

0

xρ−1Jν(zx)H
m,n
q,p

[
x
∣∣∣(Bq,βq)

(Ap,αp)

]
dx =

2ρ−1

zρ
Hm,n+1

q+2,p

[
2

z

∣∣∣( 1
2 ,1− ρ+ν

2 ),(Bq,βq),(
1
2 ,1− ρ−ν

2 )

(Ap,αp)

]
in the following form
(4.48)∫ ∞

0

xρ+ν−1Jν(zx)H
m,n
q,p

[
x
∣∣∣(Bq,βq)

(Ap,αp)

]
dx =

Γ(ν + 1)2ρ+ν−1

zρ+ν
Hm,n+1

q+2,p

[
2

z

∣∣∣( 1
2 ,1− ρ+ν

2 ),(Bq,βq),(
1
2 ,1− ρ−ν

2 )

(Ap,αp)

]
where

Jν(x) = 2νΓ(ν + 1)
Jν(x)

xν
, �(ν) > −1

2
,

with Jν(x) is the Bessel function of index ν. On the other hand, as the function Jν(x) is positive definite

function [9, Proposition 2] and the function Hp,0
p,p [t|(A,βp)

(A,αp)
] is non-negative (Remark 2), we deduce that for

any finite list of complex numbers ξ1, ..., ξN and z1, ..., zN ∈ R,

(4.49)
N∑
j=1

N∑
k=1

ξj ξ̄k(zj − zk)
−(ρ+ν)Hp,1

p+2,p

[
2(zj − zk)

−1
∣∣∣( 1

2 ,1− ρ+ν
2 ),(A,βq),(

1
2 ,1− ρ−ν

2 )

(A,αp)

]
=

=
1

Γ(ν + 1)2ρ+ν−1

∫ ∞

0

xρ+ν−1

⎡
⎣ N∑
j=1

N∑
k=1

ξj ξ̄kJν(xzj − xzk)

⎤
⎦Hp,0

p,p

[
x
∣∣∣(A,βp)

(A,αp)

]
dx ≥ 0.

Thus, implies that the function

χ1 : z 	→ z−(ρ+ν)Hp,1
p+2,p

[
2

z

∣∣∣( 1
2 ,1− ρ+ν

2 ),(A,βp),(
1
2 ,1− ρ−ν

2 )

(A,αp)

]
is positive definite function on R. So, the [18, Property 1.3, p. 11] completes the proof of Theorem 6. �

Theorem 7. Let the parameters ρ, ν ∈ C, satisfy the conditions

(4.50) �(ρ) + �(ν) + min
1≤j≤p

[αj

A

]
> 0, �(ν) > −1

2
,

(4.51) �(1− (ρ+ ν)) + max
1≤j≤p

(αj

A

)
< 1, and �(ρ) + �(ν) < 3

2
.

Then, the function

(4.52) Kν,ρ
p,q(z) = zρ+ν−1Hp+1,1

p+2,p+2

[
8z
∣∣∣( 1

2 ,1− ρ+ν
2 ),(A,βp),(

1
2 ,1− ρ−ν

2 )

( 1
2 ,

1−(ρ+ν)
2 ),(A,αp),(

1
2 ,1− ρ+ν

2 )

]
is non-negative on R.

Proof. Firstly, we proved that the function z 	−→ χ(z) is in L1(0,∞). By using the asymptotic expansion
[18, Eq. 1.94, pp. 19]

Hm,n
p,q

[
z
∣∣∣(Ap,ap)

(Bq,bq)

]
= θ(zc), |z| −→ 0, where c = min

1≤j≤m

[�(bj)
Bj

]
.

In our case m = 1, b1 = ρ+ν
2 and B1 = 1

2 , and consequently c = ρ+ ν. Thus implies that

(4.53) χ(z) = θ(1) as z −→ 0.
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On the other hand, by using the asymptotic [18, Eq. 1.94, pp. 19]

Hm,n
p,q

[
z
∣∣∣(Ap,ap)

(Bq,bq)

]
= θ(zd), |z| −→ ∞, where d = min

1≤j≤n

[�(aj)− 1

Aj

]
.

In our case n = p and aj = 1− αj and consequently d = −(�(ρ) + �(ν) + min1≤j≤p
�(αj)

A ), thus we get

(4.54) χ(z) = θ
(
z−(ρ+ν+M)

)
, where M = min

1≤j≤p

αj

A
.

Now, combining (4.54) with the hypotheses (4.50) and (4.53), we deduce that the function z 	−→ χ(z) is
in L1(0,∞). In addition, as z 	→ Jν(zx) is an even function and using the integral representation (4.48),
we deduce that z 	−→ χ(z) is an even function, and consequently thus function is in L1(R).
Secondly, we calculate the Fourier transform of the function z 	−→ χ(z). Since z 	−→ χ(z) is an even
function then the the Fourier transform can be written as a Hankel transform (see [26, Lemma 1.1], when
α = −1/2), more precisely,

(4.55) F (χ) (z) =

√
2

π

∫ ∞

0

χ(x) cos(xz)dz.

We now make use of the following formula [18, Eq. 2.50, p. 58]

(4.56)

∫ ∞

0

xρ−1 cos(xz)Hm,n
p,q

[
x
∣∣∣(Ap,ap)

(Bq,bq)

]
dx =

2ρ−1
√
π

zρ
Hm,n+1

p+2,q

[
2

z

∣∣∣( 1
2 ,

2−ρ
2 ),(Ap,ap),(

1
2 ,

1−ρ
2 )

(Bq,bq)

]
where z > 0, ρ ∈ C such that

�(ρ) + min
1≤j≤m

�
(

bj
Bj

)
> 0 and �(ρ) + max

1≤j≤n
�
(
aj − 1

Aj

)
< 1.

In our case ρ −→ 1− (ρ+ ν), m = 1 n = p, b1 = ρ+ν
2 and B1 = 1

2 , thus

�(ρ) + min
1≤j≤m

(
bj
Bj

)
= 1 > 0.

Therefore,

F (χ) (z) = 21−ρ−νzρ+ν−1H1,p+1
p+2,p+2

[
8

z

∣∣∣( 1
2 ,

1+ρ+ν
2 ),(A,1−αp),(

1
2 ,

ρ+ν
2 )

( 1
2 ,

ρ+ν
2 ),(A,1−βp),(

1
2 ,

ρ−ν
2 )

]

= 21−ρ−νzρ+ν−1Hp+1,1
p+2,p+2

[
8z
∣∣∣( 1

2 ,1− ρ+ν
2 ),(A,βp),(

1
2 ,1− ρ−ν

2 )

( 1
2 ,

1−(ρ+ν)
2 ),(A,αp),(

1
2 ,1− ρ+ν

2 )

]
.

(4.57)

Finally, using the fact that the Fourier transform for a function in L1 and positive definite function is non-
negative ( see for example [8, theorem 6.6] or [36, Theorem 6.11, p. 74]). So, the proof is completes. �

4.2. Zeros of the Fox-Wright functions.

Theorem 8. Keeping the notation and constraints of hypotheses (H2) of Theorem 2. Then, all the roots

of the Fox-Wright function pΨp

[
(βp,A)

(αp,A)

∣∣∣z] are in the left-hand half-plane �z ≤ 0.

Proof. By using the following identity [15, Theorem 8]

(4.58) Hp,0
p,p

(
z
∣∣∣(A,βp)

(A,αp)

)
=

1

log(1/z)

∫ 1

z

Hp,0
p,p

(
z

u

∣∣∣(A,βp)

(A,αp)

)
Q(u)

u
du

where Q(u) is defined by

Q(u) =

p∑
i=1

tαi/A

1− t1/A
−

q∑
j=1

tβj/A

1− t1/A
, t ∈ (0, 1),

we deduce that the function

t 	→ Hp,0
p,p

(
t
∣∣∣(A,βp)

(A,αp)

)
decreasing on (0, 1). On the other hand, by means of the integral representation (2.15) and we make the
following change of variables t = 1− u we get

(4.59) e−z
pΨp

[(αp,A)

(βp,A)

∣∣∣z] = ∫ 1

0

e−zuHp,0
p,p

(
1− u

∣∣∣(A,βp)

(A,αp)

)
du

1− u
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Taking into account the obvious equation [18, Property 2.5, Eq. 2.1. 5]

(4.60) zσHm,n
q,p

(
z
∣∣∣(Ap,αp)

(Bq,βq)

)
= Hm,n

q,p

(
z
∣∣∣(Ap,αp+σAp)

(Bq,βq+σBq)

)
, σ ∈ C,

and using (4.76) we get

(4.61) e−z
pΨp

[(αp,A)

(βp,A)

∣∣∣z] = ∫ 1

0

e−zuHp,0
p,p

(
1− u

∣∣∣(A,βp−A)

(A,αp−A)

)
du.

Since the function Hp,0
p,p

(
1− u

∣∣∣(A,βp−A)

(A,αp−A)

)
is non-negative and increasing on (0, 1), we deduce that the

hypothesis of Theorem 2.1.7 in [29] is fulfilled. �

It is worth mentioning that a complete description of location and asymptotic behavior of zeros of the
Wright function for all values of its parameters was presented by Y. Luchko in [19].

Remark 7. We suppose that the hypotheses of Theorem 1 and the function Hp,0
q,p [.] is non-negative ( or

the condition of (Hn
1 ) are satisfies). Then, by repeating the same calculations as above, we deduce that

all the roots of the Fox-Wright function pΨq

[
(βp,Bq)

(αp,Ap)

∣∣∣z] are in the left-hand half-plane �z ≤ 0.

4.3. Extended Luke’s inequalities. Our aim in the this section is to present two-sided exponential
inequalities for the Fox-Wright function. As an application, we gave a generalization of Luke’s inequalities.

Theorem 9. Under the hypotheses (H2) of Theorem 2, we get

(4.62) ψ0,0e
−ψ0,1ψ

−1
0,0z ≤ pΨp

[(αp,A)

(βq,A)

∣∣∣− z
]
≤ ψ0,0 − ψ0,1(1− e−z), z ∈ R.

Proof. We recall the Jensen’s integral inequality [25, Chap. I, Eq. (7.15)],

(4.63) ϕ

(∫ b

a

f(s)dμ(s)
/∫ b

a

dμ(s)

)
≤
∫ b

a

ϕ(f(s))dμ(s)
/∫ b

a

dμ(s),

if ϕ is convex and f is integrable with respect to a probability measure μ. Letting ϕz(s) = e−zt, f(t) = t,
and

dμ(t) = Hp,0
p,p

(
t
∣∣∣(A,βp)

(A,αp)

)
dt

t
.

Thus, ∫ 1

0

dμ(t) =

∏p
i=1 Γ(αi)∏p
j=1 Γ(βj)

, and

∫ 1

0

f(t)dμ(t) =

∏p
i=1 Γ(αi +A)∏p
j=1 Γ(βj +A)

,

and ∫ 1

0

φz(f(t))dμ(t) = pΨp

[(αp,A)

(βq,A)

∣∣∣z].
This proves the lower bound asserted by Theorem 9. In order to demonstrate the upper bound, we will
apply the converse Jensen inequality, due to Lah and Ribarić, which reads as follows. Set

A(f) =

∫ M

m

f(s)dσ(s)
/∫ M

m

dσ(s),

where σ is a non-negative measure and f is a continuous function. If −∞ < m < M < ∞ and ϕ is convex
on [m,M ], then according to [27, Theorem 3.37]

(4.64) (M −m)A(ϕ(f)) ≤ (M −A(f))ϕ(m) + (A(f)−m)ϕ(M).

Setting ϕz(t) = e−zt, dσ(t) = dμ(t), f(s) = s and [m,M ] = [0, 1], we complete the proof of the upper
bound in (4.62). �

Corollary 5. Let λ > 0 and under the conditions of hypotheses (H2) of Theorem 2, then the following
two-sided inequality holds true:

(4.65)
ψ0,0Γ(λ)(
1 +

ψ0,1

ψ0,0
z
)λ ≤ p+1Ψp

[
(λ,1),(αp,A)

(βq,A)

∣∣∣− z
]
≤ Γ(λ)

[
ψ0,0 − ψ0,1

(
1− 1

(1 + z)λ

)]
, z > 0.
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Proof. Multiply inequalities (4.62) by e−ttλ−1, and integrate using the integral representation [28, Eq.
(7)]

(4.66)

∫ ∞

0

e−ttλ−1
pΨq

[
(αp,Ap)

(βq,Bq)

∣∣∣− zt
]
dt = p+1Ψq

[
(λ,1),(αp,Ap)

(βq,Bq)

∣∣∣− z
]

and make use of the following known formula∫ ∞

0

tλe−σtdt =
Γ(λ+ 1)

σλ+1
,

where λ > −1 and σ > 0. This completes the proof of the two-sided inequalities (4.65) asserted by
Corollary 5. �
Remark 8. Suppose that the hypotheses (H2) of Theorem 2 are satisfied and taking in (4.65) the value
A = 1 and using the identities (1.4), we re-obtain the Luke’s inequalities for the hypergeometric function

p+1Fp : (see [21, Theorem 13, Eq. (4.20)])

(4.67)
1

(1 + θz)σ
≤ p+1Fp

[ σ,α1,...,αp

β1,...,βp

∣∣∣− z
]
≤ 1− θ +

θ

(1 + x)σ
,
(
θ =

p∏
j=1

αj

βj
, z > 0.

)

Example 7. The following two–sided inequality

(4.68)
1(

1 + Γ(c)Γ(b+τ)
Γ(b)Γ(c+τ)z

)a ≤ 2ϕ
τ
1(a, b, c, z) ≤

[
1− Γ(c)Γ(b+ τ)

Γ(b)Γ(c+ τ)

(
1− 1

(1 + z)a

)]

is valid for all a, b, c, τ > 0, such that c > b.

Remark 9. By repeating the same calculations in the proof of the Theorem 9 and Corollary (5), we
present a generalization of the inequalities (4.62) and (4.65), respectively. Suppose that the hypotheses of
Theorem 1 such that the function Hp,0

q,p [.] is non-negative ( or the hypotheses (Hn
1 ) be satisfied), then the

following inequalities holds:

(4.69) ψ0,0e
−ψ0,1ψ

−1
0,0z ≤ pΨq

[(αp,Ap)

(βq,Bq)

∣∣∣− z
]
≤ ψ0,0 − ψ0,1

ρ
(1− e−ρz), z ∈ R,

and

(4.70)
ψ0,0Γ(λ)(
1 +

ψ0,1

ψ0,0
z
)λ ≤ p+1Ψp

[
(λ,1),(αp,Ap)

(βq,Bq)

∣∣∣− z
]
≤ Γ(λ)

[
ψ0,0 − ψ0,1

ρ

(
1− 1

(1 + ρz)λ

)]
, z > 0, λ > 0.

4.4. New inequalities for the generalized Mathieu’s series. The generalized Mathieu series is
defined by [37]:

(4.71) S(α,β)
μ (r;a) = S(α,β)

μ (r; {ak}∞k=0) =

∞∑
k=1

2aβk
(r2 + aαk )

μ
, (r, α, β, μ > 0),

where it is tacitly assumed that the positive sequence

a = (ak)k, such that lim
k−→∞

ak = ∞,

is so chosen that the infinite series in the definition (4.71) converges, that is, that the following auxiliary
series: ∞∑

k=0

1

aμα−β
k

is convergent.

Theorem 10. Let α, β, ν, μ > 0 such that ν(μα − β) > 1 and να = 1. Then the following inequalities
holds true:

L ≤ S(α,β)
μ (r; {kν}∞k=1) ≤ R, r > 0,(4.72)

where
L = 2ζ(ν(μα− β),

μ

ν(μα− β)
r2 + 1),

and

R = 2

(
1− μ

ν(μα− β)

)
ζ(ν(μα− β)) +

2μ

ν(μα− β)
ζ(ν(μα− β), r2 + 1),
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and ζ(s, a) is the Hurwitz Zeta Function defined by:

ζ(s, a) =

∞∑
n=0

1

(n+ a)s
, �(s) > 1.

Proof. We make use the representation integral for the Mathieu’s series [33],

S(α,β)
μ (r; {kν}∞k=1) =

2

Γ(μ)

∫ ∞

0

xν(μα−β)−1

ex − 1
1Ψ1

(
(μ,1)
(ν(μα−β),να)

∣∣∣− r2xνα
)
dx,

with (4.69) and using the following formula [10, Eq. 8, p.313]∫ ∞

0

xs−1e−ax

1− e−x
dx = Γ(s)ζ(s, a), �(s) > 1, �(a) > 0,

we obtain the inequalities (4.72) asserted by Theorem 10. �

Corollary 6. Assume that α, β, ν, μ > 0 such that ν(μα− β) > 2 and να = 1. Then

(4.73) L1 ≤ S(α,β)
μ (r; {kν}∞k=1) ≤ R1, r > 0,

where

L1 =
2e

−(ν(μα−β)−1)ψ
(

μr2

ν(μα−β)
+ 3

2

)

ν(μα− β)− 1

and

R1 = 2

(
1− μ

ν(μα− β)

)
e(ν(μα−β)−1)γ

ν(μα− β)− 1
+

2μ

ν(μα− β)

e−(ν(μα−β)−1)ψ(r2+1)

ν(μα− β)− 1

with γ is Euler-Mascheroni constant and ψ is the digamma function.

Proof. The result follows from Theorem 10 combined with [3, Theorem 3.1]. �

4.5. Some inequalities involving the Riemann zeta function. In this section, we establish some
new various inequalities for the Riemann zeta function.

Theorem 11. The Riemann zeta function satisfies the bounds

(4.74) L(μ) ≤ ζ(μ) ≤ R(μ), μ > 1

where

L(μ) =
e(μ−1)γ

μ− 1
, R(μ) = 22(μ−1)e−2(μ−1)R(μ).

Proof. Letting α = β and tends r to 0 in (4.73), we get

(4.75)
e−(μ−2)ψ(1)

μ− 2
< ζ(μ− 1) <

(
1− μ

μ− 1

)
e−(μ−2)ψ(3/2)

μ− 2
+

μ

μ− 1

e−(μ−2)ψ(3/2)

μ− 2
, μ > 2,

and using the fact that ψ(1) = −γ and ψ(3/2) = 2− 2 log(2)− γ, we obtain the desired result. �

Remark 10. We note that the right hand side of inequalities (4.74), i.e

(4.76) ζ(μ) < R(μ),

is not new, it was proved by G. Bastien and M. Rogalsk [2, Proposition 3]. This, the right hand side of
inequalities (4.73) give a generalization of inequality (4.76) and Theorem 11 gives the converse of (4.76).
Moreover, in [3, Remark 4.1], Batir proved the following inequality

(4.77) e−2(μ−1)R(μ) ≤ ζ(μ).

So, its clear that the left hand side of inequalities (4.74) is better than the above inequality. This is
justified by the following inequality 1 < 4μ−1.

Remark 11. In [32, Theorem 6, Eq. (4.3)] Srivastava et al. was proved the following upper bound for
the Riemann zeta function

(4.78) ζ(2μ) ≤ R2(μ) =

√
3π

2

Γ(μ+ 1)

Γ(μ+ 1/2)
, μ ≥ 1.

The numerical computation in Table 1 shows the superiority of (4.74) over (4.78).
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μ ζ(2μ) R(2μ) R2(μ)

1 1.64 1.76 2.44

3/2 1.20 1.56 2.88

2 1.08 1.84 3.26

5/2 1.06 2.44 3.60

Table. 1
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[25] D. S. Mitrinović, J. E. Pecarić, A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers

(1993).

[26] A. Nowak, K. Stempak, Relating transplantation and multipliers for Dunkl and Hankel transforms, Math. Nachr. 281
(11) (2008), 1604–1611.

[27] J. E. Pecarić, F. Proschan, Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications (Math.

Science Eng., 187 ), Academic Press (1992).
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