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1. Introduction

A partition of a positive integer n is a sequence of non-increasing positive integers whose sum equals
n and p(n) is defined to be the number of partitions of n while p(0) := 1. The following three famous
congruences for p(n) were found and later proved by S. Ramanujan: for all n € N, we have

p(bn+4)=0 (mod 5),
p(7n+5)=0 (mod 7),
p(1ln+6) =0 (mod 11).

Indeed, Ramanujan [21] found the generating functions for p(5n + 4) and p(7n + 5),

Zp (5n + 4)q M7 (1.1)
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Here and for the rest of this article, we use the notations

m—1

(T1, T2, o, Tk @ = H (I =21¢")(1 — 22¢") -~ (1 — zq"),
n=0

(@1, 72, T Qoo = [ [ (1 = 214™)(1 = 220") -+ (1 — 210"),
n=0

[1'171‘27~"7xk;q}00 = (1717(1/17171727(]/3327~--vxkﬂ/xkﬂl)oo

and we require |g| < 1 for absolute convergence. Ramanujan’s work inspired the search for identities similar
to (1.1) and (1.2) involving various types of special functions. For example, Hirschhorn and Hunt [16] proved
identities on the generating functions for p (5%n + J, ), where « is a positive integer and J,, is the reciprocal
of 24 modulo 5%. Using these results, they provided a simple proof of the following congruences:

p(5*n+6,) =0 (mod 5%),

which was conjectured by Ramanujan [21] and first proved by Watson [24]. More recently, Garvan [13]
established identities analogous to (1.1) and (1.2) involving Andrews’ smallest parts partition function
spt(n) [4]. As applications, families of congruences for spt(n) modulo powers of 5,7 and 13 were obtained.

Throughout, we assume 7 € C with Re(7) > 0. Let q := e?™". We study the following mock theta function

Vo(7) = Volg :f1+22q Zg

n>0

The function V;(q) is an eighth-order mock theta function first studied by Gordon and Mclntosh in [14].
Applying the generalized Lambert series identities in [7], Chan and the author [9] proved some analogies of
(1.1) and (1.2) for mock theta functions. As applications, congruences for many mock theta functions were
established. In particular, they obtained

o0
(=0, =% ") oo (4% ¢°)4 1 q
g(8n+3)¢" =4 = + , 1.3
2, 9n+3) GO \@EOL @ F P 43
(4% 4%)5 < 1 q )
g(8n+6)¢" =8 + , 1.4
Z (9% \(2,4:¢*)% (6% ¢®)% (14)

which imply ¢g(8n 4+ 3) = 0 (mod 4) and ¢g(8n + 6) = 0 (mod 8), respectively. For more recent works on
identities involving mock theta functions, the reader is referred to [3,8,10,18,25].
In this paper, using the theory of (mock) modular forms, we establish the following two identities for

Vo(q)-

Theorem 1.1. We have

- n 4(¢% ¢") s
7;9(87”2)(1 [a:¢*]5 4% a* )3 (—a* %) oo (1.5)

and

oo 8 4; 4 ~
2 9(sn+5)d" = [q;q“(]i]“’;o(ZQ;)q“)io' (16)
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In particular, we have g(8n +2) =0 (mod 4) and g(8n +5) =0 (mod 8).

Congruences for mock theta functions have been studied by many authors recently. Garthwaite [12] proved

2
Jo%S) 2n“+42n

the existence of infinitely many congruences for the third-order mock theta function, w(q) := > ", TR
’ n+1

Waldherr [23] provided two explicit congruences for w(q):
ay,(40n + 27) = a,(40n +35) =0  (mod 5),
where a,,(n) are coefficients of w(q). More studies on congruences for mock theta functions can be found in
[1,2,20].
Armed with (1.6), we prove two congruences for V5(g) by elementary g-series manipulation.
Corollary 1.2. We have
g(40n + 13) = g(40n +37) =0 (mod 40).
2. Preliminaries
For the basics of (mock) modular forms, the reader is referred to [17,19].

2.1. Appell-Lerch sums

The key in the proof of Theorem 1.1 is the mock modularity of V(¢) which is proved by applying Zwegers’
results on Appell-Lerch sums.
For u,v € C\ (Z + Z7), we define the Jacobi theta function and Appell-Lerch sums as follows:

19(@;7_) - Z eﬂu27+27riu(v+%)

veEZ+3
P S ) - n TV, n— —2miv . n
= —igse™ ™ [ (1= ¢")(1 = ™q" (1 — e>™g") (2.1)
n=1
and

. : n(n+1)

emiu (—1)"@27”"7’(]T
3T) = - . 2.2
M(U, v; T) 19(1]; 7_) Z 1— eZﬂ'zuqn ( )

The p-function itself does not transform as a modular form. Zwegers [26] discovered that it can be completed
to a function fi having nice transformation properties.
To describe the completion, we define

R(u) = R(u; 7)
= 3 (- {sgn(y) —E <<u + EEZ;) 21m(7’)> } o=t (2.3)

vEZ+1L

Here E(z) is defined by

E(z) := 2/6_”“2du = sgn(x)(1 — B(x?)),

0
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. 1l
where for positive real x we let S(x) = f;o u”2e” ™ du. Let

) = A, v:7) 2= o, 037) + 5 R~ v37). (2.4)

To state the modular transformation formula of fi(u,v), we need the multiplier of the Dedekind eta-

function 7(7). Let n(t) := g2 12, (1—g¢"). For A = <Z Z) € SLy(Z), we define the multiplier v, (A)
by
D) = (AT F D) (2.5)
M\ ora) = T n(r). .

Lemma 2.1. (/26, Theorem 1.11]). If k,l,m,n € Z, and A = ((cl g) € SLy(Z), then we have

plu+kr+l,v+mr+n)= (—1)k+l+m+”e””(kfmf”m(k*m)(ufv)ﬁ(u, v), (2.6)
and
N u v at +b _3 2 N
. — A d mic(u—v)*/(cT+d) . ) 2.7
(g o ) Ao de 05 7) (2.7

Armed with Lemma 2.1, we prove the mock modularity of V5(¢) in the following lemma.

Lemma 2.2. Let

Then, for A = (CCL Z) € I'1(8), we have

at +b 3,
f(m’—i—d) :l/ng(A)\/CT+df(7'), (2.8)

where
;. a 8b
A= (c/8 d) :
Proof. Equation (5.41) of [15] gives

‘/O(Q) = _qilm(la q87Q) - qilm(17 qga q3)7

where

1 io: (_1)nqn(n—l)/2zn
(2,4/2,4)o0 l—qtzz

n—=—oo

m(x,q,2) =

This together with (2.2) implies

iVo(1) = p(7, 75 87) + (37, 37; 87).
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Thus we have
f(r) =Vo(r) + R(0;87)
— {u(m; 87) + L R(0; 87)} i {M(?ﬁ, 37:87) + L R(0; 87)}
= —ip(r, 7;87) — iu(37, 37; 87), (2.9)

where the last equality follows from (2.4).

ForA(a b

c d) € I'1(8), one can verify that

_[aT+b aT—i-b.SaT—&—b . (aT+b aT—&—b.A,(&_)
Mot ordocrd)  "\ardard ’

where

A= <c78 ?) :

By (2.7), we find that

ar+b ar+b
m A = v 3 (A m ;87). 2.1
(c¢+d’c¢+d’ (87’)) v, (A" )Ver +dji(at + b,at + b; 87) (2.10)

Recall that A € T'1(8) and we have a = 1 (mod 8). Applying (2.6) on the left hand side of (2.10), we find
that

i(ar +b,ar +b;87) = (r,7;87) .

Thus we obtain

_(at+b ar+b _at+b 3, 4 ~
; = V ; 11
M(CT—Fd’CT—Fd’SCT—Fd) v (A)Ver +dii (7, 7:8m) (2.11)

Similarly, one can prove that

A(gar—i—b 3aT—|—b.8aT—|—b>

= 3(A) dii (37,37 87). 2.12
1 d e d et d v, " (A")Ver + dpi (37, 37;87) (2.12)

By (2.9), we find that

at +b faTt+b ar+b _ar+b (_ar+b _ar+b ar+b
- . — : . 2.1
f( ) “‘<m+d’m+d’8 ) it (3 3 8 ) (2.13)

cr+d cT+d cr+d er+d er+d

Substituting (2.11) and (2.12) into (2.13), we prove (2.8). O
2.2. Generalized Dedekind eta-functions

To obtain the modular properties of the infinite products on (1.5) and (1.6), we need some results on the
generalized Dedekind eta-products.
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Define the generalized Dedekind eta function by

Nosg(7) = g3 72(/%) (1—q™), (2.14)
m==£g (mod §)

where P5(t) = {t}? — {t} + § is the second periodic Bernoulli polynomial, {t} = ¢ — [t] is the fractional part
oft, g,0,m c Z+.
Let N be a fixed positive integer. A generalized eta-product of level N is given by

h(r) = H ngf; (1), (2.15)
SIN
0<g<d
where
1 .
-7 itg=4/2,
Ts,g € 2
Z otherwise.

Robins proved the following result.

Theorem 2.3. ([22, Theorem 3]) The function h(7) defined in (2.15) is a modular function on T'1(N) if
()

5Py (2 r5 =0 (mod 2), and
5 9
oggl\is

(i)

To check the modularity of the infinite products on (1.5) and (1.6), we define

4(q* ¢
Bo(r) =g/t [4; %1% (4% 4% (=% ¢Y) (2.16)

and

8(¢* %)

Rs5(T) := q5/8 —.
5(7) [0 ¢*]5. (425 4*)3,

(2.17)

Rewrite Ro(7) and R5(7) in terms of generalized Dedekind eta-functions as follows:

Ra(r) = —ETIE(T)
o =
ng;l(T)ngﬂ(T)ng;S(T)
and
8n(41)
R5 (T = ( 3/2 .

772;1 (7')774;2
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Ra(7) ) 24

Applying Theorem 2.3 and the MAPLE program in [11], we obtain the modular properties of (H(ST)

24
R5(7)
and (n(47) ) .

—

24 24
Lemma 2.4. The functions (RZ(T)> and <R5(T ) are weakly holomorphic modular functions on T'1(8).

n(87) n(4r)
, . . Ro(r) ) 24 Rs(r)\ 24 . .
The first term in the Fourier expansion of (nng)) (resp. (77547_)) ) at the inequivalent cusps & of T'1(8),

up to a nonzero constant, is given by

(1) ¢~ (resp. q~% ) when & =0,
(2) q72 (resp. ¢'') when & = oo,
(3) q”f (resp. ¢*) when & = L 1
(4) ¢~ 5 (resp. ¢~ 1 ) when = L,
(5) ¢'° (resp. q'') when & = 1,
(6) q=2 (resp. ¢'') when & = 2.

We prove the modularity of R3*(7) and R2*(7) in the following lemma.

Lemma 2.5. The functions R3(7) and R2*(7) are weakly holomorphic modular forms of weight 12 on T'1(8).
The first term in the Fourier expansion of R3*(7) (resp. R2*(7)) at the inequivalent cusps & of T'1(8), up to
a nonzero constant, is given by

(1) q=3 (resp. ¢=3) when & =0
(2) q° (resp. ¢'°) when & = 0o
(3) ¢° (resp. ¢*) when & = %
(4) 4 (resp. ) when € = §
(5) ¢'® (resp. ¢'°) when & = %
(6) ¢° (resp. ¢*°) when & = 2

Proof. It is well known that 1(7)?* is a cusp form of weight 12 on SLs(Z). By [17, Proposition 17, p. 127],
we find that 7(87)* (resp. n(47)%*) is a cusp form of weight 12 for T'o(8) (resp. I'o(4)). This together
with Lemma 2.4 proves the first statement of Lemma 2.5. Applying (2.5), one can obtain the g-expansions

24
of n(87)** and n(47)** at the cusps of I'1(8). Combining these with the g-expansions of (?fé:))) and

24
(1;(54(:)) ) in Lemma 2.4, we can prove the second statement in Lemma 2.5. O

3. Proof of Theorem 1.1

We note that all the functions in equations (1.5) and (1.6) are holomorphic when |g| < 1. By analytic
continuation, we only need to show that (1.5) and (1.6) are true when ¢ is in the small interval (—e,¢).
For small enough ¢, it is easy to check that these functions take positive values when g € (—¢, ¢). Since the
infinite products on the right sides of (1.5) and (1.6) never vanish, the ratios

> " 4% q") oo
(Z 9(8n+2)q )/[q;q4]20[q2;q4]§o(q4;q4)oo

n=0

and



R. Mao / J. Math. Anal. Appl. 479 (2019) 122-13/ 129

S n 8(q* ¢")oo
<§g(sn+5)q )/[q; '3 (a% )%

are also holomorphic functions which are positive when ¢ € (—¢, ). Then we only need to prove that the

24th power of the two ratios equal to 1. Thus, recalling the definition of Ry(7) (resp. Rs(7)) in (2.16) (resp.
(2.17)), we find that, to prove Theorem 1.1, it suffices to show that

o 24
<q1/4 > g(8n+ 2)q"> = R3'(7) (3.1)
n=0

and

<q5/8 > g(8n+ 5)61”) = R2'(7). (3.2)

n=0

2mi

Let (g :=e™s . For t = 2,5, we define

fai(r) o= f (((1) g\) T) ;

where f(7) is defined in Lemma 2.2 and

7
)= § 2 halr) (33)

Lemma 3.1. Fquations (3.1) and (3.2) are implied by
P4(r) = R (n), (3-4)
fort=25.

Proof. Assume that f(7) =Y .- __as(n)q". A straightforward calculation gives

oo

flr)=a% > apSn+t)g" (3.5)

n=—oo

By its definition and equation (2.3), we find that the function f(7) has the following g-expansion:

f(r) = i (=" {Sgn <n + %) ~E <<n + %) 2Im(87’)) } g~ @)’

n=-—o00
+> g(n)g™.
n=0

In particular, the non-holomorphic part of f(7) is supported on terms with exponent —(2n + 1)? (which is
congruent to 7 modulo 8). This fact together with (3.5) implies that, for ¢ = 2,5, we have

oo

flr) =5 > g(8n+1t)q", (3.6)

n=0

which proves Lemma 3.1. O
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We see that fi(7) are holomorphic functions. The modular transformation properties of fi(7) are given
as follows.

Lemma 3.2. For A= (Z Z) € I'1(8), we have

(28) <
where
B/._(a+cA (d—a)A+b(1—a)—c>\(/\+b)>
T c —c(A+0b)+d '

Remark 1. We show that 1/77_3(3’) depends only on a, b, ¢,d but not on A.

Proof. For A = (CCL Z) € I'1(8), we have

1 A a b _(a+eX (d—ﬂ)A+b(1ga)—c>\(>\+b) 1 A+b
0 8)\e d) "\ 8 —c(A+b)+d 0 8 )

Since a =d =1 (mod 8) and 8 | ¢, we see that

{a+ex @zatb(-a)—eA(Ath)
b= ( 8¢ —e(A+b)+d €Th(8),

Hence

ne(ZE) =i (5 2) (5 0)r) = (B, 9)

Applying Lemma 2.2, we find that

! <B%)\+b> — (B Wer T df (%”b) . (3.9)

Without loss of generality, we assume ¢ > 0. To examine v, (B’), we need the following formula for v,

(see [5, Theorem 3.4], for example): for A = <Lcl g) € SLo(Z) with ¢ > 0,

vy(A) zexp{;r—; <9+ “+d+12s(—d,c))}7

c

where

s(d,c): = i% (d—z - [d—cr] - %) . (3.10)

Hence
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By (3.10), one easily see that s (¢c(A +b) — d, c¢) = s (—d, c). This means v, (B’) does not depend on A\ when
¢ > 0. By the definition of B’, it is clear that v,(B’) does not depend on A when ¢ = 0. With these facts,
we deduce from (3.3), (3.8) and (3.9) that

ar +b 1~ 1 A b
ea)=sxe (o 2) (¢ a)7)
1
871

(B’ WZCSM (Hgﬂj) (3.11)

Proceeding as in the proof of (3.6), we can show that

A+b
72(8 )\t (T+ + ) gtqg Zg(8n+t)qn _ gtft(’r)-
n=0

Substituting this into (3.11), we obtain (3.7). O

It is well known that the multiplier v, is a 24th root of unity. Thus we have

24 (T b\ 12 (24
2D =+ 2 o), (312)

for A = (lcl Z) € I'1(8). Hence f2*(7) are weakly holomorphic modular forms of weight 12 on I';(8). We
describe the behaviors of f24(7) at the cusps of I';(8) in the following lemma.

Lemma 3.3. The first term in the Fourier expansion of f3*(7) (resp. f24(7)) at the cusp &, up to a nonzero
constant, is given by

(1) ¢=3 (resp. ¢=3) when £ =0
(2) q6 (resp. q'°) when & =
(3) ¢ (resp. ¢*) when € =
(4) 4 (resp. q~°) when € = §
(5) ¢*8 (resp. q¢'5) when & =

(6) ¢° (resp. q*°) when & = %

Proof. The proof is a straightforward but tedious calculation involving (2.7) and (3.3). We examine the
Fourier expansions of fi(7) at the cusp 0 and omit the others which could be obtained similarly.

By (3.3), we find that
7
(%) =5 me (%) - ch (%)
A=0

Applying (2.9), we obtain

f A —1 _ AMM—1 A—1 M —1 N 3)\7—13/\7'—1')\7'—1
8T_M8T’87"T M8T787’77'.

Using (2.7), for k = 1,3, we find that
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4 k)\T—lvk)\T—l;AT—l AR k()\T—l),k‘()\T—l);T ,
8T 8T T 8 8

where (* is a root of unity depends on A. Hence we have

ft(1) szCSMC S ( 7—17/{@78—1)”)_ (3.13)

k=1,3

We see that, to examine the behavior of f;(7) at the cusp 0, one need to check the Fourier expansions of the

functions [ (M, k()‘g . ) We also note that, since f;(7) are holomorphic when t = 2,5, it suffice to

consider the holomorphic part of 1 (%, w; T

Recall the definition of the Appell-Lerch sums in (2.2). We find that

kmi(AT—1) 2knmi(AT—1) n(n41)

. (k:(/\T — 1)7 k(AT — 1);T> _ e s Z (—1)"e#qT ' (3.14)

_ kri(AT—1)
8 8 19(’““}; 1);7) oy 1— e gn

By the product expansion (2.1), we obtain

—1 1 —kmi(Ar—1
9 (7]{()\78 );T> = —igse Q=1

1—[ 1 B q 1 B erTri(g\‘r—l) qn_l)(l e —2km‘éx7—1) qn), (315)

Substituting (3.1
expansion of p ( , = ) is given by

o (3.14), setting A = 0 and simplifying, we find that the first term in the Fourier

(1—¢8)

For 1 <A <7, let 0 < A* <7 such that A* = kX (mod 8). Since k = 1,3, it is easy to see that A* > 1.
Using (2.6), we find that

KO —1) kv —1) \ (AT —k Mr—k
2 S ) S T =M 3 ’ 3 T ) -

k(At—1) k(AT—1)

Thus the first term in the Fourier expansion of ( T g

;T) up to a nonzero constant is given by

k(AT—1) k(AT—1),
8 ) 8 )

Combining these facts, we deduce from (3.13) that the first term in the Fourier expansion of fi(7) at the

In particular, we see that u 7') is holomorphic at co when A > 0.

cusp 0 is given by

ool

- (s ¢ _
S )

This proves the statement (1). O
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Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. We need to prove (3.4). Since the infinite products R?*(7) never vanish on H, the
f1524(7') ft24(7')

functions R are holomorphic on H. Applying Lemma 2.5 and Lemma 3.3, we find that Ry are
24
holomorphic modular functions on I'y(8). This means that 1’%24((:)) must be constants. Checking the first

terms of the g-expansion for f2*(7) and R?*(7), we find that

24(r)
RI(r) "

This completes the proof of Theorem 1.1. 0O
4. Proof of Corollary 1.2
Rewrite the infinite product on the right side of (1.6) as follows:

7* q*) o (0% ¢ oo (0% %)%

(3 (a% M3 [6q%3 (%5 a4

50000 (050005 _ (5 0)eel05005 5
(4 0"5%(¢% M3 (65 (6% a3 (6% 67000 (415 ¢%0)
Using Jacobi’s triple product identity [6, pp. 33-36]
> .2
(2, -0/%, %) = Y Zq,
j=—00
we find that
e 2
(@ q" 0" = > (—1)q%.
j=—0o0
Thus we obtain
4. 4 x(L1)ig%?
g _ 2D (mod 5). (4.1)

(75915, (¢% a3 (0% *°) o0 (%5 ¢2%) o

Noting that 252 = 0,2 or 3 (mod 5), we deduce from (4.1) that the coefficients of ¢" with n = 1,4 (mod 5)

4, 4
in the g-expansion of [ UBLWES

TR (g are multiples of 5. This together with (1.6) proves Corollary 1.2.
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