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1. Introduction

A not necessarily unital operator algebra A is said to be hyperrigid if given any non-degenerate 
∗-homomorphism

τ : C∗
env(A) −→ B(H),

the only completely positive, completely contractive extension of the restricted map τ|A is τ itself. Arveson 
coined the term hyperrigid in [1] but he was not the only one considering properties similar to this at the 
time, e.g. [5].

There are many examples of hyperrigid operator algebras such as those which are Dirichlet, but the 
situation was not very clear in the case of tensor algebras of C∗-correspondences. It was known that the tensor 
algebra of a row-finite graph is hyperrigid [5], [6] and Dor-On and Salomon [4] showed that row-finiteness 
completely characterizes hyperrigidity for such graph correspondences. These approaches, while successful, 
did not lend themselves to a more general characterization.

The authors, in a previous work [12], developed a sufficient condition for hyperrigidity in tensor algebras. 
In particular, if Katsura’s ideal acts non-degenerately on the left then the tensor algebra is hyperrigid. The 
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motivation was to provide a large class of hyperrigid C∗-correspondence examples as crossed products of 
operator algebras behave in a very nice manner when the operator algebra is hyperrigid. This theory was in 
turn leveraged to provide a positive confirmation to the Hao-Ng isomorphism problem in the case of graph 
correspondences and arbitrary groups. For further reading on the subject please see [10–12].

In this paper, we provide a necessary condition for the hyperrigidity of a tensor algebra, that a 
C∗-correspondence cannot be σ-degenerate, and show that this completely characterizes the situation where 
the C∗-correspondence is coming from a topological graph, which generalizes both the graph correspondence 
case and the semicrossed product arising from a multivariable dynamical system [3].

1.1. Regarding hyperrigidity

The reader familiar with the literature recognizes that in our definition of hyperrigidity, we are essentially 
asking that the restriction on A of any non-degenerate representation of C∗

env(A) possesses the unique 
extension property (abbr. UEP). According to [4, Proposition 2.4] a representation ρ : A → B(H), degenerate 
or not, has the UEP if and only if ρ is a maximal representation of A, i.e., whenever π is a representation 
of A dilating ρ, then π = ρ ⊕ π′ for some representation π′. Our definition of hyperrigidity is in accordance 
with Arveson’s nomenclature [1], our earlier work [8,12] and the works of Dor-On and Salomon [4] and 
Salomon [17], who systematized quite nicely the non-unital theory.

An alternative definition of hyperrigidity for A may ask that any representation of C∗
env(A), not just the 

non-degenerate ones, possesses the UEP when restricted on A. It turns out that for operator algebras with 
a positive contractive approximate unit,1 such a definition would be equivalent to ours [17, Proposition 3.6 
and Theorem 3.9]. However when one moves beyond operator algebras with an approximate unit, there 
are examples to show that the two definitions differ. One such example is the non-unital operator algebra 
AV generated by the unilateral forward shift V . It is easy to see that AV is hyperrigid according to our 
definition and yet the zero map, as a representation on H = C, does not have the UEP. (See for instance 
[17, Example 3.4].)

2. Main results

A C∗-correspondence (X, C, ϕX) (often just (X, C)) consists of a C∗-algebra C, a Hilbert C-module (X, 〈 , 〉)
and a (non-degenerate) ∗-homomorphism ϕX : C → L(X) into the C∗-algebra of adjointable operators on 
X.

An isometric (Toeplitz) representation (ρ, t, H) of a C∗-correspondence (X, C) consists of a non-degenerate 
∗-homomorphism ρ : C → B(H) and a linear map t : X → B(H), such that

ρ(c)t(x) = t(ϕX(c)(x)), and

t(x)∗t(x′) = ρ(〈x, x′〉),

for all c ∈ C and x, x′ ∈ X. These relations imply that the C∗-algebra generated by this isometric represen-
tation equals the closed linear span of

{ρ(c) | c ∈ C} ∪ {t(x1) · · · t(xn)t(y1)∗ · · · t(ym)∗ | xi, yj ∈ X}.

Moreover, there exists a ∗-homomorphism ψt : K(X) → B(H), such that

ψt(θx,y) = t(x)t(y)∗,

1 Which includes all operator algebras appearing in this paper.
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where K(X) ⊂ L(X) is the subalgebra generated by the operators θx,y(z) = x〈y, z〉, x, y, x ∈ X, which are 
called by analogy the compact operators.

The Cuntz-Pimsner-Toeplitz C∗-algebra TX is defined as the C∗-algebra generated by the image of 
(ρ∞, t∞), the universal isometric representation. This algebra is universal in the sense that for any other 
isometric representation (ρ, t, H) of (X, C), there exists a ∗-homomorphism ρ � t : TX → B(H) onto the 
C∗-algebra generated by (ρ, t, H) in the most natural way.

The tensor algebra T +
X of a C∗-correspondence (X, C) is the norm-closed subalgebra of TX generated by 

ρ∞(C) and t∞(X). See [15] for more on these constructions.
Consider Katsura’s ideal

JX := kerϕ⊥
X ∩ ϕ−1

X (K(X)).

An isometric representation (ρ, t) of (X, C, ϕX) is said to be covariant (or Cuntz-Pimsner) if and only if

ψt(ϕX(c)) = ρ(c),

for all c ∈ JX . The Cuntz-Pimsner algebra OX is the universal C∗-algebra for all isometric covariant 
representations of (X, C), see [14] for further details. Furthermore, the first author and Kribs [9, Lemma 
3.5] showed that OX contains a completely isometric copy of T +

X and C∗
env(T +

X ) � OX .
We turn now to the hyperrigidity of tensor algebras. In [12] a sufficient condition for hyperrigidity was 

developed, Katsura’s ideal acting non-degenerately on the left of X. To be clear, non-degeneracy here means 
that [ϕX(JX)X] = X, where [ · ] denotes closed linear span. However Cohen’s factorization theorem implies 
that we actually have ϕX(JX)X = X.

Theorem 2.1 (Theorem 3.1, [12]). Let (X, C) be a C∗-correspondence. If ϕX(JX) acts non-degenerately on 
X, then T +

X is a hyperrigid operator algebra.

The proof shows that if τ ′ : OX −→ B(H) is a completely contractive and completely positive map that 
agrees with a ∗-homomorphism of OX on T +

X then the multiplicative domain of τ ′ must be everything. 
This is accomplished through the multiplicative domain arguments of [2, Proposition 1.5.7] and the use of 
Kasparov’s Stabilization Theorem. In earlier versions of [12], Theorem 2.1 was claimed only for countably 
generated C∗-correspondences but a slight modification of the earlier proof makes it work for arbitrary 
C∗-correspondences.

A C∗-correspondence (X, C) is called regular if and only if C acts faithfully on X by compact operators, 
i.e., JX = C. We thus obtain the following which also appeared in [12].

Corollary 2.2. The tensor algebra of a regular C∗-correspondence is necessarily hyperrigid.

We seek a converse to Theorem 2.1.

Definition 2.3. Let (X, C) be a C∗-correspondence, let JX be Katsura’s ideal and let σ : C → B(H) be a 
representation of C. We say that ϕX(JX) acts σ-degenerately on X if

ϕX(JX)X ⊗σ H 
= X ⊗σ H.

Remark 2.4. In particular, if there exists n ∈ N so that

(ϕX(JX) ⊗ id)X⊗n ⊗σ H 
= X⊗n ⊗σ H,

then by considering the Hilbert space K := X⊗n−1 ⊗σ H, we see that
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ϕX(JX)X ⊗σ K 
= X ⊗σ K,

and so ϕX(JX) acts σ-degenerately on X.

The following gives a quick example of a σ-degenerate action. Note that this is possibly stronger than 
having a not non-degenerate action.

Proposition 2.5. Let (X, C) be a C∗-correspondence. If (ϕX(JX)X)⊥ 
= {0}, then there exists a representa-
tion σ : C → B(H) so that ϕX(JX) acts σ-degenerately on X.

Proof. Let 0 
= f ∈ (ϕX(JX)X)⊥. Let σ : C → B(H) be a ∗-representation and h ∈ H so that 
σ
(
〈f, f〉1/2

)
h 
= 0. Then,

〈f ⊗σ h, f ⊗σ h〉 = 〈h, σ((〈f, f〉)h〉 = ‖σ
(
〈f, f〉1/2

)
h‖ 
= 0.

A similar calculation shows that

0 
= f ⊗σ h ∈ (ϕX(JX)X ⊗σ H)⊥

and we are done. �
We need the following

Lemma 2.6. Let (X, C) be a C∗-correspondence and (ρ, t) an isometric representation of (X, C) on H.

(i) If M ⊆ H is an invariant subspace for (ρ � t)(T +
X ), then the restriction (ρ|M , t|M) of (ρ, t) on M is 

an isometric representation.
(ii) If ρ(c)h = ψt(ϕX(c))h, for all c ∈ JX and h ∈ [t(X)H]⊥, then (ρ, t) is a Cuntz-Pimsner representa-

tion.

Proof. (i) If p is the orthogonal projection on M, then p commutes with ρ(C) and so ρ|M(·) = pρ(·)p is a 
∗-representation of C.

Furthermore, for x, y ∈ X, we have

t|M(x)∗t|M(y) = pt(x)∗pt(y)p

= pt(x)∗t(y)p

= pρ(〈x, y〉)p = ρ|M(〈x, y〉)

and the conclusion follows.
(ii) It is easy to see on rank-one operators and therefore by linearity and continuity on all compact 

operators K ∈ K(X) that

t(Kx) = ψt(K)t(x), x ∈ X.

Now if c ∈ JX , then for any x ∈ X and h ∈ H we have

ρ(c)t(x)h = t(ϕX(c)x)h = ψt(ϕX(c))t(x)h.

By assumption ρ(c)h = ψt(ϕX(c))h, for any h ∈ [t(X)H]⊥ and the conclusion follows. �
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Theorem 2.7. Let (X, C) be a C∗-correspondence and assume that there exists a representation σ : C → B(H)
so that ϕX(JX) acts σ-degenerately on X. Then the tensor algebra T +

X is not hyperrigid.

Proof. Let σ : C → B(H) so that

ϕX(JX)X ⊗σ H 
= X ⊗σ H

and let M0 := (ϕX(JX)X ⊗σ H)⊥.
We claim that

(ϕX(JX) ⊗ I)M0 = {0}. (1)

Indeed for any f ∈ M0 and j ∈ JX we have

〈
(ϕX(j) ⊗ I)f , (ϕX(j) ⊗ I)f

〉
= 〈f, (ϕX(j∗j) ⊗ I)f〉 = 0

since f ∈ (ϕX(JX)X ⊗σ H)⊥. This proves the claim.
We also claim that

(ϕX(C) ⊗ I)M0 = M0. (2)

Indeed, since ϕX(C) acts non-degenerately on X, we have

(ϕX(C) ⊗ I)(X ⊗σ H) = ϕX(C)X ⊗σ H = X ⊗σ H. (3)

Now ϕX(JX)X ⊗σ H is invariant and therefore reducing for ϕX(C) ⊗ I. Since M0 = (ϕX(JX)X ⊗σ H)⊥, 
we obtain

(ϕX(C) ⊗ I)M0 ⊆ M0. (4)

Now

(ϕX(C) ⊗ I)(X ⊗σ H) =
(
(ϕX(C) ⊗ I)(ϕX(JX)X ⊗σ H)

)
⊕ (ϕX(C) ⊗ I)M0

⊆ (ϕX(C)JX ⊗σ H) ⊕M0.

If the inclusion in (4) was proper, then the above inclusion would also be proper and this would contradict 
(3). Therefore the inclusion in (4) is actually an equality and the proof of the claim is complete.

Using the subspace M0 we produce a Cuntz-Pimsner representation (ρ, t) of (X, C) as follows. Let 
(ρ∞, t∞) be the universal representation of (X, C) on the Fock space F(X) = ⊕∞

n=0X
⊗n, X⊗0 := C. Let

ρ0 : C −→ B(F(X) ⊗σ H); c �−→ ρ∞(c) ⊗ I

t0 : X −→ B(F(X) ⊗σ H);x �−→ t∞(x) ⊗ I.

Define

M : = 0 ⊕M0 ⊕ (X ⊗M0) ⊕ (X⊗2 ⊗M0) ⊕ . . .

= [(ρ0 � t0)(T +
X )(0 ⊕M0 ⊕ 0 ⊕ 0 ⊕ . . . )] ⊆ F(X) ⊗σ H,

with the second equality following from (2). Clearly, M is an invariant subspace for (ρ0 � t0)(T +
X ).
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Let ρ := ρ0|M and t := t0|M . By Lemma 2.6(i), (ρ, t) is an isometric representation of (X, C). We claim 
that (ρ, t) is actually Cuntz-Pimsner.

Indeed by Lemma 2.6(ii) it suffices to examine whether ψt(ϕX(j))h = ρ(j)h, for any h ∈ M � t(X)M. 
Note that since

[t(X)M] = 0 ⊕ 0 ⊕ (X ⊗M0) ⊕ (X⊗2 ⊗M0) ⊕ ...,

we have that

M� t(X)M = 0 ⊕M0 ⊕ 0 ⊕ 0 ⊕ . . . .

From this it follows that for any h ∈ M � t(X)M we have

t0(x)∗h ∈ (C ⊗σ H) ⊕ 0 ⊕ 0 ⊕ ..., x ∈ X

and so in particular for any j ∈ JX we obtain

ψt(ϕX(j))h ∈ t0|M(X)(t0|M)(X)∗h = {0}.

On the other hand,

ρ(j)h ∈ 0 ⊕ (ϕX(JX) ⊗ I)M0 ⊕ 0 ⊕ 0 ⊕ · · · = {0},

because of (2). Hence (ρ, t) is Cuntz-Pimsner.
At this point by restricting on T +

X , we produce the representation ρ � t |T +
X

of T +
X coming from a 

∗-representation of its C∗-envelope OX , which admits a dilation, namely ρ0 � t0 |T +
X

. If we show now that 
ρ0 � t0 |T +

X
is a non-trivial dilation of ρ � t |T +

X
, i.e. M is not reducing for (ρ0 � t0)(T +

X ), then ρ � t |T +
X

is 
not a maximal representation of T +

X . Proposition 2.4 [4] shows ρ � t |T +
X

does not have the UEP and so T +
X

is not hyperrigid, as desired.
Towards this end, note that

M⊥ = C ⊕ (ϕX(JX)X ⊗σ H) ⊕ (X ⊗M0)⊥ ⊕ . . .

and so

t0(X)M⊥ = 0 ⊕ (XC ⊗σ H) ⊕ 0 ⊕ 0 ⊕ · · · � M⊥

Therefore M⊥ is not an invariant subspace for (ρ0 � t0)(T +
X ) and so M is not a reducing subspace for 

(ρ0 � t0)(T +
X ). This completes the proof. �

The previous result raises the question whether ϕX(JX) acting σ-nondegenerately on X, for all possible 
representations σ of C, is actually equivalent to ϕX(JX) acting non-degenerately on X. In the next section 
we will see that this is indeed the case for C∗-correspondences coming from topological graphs. We suspect 
that the same is true for arbitrary C∗-correspondences but we have not been able to establish it.

3. Topological graphs

A broad class of C∗-correspondences arises naturally from the concept of a topological graph. For us, a 
topological graph G = (G0, G1, r, s) consists of two σ-locally compact2 spaces G0, G1, a continuous proper 

2 Locally compact spaces which are a countable union of compact subspaces.
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map r : G1 → G0 and a local homeomorphism s : G1 → G0. The set G0 is called the base (vertex) space 
and G1 the edge space. When G0 and G1 are both equipped with the discrete topology, we have a discrete 
countable graph.

With a given topological graph G = (G0, G1, r, s) we associate a C∗-correspondence XG over C0(G0). 
The right and left actions of C0(G0) on Cc(G1) are given by

(fFg)(e) = f(r(e))F (e)g(s(e))

for F ∈ Cc(G1), f, g ∈ C0(G0) and e ∈ G1. The inner product is defined for F, H ∈ Cc(G1) by

〈F |H〉 (v) =
∑

e∈s−1(v)

F (e)H(e)

for v ∈ G0. Finally, XG denotes the completion of Cc(G1) with respect to the norm

‖F‖ = sup
v∈G0

〈F |F 〉 (v)1/2. (5)

See [13] and [16, Chapter 9] for further reading on topological graphs and the associated C∗-algebras.
When G0 and G1 are both equipped with the discrete topology, then the tensor algebra T +

G := T +
XG

associated with G coincides with the quiver algebra of Muhly and Solel [15].
Given a topological graph G = (G0, G1, r, s), we can describe the ideal JXG

as follows. Let

G0
sce := {v ∈ G0 | v has a neighborhood V such that r−1(V ) = ∅}

=
(
r(G1)c)◦

(6)

and

G0
fin := {v ∈ G0 | v has a neighborhood V such that r−1(V ) is compact}

Both sets are easily seen to be open and in [13, Proposition 1.24] Katsura shows that

kerϕXG
= C0(G0

sce) and ϕ−1
XG

(K(XG)) = C0(G0
fin).

From the above it is easy to see that JXG
= C0(G0

reg), where

G0
reg := G0

fin\G0
sce.

We need the following

Lemma 3.1. Let G = (G0, G1, r, s) be a topological graph. Then r−1(G0
reg

)
= G1 if and only if r : G1 → G0

is a proper map satisfying r(G1) ⊆
(
r(G1)

)◦.

Proof. Notice that

r−1(G0
reg) = r−1(G0

fin) ∩ r−1(G0
sce)c

and so r−1(G0
reg

)
= G1 is equivalent to r−1(G0

fin) = r−1(G0
sce)c = G1.

First we claim that r−1(G0
fin) = G1 if and only if r is a proper map. Indeed, assume that r−1(G0

fin) = G1

and let K ⊆ r(G1) compact in the relative topology. For every x ∈ K, let Vx be a compact neighborhood 
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of x such that r−1(Vx) is compact and so r−1(Vx ∩ K)) is also compact. By compactness, there exist 
x1, x2, . . . , xn ∈ K so that K = ∪n

i=1(Vxi
∩K) and so

r−1(K) = ∪n
i=1r

−1(Vxi
∩K)

and so r−1(K) is compact.
Conversely, if r is proper then any compact neighborhood V of any point in G0 is inverted by r−1 to a 

compact set and so r−1(G0
fin) = G1.

We now claim that r−1(G0
sce) = ∅ if and only if r(G1) ⊆

(
r(G1)

)◦.
Indeed, r−1(G0

sce) = ∅ is equivalent to r(G1) ⊆
(
G0

sce
)c. From (6) we now have that

G0
sce = (r(G1)c)◦

and so r−1(G0
sce) = ∅ is equivalent to

r(G1) ⊆
(
G0

sce
)c =

(
(r(G1)c)◦

)c

=
(
r(G1)

)◦
,

as desired. �
If G = (G0, G1, r, s) is a topological graph and S ⊆ G1, then N(S) denotes the collection of continuous 

functions F ∈ XG with F|S = 0, i.e., vanishing at S. The following appears as Lemma 4.3(ii) in [7].

Lemma 3.2. Let G = (G0, G1, r, s) be a topological graph. If S1 ⊆ G0, S2 ⊆ G1 closed, then

N(r−1(S1) ∪ S2) = span{(f ◦ r)F | f|S1 = 0, F|S2 = 0}

Theorem 3.3. Let G = (G0, G1, r, s) be a topological graph and let XG the C∗-correspondence associated 
with G. Then the following are equivalent

(i) the tensor algebra T +
XG

is hyperrigid
(ii) ϕ(JXG

) acts non-degenerately on XG

(iii) r : G1 → G0 is a proper map satisfying r(G1) ⊆
(
r(G1)

)◦

Proof. If ϕ(JXG
) acts non-degenerately on XG, then Theorem 2.1 shows that T +

XG
is hyperrigid. Thus (ii) 

implies (i).
For the converse, assume that ϕ(JXG

) acts degenerately on XG. If we verify that ϕ(JXG
) acts 

σ-degenerately on XG, then Theorem 2.7 shows that T +
XG

is not hyperrigid and so (i) implies (ii).
Towards this end note that JXG

= C0(U) for some proper open set U ⊆ G0. (Actually we know that 
U = G0

reg but this is not really needed for this part of the proof!) Hence

ϕ(JXG
)XG = span{(f ◦ r)F | f|Uc = 0}

= N(r−1(U)c),
(7)

according to Lemma 3.2.
Since ϕ(JXG

) acts degenerately on XG, (7) shows that r−1(U)c 
= ∅. Let e ∈ r−1(U)c and let F ∈
Cc(G1) ⊆ XG with F (e) = 1 and F (e′) = 0, for any other e′ ∈ G1 with s(e′) = s(e). Consider the one 
dimensional representation σ : C0(G0) → C coming from evaluation at s(e). We claim that

ϕXG
(JXG

)XG ⊗σ C 
= XG ⊗σ C.
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Indeed for any G ∈ ϕ(JXG
)XG = N(r−1(U)c) we have

〈F ⊗σ 1, G⊗σ 1〉 = 〈1, σ(〈F,G〉1) = 〈F,G〉s(e)

=
∑

s(e′)=s(e)

F (e′)G(e′)

= F (e)G(e) = 0.

Furthermore,

〈F ⊗σ 1, F ⊗σ 1〉s(e) = |F (e)|2 = 1

and so 0 
= F ⊗σ 1 ∈ (ϕXG
(JXG

)XG ⊗σ C)⊥. This establishes the claim and finishes the proof of (i) implies 
(ii).

Finally we need to show that (ii) is equivalent to (iii). Notice that (7) implies that ϕ(JXG
) acts degen-

erately on XG if and only if

r−1(U)c = r−1(G0
reg)c = ∅.

The conclusion now follows from Lemma 3.1. �
The statement of the previous Theorem takes its most pleasing form when G0 is a compact space. In 

that case T +
X is hyperrigid if and only if is G1 is compact and r(G1) ⊆ G0 is clopen.
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