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In this work we develop an algebraic theory of linear recurrence equations and 
systems with constant coefficients and reflection. We obtain explicit solutions and 
the Green’s functions associated to different problems under general linear boundary 
conditions. Furthermore, we establish different relations between the algebras 
of recurrence and differential operators, showing the similarities and differences 
between them.
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1. Introduction

In recent years, the study of differential equations with reflection has progressed through various research 
lines. On one hand we have those works that deal with qualitative applications, such as boundedness [1], 
periodicity [10] or existence and uniqueness of solution [3,15,26]. Other articles find Hilbert bases through 
operator eigenfunction decomposition [20,27]. Finally, we have those works in which the authors obtain 
explicit solutions or the associated Green’s functions. That is the case of [4–7] and specially of [9,11], where 
they develop a general theory of Green’s functions in the case of differential equations and differential 
systems respectively.

Despite all of this progress in the field, there have not been any works yet in which the authors obtain 
Green’s functions of recurrence relations with reflection, something that, following the usual parallelism 
between differential and difference equations, should be possible. The aim of this work is therefore to fill 
this void in the theory, by providing and algebraic theory of recurrence relations and systems with reflection 
and constructing the Green’s functions associated to different problems.
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The basic idea exploited in [9,11] is to endow differential equations with reflection with an adequate 
algebraic structure. In order to achieve this, the authors first observe that homogeneous linear differential 
equations with reflection and constant coefficients can always be expressed in the form

Tu(t) :=
n∑

k=0

aku
(k)(t) +

n∑
k=0

bku
(k)(−t) = 0. (1.1)

The operator T in (1.1) can be considered as a composition of simpler operators. First, we have the usual 
differential operator which we will note by D̃, but also we have to consider the pullback by the reflection
function ϕ(t) = −t, that is, the operator ϕ∗ such that (ϕ∗f)(t) = f(−t) for any function f : R → R.

Now we can consider the algebra of linear differential operators with reflection R[D̃, ϕ̃∗] as defined in [11]. 
This algebra consists of all operators of the form of T . These operators can be written as ϕ̃∗P (D̃) + Q(D̃)
where P and Q belong to R[D̃], that is, the real polynomials on the abstract variable D̃. The algebraic 
structure is provided by the usual composition of operators and the rules derived from it. For instance, 
(ϕ̃∗)2 = Id, where Id is the identity operator, and, if we write ϕ∗(P )(D̃) := P (−D̃), we have that P ◦ ϕ̃∗ =
ϕ̃∗ ◦ ϕ̃∗(P ).

In the case of the operator T in (1.1) it can be expressed as

T =
∑
k

akϕ̃
∗D̃k +

∑
k

bkD̃
k ∈ R[D̃, ϕ∗]. (1.2)

In [9] we find results that allow us to obtain the solution of differential problems with such operators.

Theorem 1.1 ([9, Theorem 2.1]). Take T defined as in (1.2) and take

R =
∑
k

akϕ
∗D̃k +

∑
l

(−1)l+1blD̃
l ∈ R[D̃, ϕ∗]. (1.3)

Then RT = TR ∈ R[D̃].

Theorem 1.2 ([9, Theorem 3.2]). Consider the problem

Tu(t) = h(t), t ∈ [−T, T ], Biu = 0, i = 1, . . . , n, (1.4)

where T is defined as in (1.2), h ∈ L1([−T, T ]) and

Biu :=
n−1∑
j=0

αiju
(j)(−T ) + βiju

(j)(T ).

Then, there exists R ∈ R[D̃, ϕ∗] (as in (1.3)) such that S := RT ∈ R[D̃] and the unique solution of 
problem (1.4) is given by 

∫ b

a
R�G(t, s)h(s) d s where G is the Green’s function associated to the problem 

Su = 0, BiRu = 0, Biu = 0, i = 1, . . . , n, assuming that it has a unique solution.

An analogous study can be done for linear systems with reflection with the same algebraic structure – 
see [11]. Take, for instance, the system

Hu(t) := Fu′(t) + Gu′(−t) + Au(t) + Bu(−t) = 0, t ∈ R. (1.5)

In this context we find the following results.
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Theorem 1.3 ([11, Theorem 4.5]). Assume F −G and F + G are invertible. Then

X(t) :=
∞∑
k=0

Ekt2k

(2k)! − (F + G)−1(A + B)
∞∑
k=0

Ekt2k+1

(2k + 1)! , (1.6)

where E = (F − G)−1(A − B)(F + G)−1(A + B), is a fundamental matrix of problem (1.5). If we further 
assume A − B and A + B are invertible, then E is invertible and we can consider a square root Ω of E. 
Then,

X(t) = cosh Ωt− (F + G)−1(A + B)Ω−1 sinh Ωt. (1.7)

Consider now the initial value problem

Fu′(t) + Gu′(−t) + Au(t) + Bu(−t) = γ, t ∈ R, (1.8)

u(0) = δ, (1.9)

where A, B, F, G ∈ Mn(R), γ ∈ C (R), and δ ∈ Rn.

Theorem 1.4 ([11, Theorem 6.1]). Consider the problems

Fu′(t) + Gu′(−t) + Au(t) + Bu(−t) = γ, t ∈ R, (1.10)

and

Fu′(t) −Gu′(−t) + Au(t) −Bu(−t) = γ, t ∈ R. (1.11)

Assume F +G and F −G are invertible, X and Y are fundamental matrices of problems (1.10) and (1.11)
respectively and X is invertible in R. Then problem (1.8)–(1.9) has a unique solution u : R → Rn and it is 
given by

u(t) = X(t)X(0)−1δ +
t∫

−t

G(t, s)γ(s)ds,

where

G(t, s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2

(
X(t) Y (t)

)
X (s)−1

(
(F −G)−1

(F + G)−1

)
, 0 � s � t,

1
2

(
X(t) Y (t)

)
X (−s)−1

(
−(F −G)−1

(F + G)−1

)
, −t � s < 0.

Our objective will be to obtain similar results as the ones presented above for the case of linear recurrence 
equations and systems with reflection. In this work we will build a similar algebraic structure for the case 
of recurrence relations, pinpointing the similarities and differences with the algebra R[D̃, ϕ̃∗]. In Section 2
we define the algebra F [D, D−1, ϕ∗] of recurrence relations with reflection and study its properties as well 
as its relation to the algebra F [D̃, ϕ̃∗]. In Section 3 we provide Green’s functions for recurrence relations 
with reflection and general boundary conditions and in Section 4 we provide an analogous theory for linear 
systems with reflection. Finally, in Section 5 we establish the conclusions regarding the theory and pose 
several open problems worth studying.
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2. Recurrence relations with reflection

Let us first set up the basic definitions and notation in order to study recurrence relations with reflection 
in the highest generality.

2.1. Definitions and notation

Given two sets A and B we denote by F (A, B) the space of functions f : A → B. Let F be a field, 
F its algebraic closure and V a vector space over F . Let S be the space of Z-sequences in V that is, 
S := F (Z, V ). S is an F -vector space. Given x ∈ S we write x(k) ≡ xk ≡ (x)k and x ≡ (xk)k∈Z. We 
define the right shift operator D as

S S

(xk)k∈Z (xk+1)k∈Z

D

D is bijective and, in the present discussion, it will play the role the differential operator does in differential 
equations (thence the D as notation). That role could also be played by the forward difference operator 
Δ := D − Id but, for simplicity, we stick to D.

An order n linear recurrence relation (sometimes referred as difference equation, although there is a subtle 
difference between the two of them [25]) with constant coefficients is normally expressed as

xk+n =
n−1∑
j=0

ajxk+j + ck, k ∈ N; xk = ξk, k = 1, . . . , n, (2.1)

where ξk ∈ F , k = 1, . . . , n; aj ∈ F , j = 0, . . . , n − 1; a0 �= 0 and c = (ck)k∈N . A solution of the difference 
equation (2.1) will be a sequence u = (uk)k∈N such that equation (2.1) holds when substituting xk by uk

for every k ∈ N.
Using operator D, we can rewrite the recurrence relation (2.1) as

⎛⎝Dn −
n−1∑
j=0

ajD
j

⎞⎠x = c; xk = ξk, k = 1, . . . , n,

where x = (xk)k∈N . So, it is only fitting that we study equations of the kind

Ux :=
n∑

j=0
ajD

jx = c; xk = ξk, k = 1, . . . , n, (2.2)

where a0an �= 0. We say that U occurring in (2.2) belongs to F [D], the algebra of polynomials on D with 
coefficients in F .

Now we introduce reflections in this context, which forces us to work on Z instead of N. Let ϕ : Z → Z

be such that ϕ(t) = −t. We define the pullback by ϕ, ϕ∗, as

S S

(xk)k∈Z (xϕ(k))k∈Z

ϕ∗
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We can consider now linear difference equations with reflection of the form

Lx :=
n∑

j=−n

(aj + bjϕ
∗)Djx = c, (2.3)

where x, c ∈ S ; aj , bj ∈ F for j = 0, . . . , n and D−j = (D−1)j for j ∈ N. We say L belongs to the operator 
algebra F [D, D−1, ϕ∗] generated by Dj and ϕ∗Dj , j ∈ Z with the composition operation. We will omit the 
composition sign while working in this algebra.

2.2. Algebraic structure

In this section we enter the algebraic structure of F [D, D−1, ϕ∗] in greater detail.

Definition 2.1. An expression of the kind 
∑

j∈Z ajD
j where aj ∈ F and only finitely many elements of 

{aj}j∈Z are nonzero is called a formal Laurent polynomial on the variable D. We will denote the set of 
Laurent polynomials in the variable D by F [D, D−1]. This set has a natural structure of commutative 
F -algebra with the sum, product by scalars and composition of operators – which is the product of Laurent 
polynomials in this case.

Remark 2.2. Other realizations of the algebra F [D, D−1] can be achieved. For instance, it can be considered 
as the algebra of (commutative) polynomials in two variables F [D, E] quotiented by the relation ED = Id.

Similarly, the operator algebra F [D, D−1, ϕ∗] is the quotient of the algebra of non commutative poly-
nomials F 〈D,E, F 〉 by the relations DF = FE, DE = 1 and F 2 = 1. Observe that a basic property of 
the interaction between D and ϕ∗ is that Dϕ∗ = ϕ∗D−1. In fact, we have that Pϕ∗ = ϕ∗ϕ∗(P ) where 
ϕ∗(P )(D) := P (D−1) for any P ∈ F [D, D−1], that is, F [D, D−1, ϕ∗] consists of the operators of the form 
ϕ∗P +Q with P, Q ∈ F [D, D−1]. It is for this reason that the operators defining linear recurrence relations 
with reflection can be reduced to those occurring in usual ordinary difference equations, as the following 
theorem shows.

Theorem 2.3. Let L = ϕ∗P + Q with P, Q ∈ F [D, D−1]. Then R := ϕ∗P − ϕ∗(Q) ∈ F [D, ϕ∗] satisfies 
RL = LR ∈ F [D, D−1].

Proof.
RL =(ϕ∗P − ϕ∗(Q))(ϕ∗P + Q) = ϕ∗Pϕ∗P − ϕ∗(Q)Q + ϕ∗PQ− ϕ∗(Q)ϕ∗P

=ϕ∗(P )P − ϕ∗(Q)Q + ϕ∗PQ− ϕ∗QP = ϕ∗(P )P − ϕ∗(Q)Q ∈ F [D,D−1].

The same holds for LR. �
Remark 2.4. Observe that, if L is of the form in (2.3), we have that LRD2n ∈ F [D], but the same may hold 
for exponents k < 2n. We will assume from now on that we take the least of these exponents. Also, in the 
particular case aj , bj = 0 for j < 0, we have that LRDn ∈ F [D].

Now, observe that, for any P ∈ F [D, D−1]\{0}, P can be expressed uniquely as P (D) = P∗(D)Dk for 
some P∗ ∈ F [D] without zero as root and k ∈ Z. If P, Q ∈ F [D, D−1], we say that P divides Q, and we 
write P |Q, if P∗ divides Q∗.

We can consider the set F∗[D] of F -polynomials on the variable D without zero roots – which is isomorphic 
to F [D]/(D), that is, F [D] quotiented by the ideal generated by D. Take also the product F∗[D] × Z – or, 
which is the same (F [D]/(D)) × (D) – and the bijection
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F [D,D−1] F∗[D] × Z

P∗(D)Dk (P∗, k)

Ψ

with inverse

F∗[D] × Z F [D,D−1]

(Q, k) Q(D)Dk

Ψ−1

Inducing the algebra operations of F [D, D−1] in F∗[D] ×Z we get, for (P, k), (Q, j) ∈ F∗[D] ×Z and λ ∈ F ,

λ · (P, k) = (λP, k),

(P, k) · (Q, j) = (P Q, k + j),

(P, k) + (Q, j) = Ψ(P (D)Dk + Q(D)Dj).

We can express the relation P (D)ϕ∗ = ϕ∗P (D−1) in terms of F∗[D] × Z in the following way:

⎛⎝α

n∏
j=1

(x− λj), k

⎞⎠ϕ∗ = ϕ∗

⎛⎝(−1)nα
n∏

j=1
λj

n∏
j=1

(
x− 1

λj

)
,−k − n

⎞⎠ ,

for any 
(
α
∏n

j=1(x− λj), k
)
∈ F∗[D] × Z.

The algebra isomorphism Ψ allows us to define greatest common divisor (gcd) in F [D, D−1] through 
F∗[D] × Z. Remember that the greatest common divisor of P, Q ∈ F [D] is the product of the monomials 
D − λ Id where λ ∈ F is a common eigenvalue of P and Q.

Definition 2.5. We define the greatest common divisor of (P1, k1), . . . , (Pn, kn) ∈ F∗[D] × Z as

gcd{(P1, k1), . . . , (Pn, kn)} = (gcd{P1, . . . , Pn}, ν(k1, . . . , kn)),

where

ν(k1, . . . , kn) =

⎧⎪⎪⎨⎪⎪⎩
min{k1, . . . , kn}, kj � 0; j = 1, . . . , n,
max{k1, . . . , kn}, kj � 0; j = 1, . . . , n,
0, otherwise.

For L = ϕ∗P + Q ∈ F [D, D−1, ϕ∗] with P, Q ∈ F [D, D−1] let

L := gcd(P,ϕ∗(Q)).

By construction, L|P and L|ϕ∗(Q). Let P̃ = P/L and Q̃ = ϕ∗(Q)/L.
Using the above expressions and the algebraic structure, we can improve Theorem 2.3 in the following 

way – cf. [11, Theorem 2.3].

Theorem 2.6. Take L, P̃ and Q̃ as above and define R̃ := ϕ∗P̃ − Q̃ ∈ F [D, D−1, ϕ∗]. Then LR̃ ∈ F [D, D−1].
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Proof.

LR̃ = (ϕ∗P + Q)(ϕ∗P̃ − Q̃) = ϕ∗P̃ϕ∗P −QQ̃ + Qϕ∗P̃ − ϕ∗PQ̃

= ϕ∗(P̃ )P −QQ̃ + ϕ∗ϕ∗(Q)P̃ − ϕ∗LP̃ Q̃ = ϕ∗(P̃ )P −QQ̃ + ϕ∗[LQ̃P̃ − LP̃ Q̃] = ϕ∗(P̃ )P −QQ̃. �
Remark 2.7. Unlike Theorem 2.3, we do not have in Theorem 2.6 that LR̃ = RL̃, but this commutativity 
is not in general necessary.

Remark 2.8. From previous Theorem, it is clear that, as in Theorem 2.3, there exists a least k ∈ {0, 1, 2, . . . }
such that LR̃Dk ∈ F [D]. From now on we will write R := R̃Dk.

Example 2.9. The first differential equation with reflection of which a Green’s function was obtained was 
x′(t) +mx(−t) = 0 for some m ∈ R [4]. This operator is a square root of the harmonic oscillator (in pretty 
much the same way Dirac’s equation does with matrices) and presents very interesting properties. If we think 
of the analogous operator obtained by substituting D̃ by forward difference operator Δ = D−Id and ϕ̃ by ϕ
we get L = Δ +mϕ∗ = D−Id +mϕ∗. We have that P = m Id, Q = D−Id and L = gcd(m Id, D−1−Id) = Id. 
Therefore, P̃ = P , Q̃ = Q and R̃ = R = Id−D−1 + mϕ∗. Thus,

LR = RL = (D − Id +mϕ∗)(Id−D−1 + mϕ∗) = D + D−1 + (m2 − 2) Id .

Hence, if Lu = 0 holds, so does DRLu = 0 and we get the equation

(D2 + (m2 − 2)D + Id)u = 0.

The solutions of this equation, for |m| > 2, are of the form

un = c12−n
(
−m2 + |m|

√
m2 − 4 + 2

)n
+ c22−n

(
−m2 − |m|

√
m2 − 4 + 2

)n
with c1, c2 ∈ R. In any case, Lu = 0 has to hold, so we deduce that

c2 = 1
2

(
|m|
m

√
m2 − 4 + m

)
c1,

and all solutions of Lu = 0 are expressed as

un = c1

[
2−n

(
−m2 + |m|

√
m2 − 4 + 2

)n
+ 1

2

(
|m|
m

√
m2 − 4 + m

)
2−n

(
−m2 − |m|

√
m2 − 4 + 2

)n]
,

for some c1 ∈ R. We can study in an analogous fashion what happens in the case m ∈ [−2, 2].

Example 2.10. Now instead of substituting D̃ by Δ we do it by D, that is, we study the operator L =
D + mϕ∗. We have that P = m Id, Q = D and L = gcd(m Id, D−1) = Id. Therefore, P̃ = P , Q̃ = Q and 
R̃ = R = −D−1 + mϕ∗. Thus,

RL = LR = (D + mϕ∗)(−D−1 + mϕ∗) = (m2 − 1) Id .

This means that if the equation (D + mϕ∗)u = 0 holds for some u ∈ S , so does (m2 − 1)u = 0, which is 
only satisfied if m = ±1. That is, xk+1 −mx−k = 0 is a recurrence relation with reflection with no solution 
for m �= ±1. In the case m = ±1, the equation LRu = 0 is trivial and provides no information on Lu = 0.

In the case L = D − ϕ∗, take (vk)k∈N ⊂ F arbitrarily and define uk = vk if k ∈ N and uk = u1−k if 
k � 0. Clearly u satisfies Lu = 0. Analogously, if L = D + ϕ∗, take (vk)k∈N ⊂ F arbitrarily and define 
uk = vk if k ∈ N and uk = −u1−k if k � 0. u satisfies Lu = 0.
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2.3. Related operators

In this section we assume to work over a field of characteristic different from two.
In the theory of differential equations with reflection the even and odd part operators, defined respectively 

as

(Ẽf)(t) := f(t) + f(−t)
2 , (Õf)(t) := f(t) − f(−t)

2 ,

play an important role – cf. [7,9,11]. These linear operators satisfy, among others, the properties

ẼD̃ =D̃Õ, ÕD̃ = D̃Ẽ, Ẽϕ̃∗ = ϕ̃∗Ẽ = Ẽ, Õϕ̃∗ = ϕ̃∗Õ = −Õ,

Ẽ + Õ = Id, ẼÕ = ÕẼ = 0, Ẽ2 = Ẽ, Õ2 = Õ.

The power of the operators Ẽ and Õ relies on the fact that they are the projections onto the spaces of 
even and odd functions respectively. Now our goal is to take these operators to the setting of S . In order 
to do this, first observe that the operator D is actually a pullback by the function τ(k) = k + 1, k ∈ Z and 
there are precisely two proper invariant subspaces of S of the map τ2. They are

E := {u ∈ S : u2k+1 = 0, k ∈ Z}, O := {u ∈ S : u2k = 0, k ∈ Z},

so we actually want to deal with the projections onto those subspaces, which are defined, respectively,

(Eu)k := 1 + (−1)k

2 uk, (Ou)k := 1 − (−1)k

2 uk,

for every (uk)k∈Z ∈ S . In order to arrive to E and O we could have used the help of the following map. 
Let

CA := {u ∈ F (Z,C) | 0 � lim sup
k→−∞

|uk|−
1
k < lim sup

k→∞
|uk|−

1
k },

L0 := {f : BC[0, ρ2]\BC(0, ρ1) → C | ρ2 > ρ1 > 0, f is holomorphic}.

The elements in L0 are those holomorphic functions which can be expressed as Laurent series and the 
elements in CA are the coefficients of those series. Hence, we can consider the bijection

CA L0

(uk)k∈Z
∑
k∈Z

ukx
k

Ξ

This way, any operator Ỹ on L0 (such as can be the even and odd part operators) can be thought as an 
operator on CA by defining Y := Ξ−1Ỹ Ξ. It is easy to check that

E = Ξ−1ẼΞ, O = Ξ−1ÕΞ.

Remark 2.11. Observe that Λ = Ξ−1ϕ̃∗Ξ is also an involution in CA which is defined as (Λu)k = (−1)kuk. 
In this case Λ is not the pullback by any function.



F.A.F. Tojo / J. Math. Anal. Appl. 477 (2019) 1463–1485 1471
By definition, it is clear that E and O hold similar properties to Ẽ and Õ:

ED = DO, OD = DE,Eϕ∗ = ϕ∗E, Oϕ∗ = ϕ∗O, E + O = Id, EO = OE = 0, E2 = E, O2 = O.

We can even combine E, O, Ẽ and Õ. To do this we can consider Ẽ and Õ as

Ẽ = 1
2(Id +ϕ̃∗), Õ = 1

2(Id−ϕ̃∗),

and use the pullback by the inclusion ι : Z → R to get

E := Ẽ ◦ ι∗ := 1
2(Id +ϕ∗), O := Õ ◦ ι∗ := 1

2(Id−ϕ∗),

defined on S . Thus considered, they have the properties

Eϕ∗ = ϕ∗E = E, Oϕ∗ = ϕ∗O = −O, E + O = Id, EO = OE = 0, E
2 = E, O

2 = O,

but observe that, unlike with E and O, the properties ED = DO and OD = DE do not hold.
Observe also that E, O, E and O commute.

2.3.1. The exponential map
In this section we assume to work over a field of characteristic zero.
The reader might have already realized the striking similarity between the algebras F [D, D−1, ϕ∗] and 

F [D̃, ϕ̃∗]. In fact, as we will see, there is connection between the operators D̃ and ϕ̃∗ in F [D, D−1, ϕ∗] with, 
respectively, the operators D and ϕ in F [D̃, ϕ̃∗] through the exponential map.

To show this, first remember that the exponential of the differential operator is, precisely, the right shift 
operator, that is, eD̃ = D – this fact was shown, symbolically, by Lagrange [17, p. 13].

Observe that the exponential of the derivative at a point x ∈ F is, formally,

δxe
D̃ := δx

∞∑
k=0

D̃k

k! ,

where δx is the Dirac delta distribution at x. Consider now the space of analytic functions A (F). Then, for 
f ∈ A (F) with a radius of convergence r > 1 at x ∈ F ,

δxe
D̃f = δx

∞∑
k=0

f (k)

k! =
∞∑
k=0

f (k)(x)
k! =

∞∑
k=0

f (k)(x)
k! [(x + 1) − x]k = f(x + 1) = δxDf.

So, it is clear that this fact that applies to certain analytic functions can be extended, as a definition, to 
F (F , F) by defining eD̃ := D and, whenever the exponential of the derivative makes sense as a distribution, 
it will coincide with our definition. Observe though that this extension is not unique in principle. In order 
to achieve that we would need to define a topology in F (F , F) such that A (F) is a dense subset.

We could have also shown that eD̃ = D, formally, using the Fourier transform F:

F−1FeD̃ = F−1F

( ∞∑
k=0

D̃k

k!

)
= F−1

( ∞∑
k=0

(2πix)k

k!

)
F = F−1e2πixF = DF−1F = D,

but this approach cannot be made rigorous due to the fact that eD̃ is not a distribution. To undertake a 
proper study of this operator, it has to be done in the framework of hyperfunctions [14, Section 1.3.4].
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Proposition 2.12 ([14, Proposition 1.6]). Let a ∈ R. We have eaD̃ = Da.

In a similar way, we can compute eaϕ̃
∗ for a ∈ C taking into account that ϕ̃|Z = ϕ.

eaϕ̃
∗

=
∞∑
k=0

(aϕ̃∗)k

k! =
∞∑
k=0

a Id
(2k)! +

∞∑
k=0

aϕ̃∗

(2k + 1)! = cosh(a) Id + sinh(a)ϕ∗ ∈ C[D,D−1, ϕ∗].

Analogously, we obtain Euler’s formula:

eϕ̃
∗D̃ =

∞∑
k=0

(ϕ̃∗D̃)k

k! =
∞∑
k=0

(−1)kD̃2k

(2k)! + ϕ̃∗
∞∑
k=0

(−1)kD̃2k+1

(2k + 1)! = cos(D̃) + ϕ̃∗ sin(D̃).

Observe that this last expression does not belong to F [D, D−1, ϕ∗]. In general, for F = C and a ∈ C,

eaϕ̃
∗D̃ = cos(aD̃) + ϕ̃∗ sin(aD̃).

Taking into account that eD̃ϕ̃∗ = e−ϕ̃∗D̃ = cos(D̃) − ϕ̃∗ sin(D̃) we have that

cos(D̃) = 1
2

(
eϕ̃

∗D̃ + eD̃ϕ̃∗
)
, sin(D̃) = 1

2 ϕ̃
∗
(
eϕ̃

∗D̃ − eD̃ϕ̃∗
)
.

Analogously, for F = C,

cosh(D̃) = 1
2

(
eiϕ̃

∗D̃ + eiD̃ϕ̃∗
)
, sinh(D̃) = − i

2 ϕ̃
∗
(
eiϕ̃

∗D̃ − eiD̃ϕ̃∗
)
,

so

D =eD̃ = 1
2

(
eiϕ̃

∗D̃ + eiD̃ϕ̃∗
)
− i

2 ϕ̃
∗
(
eiϕ̃

∗D̃ − eiD̃ϕ̃∗
)
,

D−1 =e−D̃ = 1
2

(
eiϕ̃

∗D̃ + eiD̃ϕ̃∗
)

+ i

2 ϕ̃
∗
(
eiϕ̃

∗D̃ − eiD̃ϕ̃∗
)
.

Hence,

D + D−1 = eiϕ̃
∗D̃ + eiD̃ϕ̃∗

, D −D−1 = −iϕ∗
(
eiϕ̃

∗D̃ − eiD̃ϕ̃∗
)
,

and therefore iϕ∗(D −D−1) = eiϕ̃
∗D̃ − eiD̃ϕ̃∗ . Thus, we obtain

eiϕ̃
∗D̃ = 1

2
(
D + D−1 + iϕ∗(D −D−1)

)
∈ C[D,D−1, ϕ∗].

More generally, for k ∈ Z,

eikϕ̃
∗D̃ = 1

2
(
Dk + D−k + iϕ∗(Dk −D−k)

)
∈ C[D,D−1, ϕ∗].

We have shown that, in general, exponentials of the operators in F [D̃, ϕ̃∗] do not end up in F [D, D−1, ϕ∗], 
but there are some instances where this is the case and we obtain some interesting relations.
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3. Green’s functions

After the reduction of an operator L ∈ F [D, D−1, ϕ∗] (Theorem 2.6 and Remark 2.8) we are left with a 
recurrence equation of the kind Sx = 0 with S ∈ F [D]. In the case of initial conditions it is simple to compute 
the Green’s function. Several results in this direction, stated in different settings, can be found in the classic 
literature on the subject; see, for instance, [24, Theorem 11, Chap. 4], [2, Section 2.11], [25, Theorem 2.1] or 
[19, Theorem 6.8]. The differences among these works are due to the operator being studied (D, D−1 or Δ), 
whether we consider functions of one real variable (difference equations) or sequences (recurrence relations) 
as solutions, and the way the authors state the conditions the equation is subject to – see [2, Section 2.11]
or [25, Theorem 2.1]. Here we present a version (Theorem 3.2) which is adequate for our purposes.

Notation 3.1. Consider the homogeneous recurrence relation

(S x)k =
n∑

l=0

alxk+l = 0, k ∈ Z, (3.1)

where al ∈ F , l = 0, . . . , n and a0an �= 0. Denote the characteristic polynomial as follows:

p(t) = ant
n + an−1t

n−1 + · · · + a1t + a0.

Consider the set of different roots of p in F , that is {λ1, . . . , λr} with r � n and λl �= λj if l �= j. For each 
l ∈ {1, . . . , r}, denote hl the multiplicity of the root λl. If r = n, then all the roots are of multiplicity hl = 1
for l ∈ {1, . . . , n} and the general solution of (3.1) in S := F (Z, F) is given by

u = k1y1 + k2y2 + · · · + knyn,

where (yl)k = λk
l , kl ∈ F for k ∈ Z and l = 1, . . . , n.

Now, if r < n, then there exists l ∈ {1, . . . , r} such that hl > 1. In such a case, the general solution 
of (3.1) in F is:

u = k1y1,1 + k2y12 + · · · + kh1y1,h1 + kh1+1y2,1 + · · · + knyr,hr
,

where (yl,1)k = λk
l , (yl,j)k = kj−1λk

l for k ∈ Z, l ∈ {1, . . . , r} and j ∈ {2, . . . , hl}.
If we denote Φ =

(
y1,1 y1,2 · · · y1,h1 y2,1 · · · yr,hr

)
∈ MZ×n(F) and K = (kj)nj=1 ∈ F

n, we can express 
the general solution of (3.1) in S as u = Φ K.

Observe that, so far, we have obtained solutions in S not necessarily in S . Nevertheless, we know that, 
given initial conditions xj ∈ F , j = 0, . . . , n − 1, by recurrence, problem (3.2) has a unique solution in S . 
In fact, this means that we can construct Φ such that yk,j = δjk for k, j ∈ {0, . . . , n − 1} (where δjk is the 
Kronecker delta function) just by imposing some the adequate initial conditions.

For the next theorem we define the following disjoint subsets of Z2 – see Fig. 3.1.

A1 :={(k, j) ∈ Z2 : k > j � 0}, A2 :={(k, j) ∈ Z2 : k + 1 − n � j < 0},

A3 :={(k, j) ∈ Z2 : k + 1 − n > j, j < 0}, A4 :={(k, j) ∈ Z2 : k � j, j � 0}.

Observe that Z2 = A1 
A2 
A3 
A4.
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Fig. 3.1. The disjoint subsets of Z2, A1, . . . , A4.

Theorem 3.2. Consider the problem

(Sx)k =
n∑

j=0
ajxk+j = ck, k ∈ Z, xj = 0, j = 0, . . . , n− 1, (3.2)

where aj ∈ F , j = 0, . . . , n, a0an �= 0, ck ∈ F , k ∈ Z. Then there is a unique solution of problem (3.2)
u = (uk)k∈Z ∈ S where

uk =
∑
j∈Z

Hk,jcj ∈ F ,

(Hk,j)k,j∈Z ⊂ F is the Green’s function given by

Hk,j :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−1)n−1

anCj+1
H̃k,j , (k, j) ∈ A1,

1
a0Cj

H̃k,j , (k, j) ∈ A2,

0, (k, j) ∈ A3 
A4,

(3.3)

with

H̃k,j :=

∣∣∣∣∣∣∣∣∣∣

y1,k · · · yn,k
y1,j+1 · · · yn,j+1
y1,j+2 · · · yn,j+2

...
. . .

...
y1,j+n−1 · · · yn,j+n−1

∣∣∣∣∣∣∣∣∣∣
,

where Cj := H̃j,j is the Casorati and {y1, . . . , yn} is a set of fundamental solutions of the homogeneous 
problem associated to (3.2) such that yk,j = δjk for k, j ∈ {0, . . . , n − 1}.

Proof. First, by definition of {y1, . . . , yn}, we have that C0 = 1. Furthermore, we can prove that Cj+1 =
(−1)nanCj for every j � 0 [23, Theorem 3.8], so Cj �= 0 for every j ∈ Z. By a similar argument, Cj �= 0 for 
every j < 0. Hence, Hk,j is well defined for every k, j ∈ Z.

From the definition of H̃k,j , we deduce that, for k ∈ Z,

H̃k+n,k = (−1)n−1Cj+1; H̃k+l,k = 0, l ∈ {0, . . . , n− 1}. (3.4)
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Fig. 3.2. Illustration for n = 2. Each rectangle shows the set of indices (k + l, j) where l ∈ {0, 1, 2} for (k, j) in one of the six cases. 
In each case the definition of Hk+l,j is different. The shaded area covers those points where Hk+l,j = 0 because of (3.4).

First, we will see that 
∑n

l=0 alHk+l,j = δjk for every k, j ∈ Z. In order to achieve this we will study six 
different cases – see Fig. 3.2.

Case 1: (k, j) ∈ A1. In this case (k + l, j) ∈ A1 for every l ∈ {0, . . . , n} so

n∑
l=0

alHk+l,j = (−1)n−1

anCj+1

∣∣∣∣∣∣∣∣∣∣∣∣

n∑
l=0

aly1,k+l · · ·
n∑

l=0
alyn,k+l

y1,j+1 · · · yn,j+1
y1,j+2 · · · yn,j+2

...
. . .

...
y1,j+n−1 · · · yn,j+n−1

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Case 2: k + 1 � j < 0. In this case (k, j) ∈ A2 and (k + l, j) ∈ A2 for every l ∈ {0, . . . , n}, so

n∑
l=0

alHk+l,j = 1
a0Cj+n−2

∣∣∣∣∣∣∣∣∣∣∣∣

n∑
l=0

aly1,k+n−2+l · · ·
n∑

l=0
alyn,k+n−2+l

y1,j+n−1 · · · yn,j+n−1
y1,j+n · · · yn,j+n

...
. . .

...
y1,j+2n−3 · · · yn,j+2n−3

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Case 3: (k, j) ∈ A3. In this case (k + l, j) ∈ A3 for every l ∈ {0, . . . , n} so Hk+l,j = 0 for every 
l ∈ {0, . . . , n}.

Case 4: k+n � j, j � 0. In this case (k, j) ∈ A4 and (k+ l, j) ∈ A4 for every l ∈ {0, . . . , n} so Hk+l,j = 0
for every l ∈ {0, . . . , n}.

Case 5: k ∈ {j, . . . , j + n − 1} and j < 0. In this case (k + l, j) ∈ A2 for l ∈ {0, . . . , j − k − 1 + n} and 
(k + l, j) ∈ A4 for l ∈ {j − k + n, . . . , n}. Hence, using (3.4),

n∑
l=0

alHk+l,j =
j−k+n−1∑

l=0

alHk+l,j =
j−k+n−1∑

l=0

al
a0Cj

H̃k+l,j =
j−k+n−1∑

l=0

al
a0Cj

H̃j+(k−j+l),j

=
n−1∑

m=k−j

am+j−k

a0Cj
H̃j+m,j =

0∑
m=k−j

am+j−k

a0Cj
H̃j+m,j .

Since k − j � 0, this last expression is 0 if k > j and, otherwise, k = j and
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n∑
l=0

alHk+l,j = a0

a0Cj
H̃j,j = 1.

Case 6: k ∈ {j − n, . . . , j} and j � 0. In this case (k + l, j) ∈ A4 for l ∈ {0, . . . , j − k} and (k + l, j) ∈ A1
for l ∈ {j − k + 1, . . . , n}. Since k ∈ {j − n, . . . , j}, we have that n − j + k + 1 ∈ {0, . . . , n} and, therefore, 
using (3.4),

n∑
l=0

alHk+l,j =
n∑

l=j−k+1

alHk+l,j =
n∑

l=j−k+1

al
(−1)n−1

anCj+1
H̃k+l,j =

n−j+k∑
m=1

aj−k+m
(−1)n−1

anCj+1
H̃j+m,j

=
n−j+k∑
m=n

aj−k+m
(−1)n−1

anCj+1
H̃j+m,j .

This last expression is 0 if k < j and, otherwise, k = j and

n∑
l=0

alHk+l,j = an
(−1)n−1

anCj+1
H̃j+n,j = (−1)n−1

Cj+1
H̃j+n,j = 1.

Hence,

n∑
l=0

alHk+l,j = δjk.

Now we have that

(Su)k =
n∑

l=0

al

⎛⎝∑
j∈Z

Hk+l,jcj

⎞⎠ =
∑
j∈Z

(
n∑

l=0

alHk+l,j

)
cj =

∑
j∈Z

δjkcj = ck.

Furthermore, for k = 0, . . . , n − 1 and j < 0, either (k, j) ∈ A3, and hence Hk,j = 0, or (k, j) ∈ A2, in which 
case 0 � k � j + n − 1. Hence, 0 < −j � k − j � n − 1, so Hk,j = Hj+(k−j),j = 0. Thus, we can write

uk =
∑
j∈Z

Hk,jcj =
∑
j�0

Hk,jcj =
k−1∑
j=0

Hk,jcj =
k−1∑
j=0

Hj+(k−j),jcj = 0.

This last equality holds because k− j ∈ {1, . . . , k} ⊂ {1, . . . , n − 1} for any j ∈ {0, . . . , k− 1}. Therefore, u
is a solution of problem (3.2).

Finally, it is left to show that (Hk,j)k,j∈Z ⊂ F , but this has to be so because we already knew, by 
recurrence, that problem (3.2) had a unique solution in S . Hence, fix j ∈ Z and take ck = δjk for every 
k ∈ Z. We have that uk = Hk,j ∈ F for every k ∈ Z, which ends the proof. �
Remark 3.3. Similar results appear in the context of non-homogeneous generalized linear discrete time 
systems (see [12, Corollary 3.1] for a result in the field of order n systems obtained through matrix pencil 
theory), or linear non-autonomous fractional ∇-difference equations [13, Theorem 2.1].

Let us consider H ∈ MZ×Z(F) defined as follows:

(H)k,j = Hk,j , k, j ∈ Z, (3.5)

where Hk,j is defined in (3.3) for each k, j ∈ Z. Using this notation, we can rewrite the previous result in 
a vectorial way.



F.A.F. Tojo / J. Math. Anal. Appl. 477 (2019) 1463–1485 1477
Corollary 3.4. Consider the problem

Sx =
n∑

j=0
ajD

jx = c, x ∈ S , (x)j = 0, j = 0, . . . , n− 1, (3.6)

where aj ∈ F , j = 0, . . . , n, a0an �= 0, b ∈ S . Then there is a unique solution of problem (3.6) given by 
u = H c, where H is the Green’s function defined in (3.5).

3.1. General boundary conditions

From now on, given a vector space V we denote by V ∗ its algebraic dual. Consider the vector space Tn

generated by those solutions of order n equations of the form (3.1), that is

Tn =

⎧⎨⎩
⎛⎝ p∑

j=1
αjk

njzkj

⎞⎠
k∈Z

∈ S : zj ∈ F , nj ∈ {0, 1, . . . , n}, αj ∈ F ; j = 1, . . . , p; p ∈ N

⎫⎬⎭ .

Observe that, by asking the sum to be in S , we are assuming values in F . Also, for every L ∈ F [D, D−1, ϕ∗], 
we have that L(f) ∈ Tn for every f ∈ Tn.

Corollary 3.5. Let W ∈ (T ∗
n )n and consider the problem

n∑
j=0

ajxk+j = ck, k ∈ Z, Wx = h, (3.7)

where aj ∈ F , j = 0, . . . , n, a0an �= 0, ck ∈ F , k ∈ Z, h ∈ Fn. Then there is a unique solution of problem (3.7)
in Tn if, and only if, det(WΦ) �= 0, where WΦ := W Φ ∈ Mn(F), with Φ defined in Notation 3.1.

In such a case, the unique solution is given by:

u = ΦW−1
Φ h +

(
H − ΦW−1

Φ W H
)
c,

where H is defined in (3.5) assuming WHc is well defined.

Proof. Every solution of S x = c is given by

u = ΦK + H c, K ∈ Rn.

If we impose the condition given by W , we have the order n linear system of equations

W u = W ΦK + W H c = h.

It is clear that there exist a unique solution of previous system if, and only if,

det(W Φ) = det(WΦ) �= 0.

In such a case:

K = W−1
Φ h−W−1

Φ W H c,

thus
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u = ΦW−1
Φ h +

(
H − ΦW−1

Φ W H
)
c,

and the result is proved. �
Remark 3.6. In Corollary 3.5 we had to ask the compatibility between the boundary conditions and the 
equation in two instances. First, by asking for W to be in (T ∗

n )n, WΦ was well defined. Second, the 
compatibility with the nonlinear part of the equations was guaranteed by asking that WHc were well 
defined. In the first case it would be enough for W to be in the dual of the vector space of the solutions of 
the homogeneous problem associated to (3.7), but this would require to know them aforehand.

Corollary 3.7. Let W ∈ (T ∗
n )n. Consider the problem

Lx = c, Wx = h, (3.8)

where L is defined as in (2.3). Then, there exists R ∈ F [D, ϕ∗] – as in Remark 2.8 – such that LR ∈ F [D]
and a solution of problem (3.8) is given by

u := ΦW−1
Φ h +

(
RH − ΦW−1

Φ WRH
)
c

where H is a Green’s function associated to the problem

LRx = c, Wx = WRx = 0, (3.9)

assuming it exists, WRHc is well defined, Φ is the general solution of LRx = 0 and WΦ := W Φ ∈ Mn(F)
is invertible.

Proof. First, we have that, since LΦ = 0,

Lu = L
(
ΦW−1

Φ h +
(
RH − ΦW−1

Φ WRH
)
c
)

=
(
LR
)
(Hc) = Id c = c.

On the other hand, since H is the Green’s function of problem (3.9), it has to satisfy the boundary conditions, 
that is WH = WRH = 0 (to see this just take h = (δkj )j∈Z for k ∈ Z). Hence,

Wu = W
(
ΦW−1

Φ h +
(
RH − ΦW−1

Φ WRH
)
c
)

= h,

so u is a solution of problem (3.8). �
In the next section we will talk about systems, which will allow us to illustrate those cases where we can 

guarantee the solution of problem (3.8) is unique.

4. Linear systems of difference equations with reflection

In this section we will consider the homogeneous system of linear difference equations

(Ju)k := Fxk+1 + Gx−k−1 + Axk + Bx−k = 0, k ∈ Z, (4.1)

where xk ∈ Fn, n ∈ N, A, B, F, G ∈ Mn(F) and u ∈ F (Z, Fn). We will prove that a fundamental matrix 
for problem (4.1) exists.
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Definition 4.1. We say that M ∈ F (Z, Mn(F)) is a fundamental matrix of problem (4.1) if (uk)k∈Z =
(M(k) u0))k∈Z is a solution of equation (4.1) for every u0 ∈ Fn, that is

FM(k + 1) + GM(−k − 1) + AM(k) + BM(−k) = 0, k ∈ Z.

Definition 4.2. If M is a block matrix of the form

M =
(
M1 M2

M3 M4

)
,

where Mk ∈ Mn(F), we define M(k) := Mk.

Theorem 4.3. Assume that (
F G

B A

)
and

(
A B

G F

)

are invertible. Then

M :=

⎛⎜⎝
⎡⎣−( F G

B A

)−1(
A B

G F

)⎤⎦k

(1)

+

⎡⎣−( F G

B A

)−1(
A B

G F

)⎤⎦k

(2)

⎞⎟⎠
k∈Z

,

is a fundamental matrix of problem (4.1). Furthermore, problem (4.1) equipped with the boundary condition 
x0 = u0 ∈ Fn has a unique solution given by (uk)k∈Z = (M(k) u0))k∈Z.

Proof. If we define v = ϕ∗u, then we have that problem (4.1) can be expressed as

FDu + GDv + Au + Bv = 0.

Composing with ϕ∗, we get

FD−1ϕ∗u + GD−1ϕ∗v + Aϕ∗u + Bϕ∗v = FD−1v + GD−1u + Av + Bu = 0.

Now, composing with D,

Fv + Gu + ADv + BDu = 0.

Hence, we have the system (
F G

B A

)(
Du

Dv

)
= −

(
A B

G F

)(
u

v

)
.

The hypotheses of the theorem regarding the invertibility of the matrices imply that this is a regular system, 
so we can solve for Du and Dv in the following way:(

Du

Dv

)
= −

(
F G

B A

)−1(
A B

G F

)(
u

v

)
.

In particular, iterating,
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(
uk

vk

)
=

⎡⎣−( F G

B A

)−1(
A B

G F

)⎤⎦k(
u0

v0

)
=

⎡⎣−( F G

B A

)−1(
A B

G F

)⎤⎦k(
u0

u0

)
,

for k � 1. Therefore,

uk =

⎛⎜⎝
⎡⎣−( F G

B A

)−1(
A B

G F

)⎤⎦k

(1)

+

⎡⎣−( F G

B A

)−1(
A B

G F

)⎤⎦k

(2)

⎞⎟⎠u0,

for k � 1. We can proceed analogously for k � −1, since

(
D−1u

D−1v

)
= −

(
A B

G F

)−1(
F G

B A

)(
u

v

)
.

Hence, we have the result. �
The next theorem serves to construct the Green’s function of a system of recurrence relations on Z. The 

reader may consult [25] for more information on the subject in the context of systems of recurrence relations 
on N with nonconstant coefficients.

Theorem 4.4. Consider a system of recurrence relations of the form

xk+1 = Kxk, k ∈ Z, (4.2)

where xk ∈ Fn and K ∈ Mn(F) is invertible. Define

Hk,j :=

⎧⎪⎪⎨⎪⎪⎩
Kk−1−j , −1 � j � k − 1,
−Kk−1−j , k � j � −1,
0, otherwise.

Then H := (Hk,j)k,j∈Z is a Green’s function of problem (4.2), that is, a solution of

xk+1 = Kxk + ck, k ∈ Z,

where c = (ck)k∈Z ∈ F (Z, Fn) is given by u = Hc.

Proof. Let u := Hc. Then, for k � 0,

(Du)k − (Ku)k =(DHc)k −K(Hc)k = D

⎛⎝ k−1∑
j=−1

Kk−1−jcj

⎞⎠
k

−K

k−1∑
j=−1

Kk−1−jcj

=
k∑

j=−1
Kk−jcj −

k−1∑
j=−1

Kk−jcj = ck.

Analogously, for k � −1,
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(Du)k − (Ku)k =(DHc)k −K(Hc)k = −D

⎛⎝ −1∑
j=k

Kk−1−jcj

⎞⎠
k

+ K

−1∑
j=k

Kk−1−jcj

= −
−1∑

j=k+1

Kk−jcj +
−1∑
j=k

Kk−jcj = ck. �

Theorem 4.5. Consider J as defined in (4.1) and assume that(
F G

B A

)
and

(
A B

G F

)

are invertible. Consider the problem

Jx = c, Wx = h. (4.3)

Then the sequence given by

u = π1

(
XZ−1

[(
h

h

)
−
(

W

Wϕ∗

)
Y

]
+ Y

)
,

where

X :=

⎛⎜⎝
⎡⎣−( F G

B A

)−1(
A B

G F

)⎤⎦k
⎞⎟⎠

k∈Z

, Y := H

(
F G

B A

)−1(
c

ϕ∗c

)
, Z :=

(
W

Wϕ∗

)
X,

H is the Green’s function of problem (4.4) and π1 : Fn × Fn → Fn is such that π1(x, y) = x, is the unique 
solution of problem (4.3), provided all of the terms involved are well defined and Z is invertible.

Proof. Proceeding as in the proof of Theorem 4.3, we can reduce the equation Jx = c to(
Du

Dv

)
= −

(
F G

B A

)−1(
A B

G F

)(
u

v

)
+
(

F G

B A

)−1(
c

Dϕ∗c

)
. (4.4)

A particular solution of (4.4) can be expressed as(
u

v

)
= H

(
F G

B A

)−1(
c

ϕ∗c

)

so the general solution of (4.4) is of the form

(
u

v

)
=

⎛⎜⎝
⎡⎣−( F G

B A

)−1(
A B

G F

)⎤⎦k
⎞⎟⎠

k∈Z

r + H

(
F G

B A

)−1(
c

Dϕ∗c

)

with r ∈ F2n. Then, imposing Wu = h, and thus Wϕ∗v = h,(
h

h

)
=
(

Wu

Wϕ∗v

)
=
(

W

Wϕ∗

)
Xr +

(
W

Wϕ∗

)
Y
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Hence, this system can only be solved uniquely if Z is a regular matrix. Therefore,

r = Z−1

[(
h

h

)
−
(

W

Wϕ∗

)
Y

]
.

That is, (
u

v

)
= XZ−1

[(
h

h

)
−
(

W

Wϕ∗

)
Y

]
+ Y.

Thus,

u = π1

(
XZ−1

[(
h

h

)
−
(

W

Wϕ∗

)
Y

]
+ Y

)
. �

Corollary 4.6. Assume ana−n − bnb−n �= 0. If the problem

n∑
j=−n

(ajxk+j + bjx−k−j) = ck, k ∈ Z; xk = ξk, k = 1, . . . , n, (4.5)

has a solution, it is unique.

Proof. Define yk = (xk−n, . . . , xk+n−1). Denote by yk,j the j-th component of yk (starting at j = −n) and 
by y·,j the sequence (yk,j)k∈Z. Then, we have that Dy·,j = y·,j+1 for j = −n, . . . , n − 1 and

ck =
n∑

j=−n

(ajyk,j + bjϕ
∗yk,−j) , k ∈ Z.

Now, define c = (ck)k∈Z and A, B, F, G ∈ M2n(R) such that

F =
(

Id 0
0 an

)
, G =

(
0 0
0 bn

)
,

A =

⎛⎜⎜⎜⎜⎜⎜⎝

0 −1 0 · · · 0 0
0 0 −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1 0
0 0 0 · · · 0 −1

a−n a−n+1 a−n+2 · · · an−2 an−1

⎞⎟⎟⎟⎟⎟⎟⎠ , B =

⎛⎜⎜⎝
0 · · · 0
...

. . .
...

0 · · · 0
b−n · · · bn−1

⎞⎟⎟⎠ ,

where 0 denotes a zero matrix. We have that problem (4.5) can be expressed in the form of system (4.1), 
that is,

Fyk+1 + Gy−k−1 + Ayk + By−k = ck, k ∈ Z, y0 = ξ, (4.6)

where ξ = (ξ1, . . . , ξn). Now, by [11, Lemma 3.8], we have that∣∣∣∣∣ F G

B A

∣∣∣∣∣ =
∣∣∣∣∣A B

G F

∣∣∣∣∣ = |FA−BG|
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=

∣∣∣∣∣∣∣∣∣∣∣∣

0 −1 0 · · · 0 0
0 0 −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1 0
0 0 0 · · · 0 −1

ana−n − bnb−n ana−n+1 − bnb−n+1 ana−n+2 − bnb−n+2 · · · anan−2 − bnbn−2 anan−1 − bnbn−2

∣∣∣∣∣∣∣∣∣∣∣∣
=ana−n − bnb−n �= 0.

On the other hand, W acts on y as evaluating y on 0, so

Z :=
(

W

Wϕ∗

)
X = Id,

is invertible. Hence, applying Theorem 4.5, we conclude that the system (4.6) has a unique solution and 
thus so does problem (4.5). �
Remark 4.7. Observe that the problem in Example 2.10 fails to meet the hypotheses of Corollary 4.6.

5. Conclusions and open problems

Throughout this work we have developed a theory of linear recurrence equations and systems with 
reflection and constant coefficients. Most of the theory is valid for fields of arbitrary characteristic. We 
would have to avoid division dividing by 0, for instance when defining the operators Ẽ, Õ, E and O. For 
more information on recurrence relations on fields in arbitrary characteristic the reader may consult [16,18].

There are some clear ways in which the theory could be extended. We point out here some of them.

• Non-constant coefficients: The theory of linear differential equations with constant coefficients (and its 
difference counterpart) is basically the same than in the constant coefficient case. The main difference in 
the case of systems is whether a fundamental matrix can be obtained explicitly by taking the exponential 
of the matrix A(t) defining the system, something which is true if A(t)A(s) = A(s)A(t) for every t and s
[6,21]. Unfortunately, this happens under very restrictive circumstances [6], so the explicit computation 
of the Green’s functions will not be possible in general.

• General involutions: In the theory of differential equations with involutive functions2 we have to work 
with differentiable or at least continuous involutive functions [6] (such as is the case of the reflection), 
but this poses the severe restriction that continuous involutive functions of order n on connected sets 
of the real line have to be of order two [8,22]. This restriction disappears in the context of recurrence 
relations, which gives rise to three questions worth answering. First, Which are the different involutive 
functions on Z for each given order? second, How do the operators which are the pullback of those 
involutive functions interact with the right shift operator? and last, Under which circumstances can we 
solve recurrence relations with those involutions?
It is unlikely that we will obtain a full answer to the first question, but we can restrict our research to 
those involutions that behave well with respect to right shifts. We could start by studying, for instance, 
involutions that are just transpositions of elements of the sequence since the interaction of the involution 
with the right shift operator is easily manageable in this case.

2 Here, for n � 2, we consider a function f to be involutive order n or an involution of order n if fn = Id and fk �= f for 
k = 2, . . . , n − 1 – cf. [29]. Some other authors consider the term involution only for the case n = 2, which is standard in other 
fields, using finite order operators for the case presented here.
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More general involutions (that is, involutive operators that are not the pullback by an involutive func-
tion) such as Λ occurring in Remark 2.11 are worth studying since they satisfy very attractive properties 
(for instance, in the case of Λ, it anticommutes with the right shift operator).

• Partial difference equations: There is also the possibility to move from recurrence in one independent 
variable to recurrence in several independent variables. Some analogous work has been done previously 
in the case of partial differential equations with reflection [28]. Again, there is the possibility to study 
involutions of order greater than two.
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