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Boundedness and asymptotic behavior to a chemotaxis-fluid system

with singular sensitivity and logistic source

Jie Wu,∗ Helio Natal†

School of Mathematical Sciences, University of Electronic Science and Technology of China,
Chengdu 611731, China

Abstract: In this paper, we consider the following chemotaxis-fluid model with singular sensitivity and logistic source

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nt + u · ∇n = Δn − χ∇ · (
n
c
∇c) + rn − μnk, x ∈ Ω, t > 0,

ct + u · ∇c = Δc − c + n, x ∈ Ω, t > 0,

ut + λ (u · ∇)u = Δu + ∇P + n∇φ, x ∈ Ω, t > 0,

∇ · u = 0, x ∈ Ω, t > 0

in a bounded domain Ω ⊂ RN (N = 2, 3) with smooth boundary ∂Ω. Under the non-flux boundary conditions for n
and c, and the non-slip boundary condition for u, we establish the global boundedness and the time-decay rates of the

classical solutions for any k > 1 provided that χ satisfies suitable restrictions.

Keywords: Chemotaxis-fluid; Singular sensitivity; Logistic source; Asymptotic behavior.

AMS (2000) Subject Classifications: 35K55, 35Q92, 35Q35, 92C17

1 Introduction
In biology, one of the most important chemotactic models is the Keller-Segel system, which was introduced by Keller

and Segel [15] to describe the aggregation of certain types of bacteria. In mathematics, the Keller-Segel system consists

of two parabolic equations ⎧⎪⎨⎪⎩nt = Δn − ∇ · (nχ(n, c)∇c
)
, x ∈ Ω, t > 0,

ct = Δc − c + n, x ∈ Ω, t > 0.
(1.1)

Here the unknowns n = n(t, x) and c = c(t, x) denote the cell density and chemical signal concentration, respectively.

Usually, the physical domainΩ ⊂ RN is assumed to be a bounded domain with smooth boundary ∂Ω. The given function

χ denotes the chemotactic sensitivity.

In recent years, many scholars have done a lot of nice works on system (1.1) in different spatial dimensions and with

different assumptions on the sensitive function χ. For example, for the singular chemotactic sensitivity of the form

χ(n, c) :=
χ0

c with χ0 > 0, which can be derived from the Weber-Fechner laws, it was shown in [26] that all solutions of

the non-flux initial-boundary value problem for system (1.1) are global in time when N = 1. The same conclusion holds

for N = 2 [25] and χ0 <
5
2

if the initial data is radial or is non-radial under the further restriction χ0 < 1. In case of

N ≥ 2, there are bounded global classical solutions if 0 < χ0 <
√

2
N [10], and there exists at least a global weak solution

[51] if 0 < χ0 <
√

N+2
3N+4

, while there possesses a global generalized solution if

0 < χ0 <

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∞, N = 2,√
8, N = 3,

N
N − 2

, N ≥ 4
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[18]. Under the fast signal diffusion assumption, system (1.1) could be simplified to a parabolic-elliptic system

⎧⎪⎨⎪⎩nt = Δn − ∇ · (nχ(n, c)∇c), x ∈ Ω, t > 0,

0 = Δc − c + n, x ∈ Ω, t > 0
(1.2)

(for the rigorous verification of this limit process, we may refer to the recent pioneering work Wang-Winkler-Xiang

[38]). For the non-flux initial-boundary value problem of system (1.2) with χ(n, c) :=
χ0

c , all radial classical solutions

are global-in-time if either N = 2 and χ0 > 0 or N ≥ 3 and χ0 <
2

N−2
[24], and there exists a unique global bounded

classical solution if N ≥ 1 and χ0 <
2
N [11], while there exist generalized solutions if N ≥ 2 and χ < N

N−2
[2]. The

finite-time blow-up in low-dimensional Keller-Segel system (1.1) in the ball with logistic-type superlinear degradation

has also been investigated by Winkler [49].

When the bacteria or microorganisms live in the fluid, the dynamics of chemotaxis is intimately related to the sur-

rounding environment. More than a decade ago, Tuval et al. [35] proposed a coupled cell-fluid model to describe the

dynamics of swimming bacteria, which in particular takes into account the transport effect of the viscous fluids:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

nt + u · ∇n = Δn − ∇ · (nχ(n, c)∇c), x ∈ Ω, t > 0,

ct + u · ∇c = Δc + g(n, c), x ∈ Ω, t > 0,

ut + λ (u · ∇)u = Δu + ∇P + n∇φ, x ∈ Ω, t > 0,

∇ · u = 0, x ∈ Ω, t > 0.

(1.3)

Here, n and c are given as before, while u = u(t, x) and P = P(t, x) denote the velocity field and the pressure of the fluid,

respectively. The given functions χ(n, c) and g(n, c) describe the chemotactic sensitivity and the signal consumption

or production. The scalar valued function φ is a given potential function. It can be produced by the different physical

mechanism such as gravity. The parameter λ = 0 or λ = 1 denotes the Stokes or Navier-Stokes flows, respectively. In the

case of signal consumption (e.g., g(n, c) := −nc), for the Cauchy problem of system (1.3), the global existence of classical

solutions around a constant steady state in two dimensional case with λ = 1 or of weak solutions in three-dimensional

setting with λ = 0 was first proved by Duan-Lorz-Markowich [7], while for the no-flux and no-slip initial-boundary value

problem, Winkler [50] removed the smallness assumptions on the initial data and Winkler [52, 53] further investigated

the eventual smoothness of weak solutions. The stabilization and convergence rate were also investigated by Winkler

[54] and Zhang-Li [56]. Then Duan-Li-Xiang [6] established the global existence of weak or classical solutions for both

the Cauchy problem and initial-boundary value problem with relaxed restrictions on χ and g. Recently, Wang-Winkler-

Xiang [39] obtained the first rigorous mathematical result on a small-convection limit (i.e. λ → 0) in chemotaxis-fluid

system (1.3) and supplemented the previously gained knowledge mainly based on numerical experiments. Some variant

models have also been studied by many scholars, who still mainly concern the global solvability and stabilization of

system (1.3) with the logistic source terms [17, 21, 22], rotational sensitivity functions [4, 5, 36], and nonlinear cell

diffusion [8, 40, 41]. Meanwhile, Peng and Xiang [28, 29] introduced several new technique to investigate the global

existence of classical solutions to system (1.3) in a three-dimensional unbounded domain with boundary.

On the other hand, a particular motivation for the signal production mechanism in system (1.3) (e.g., g(n, c) = n − c)

comes from the phenomenon of broadcast spawning. In [23], it was shown that initial-boundary problem of the two

dimensional system (1.3) possesses a global bounded solution for χ(n, c) ≡ 1 and λ = 0. Due to the fact of finite time

blow-up in the fluid-free system for the case of χ(n, c) ≡ 1, the suitable saturation is introduced in chemotaxis-fluid

system. For example, when χ(n, c) is a non-constant scalar function, Winkler [48] showed the existence of a global

bounded classical solution to the three dimensional system (1.3) with g(n, c) = n − c and χ(n, c) = (1 + n)−α (α > 1
3
),

while when χ(n, c) is a tensor-valued function with saturation, we may refer to [19, 37, 42, 43] for the global solvability

of classical solutions in two or three dimensional setting. We also mention the more complicated variants, e.g., involving

logistic source terms [33, 45] as well as nonlinear diffusion and rotational flux [20, 27].

Recent years, many scholars have paid their attention to system (1.3) with singular sensitivity function by taking

χ(n, c) as
χ
c (the latter χ is a constant), which is motivated more or less by the fluid-free work Wang-Xiang-Yu [44],

where the global existence, asymptotic decay rates and diffusion convergence rate of solutions have been investigated

by the method of energy estimates. Taking into account the effect of fluid, Black [1] proved that the global generalized

solution will be eventual smoothness provided that the initial data is appropriately small. Under the condition that

0 < χ <
√

2
N , Black-Lankeit-Mizukam [3] recently investigated the signal production case and proved the global

existence of classical solutions for λ = 0 and N = 3 or λ ∈ {0, 1} and N = 2.

Motivated by the above works, in this paper, we let Ω ⊂ RN(N = 2, 3) be a bounded domain with smooth boundary

with outer normal vector ν and investigate the following chemotaxis-fluid system with singular sensitivity and logistic
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source: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nt + u · ∇n = Δn − χ∇ · (
n
c
∇c) + rn − μnk, x ∈ Ω, t > 0,

ct + u · ∇c = Δc − c + n, x ∈ Ω, t > 0,

ut + λ (u · ∇)u = Δu + ∇P + n∇φ, ∇ · u = 0, x ∈ Ω, t > 0,

∂νn = ∂νc = 0, u = 0, x ∈ ∂Ω, t > 0

(1.4)

together with initial data

n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), (1.5)

where χ, r, μ > 0 and k > 1 are constants and n0, c0, u0 and φ satisfy

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 ≤ n0(x) ∈ C0(Ω̄) and n0(x) � 0, x ∈ Ω̄,
c0(x) ∈ W1,ϑ(Ω), inf

x∈Ω
c0(x) > 0,

u0 ∈ D(Aα), φ ∈ C2(Ω̄)

(1.6)

for some ϑ > N and α ∈ ( N
4
, 1) with A := −PΔ denoting the Stokes operator in L2

σ(Ω) :=
{
ϕ ∈ L2(Ω) | ∇ · ϕ = 0

}
under

homogeneous Dirichlet boundary conditions. The chemotactic sensitivity parameter χ satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 < χ < min

⎧⎪⎪⎨⎪⎪⎩2
√

r,

√
2

N

⎫⎪⎪⎬⎪⎪⎭ , if 1 < k ≤ 2,

0 < χ < min

⎧⎪⎪⎨⎪⎪⎩
√

4r(r + 1)k + r2 − r
k

,
2√

k(k − 1)(k − 2)
,

√
2

N

⎫⎪⎪⎬⎪⎪⎭ , if k > 2.

(1.7)

Under these assumptions, we can establish the global well-posedness and time-decay estimates as follows.

Theorem 1.1 Let Ω ⊂ RN be a bounded domain with smooth boundary. Suppose that (1.6) and (1.7) hold. If N = 3 and
λ = 0 or N = 2 and λ ∈ {0, 1}, then system (1.4)-(1.5) possesses a global classical solution (n, c, u, P) which enjoys the
regularity properties ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n ∈ C0(Ω̄ × [0,∞)
) ∩C2,1(Ω̄) × (0,∞)

)
,

c ∈ C0(Ω̄ × [0,∞)
) ∩C2,1((Ω̄) × (0,∞)

) ∩ L∞
(
[0,∞); W1,ϑ(Ω)

)
,

u ∈ C0(Ω̄ × [0,∞)
) ∩C2,1(Ω̄) × (0,∞)

)
,

P ∈ C1,0(Ω̄ × [0,∞)
)
.

(1.8)

Moreover, this solution is uniformly bounded in the sense that

‖n(·, t)‖L∞(Ω) + ‖c(·, t)‖W1,ϑ(Ω) + ‖Aαu(·, t)‖L2(Ω) ≤ M for all t ∈ (0,∞) (1.9)

with some positive constant M.

Theorem 1.2 Let k ≥ 2. Suppose that the assumptions in Theorem 1.1 hold. If

μ >

⎛⎜⎜⎜⎜⎝
√

2χ

4η

⎞⎟⎟⎟⎟⎠
k−1

r
3−k

2 , (1.10)

then there exist some constants t0 > 0, γ = γ(χ, η, μ, r, k,N) > 0 and C > 0 such that the classical solution (n, c, u)

satisfies
‖n(·, t) − (

r
μ

)
1

k−1 ‖L∞(Ω) ≤ Ce−γt (1.11)

and
‖c(·, t) − (

r
μ

)
1

k−1 ‖L∞(Ω) ≤ Ce−γt (1.12)

for all t > t0, where η > 0 is a constant from the lower bound estimate of c. Furthermore, if

μ >

(
χ2

8η2
+ 2κ1

) k−1
2

r
3−k

2 , (1.13)
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there is a positive constant γ� = γ�(χ, η, μ, r, k, κ1, κ2,N) such that the solution (n, c, u) fulfills

‖n(·, t) − (
r
μ

)
1

k−1 ‖L∞(Ω) ≤ Ce−γ�t (1.14)

and
‖c(·, t) − (

r
μ

)
1

k−1 ‖L∞(Ω) ≤ Ce−γ�t (1.15)

as well as
‖u(·, t)‖L∞(Ω) ≤ Ce−γ�t (1.16)

for all t > t0, where κ1 and κ2 are positive constants from Poincaré’s inequality.

Theorem 1.3 Let 1 < k < 2. Suppose that the assumptions in Theorem 1.1 hold and that

μ ≥ max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎝ χ

2M2−k
0

4(k − 1)η2

⎞⎟⎟⎟⎟⎠
k−1

k

r
1
k ,

⎛⎜⎜⎜⎜⎝ χ

2η
√

k − 1

⎞⎟⎟⎟⎟⎠
k−1

r
3−k

2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (1.17)

where M0 := sup
t
‖n(·, t)‖L∞(Ω). Then there exist some constants t1 > 0, γ̃ = γ̃(χ, η, μ, r, k,N) > 0, and C > 0 such that

the solution (n, c, u) satisfies
‖n(·, t) − (

r
μ

)
1

k−1 ‖L∞(Ω) ≤ Ce−γ̃t (1.18)

and
‖c(·, t) − (

r
μ

)
1

k−1 ‖L∞(Ω) ≤ Ce−γ̃t (1.19)

for all t > t1. Furthermore, if

μ ≥ max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎝ χ

2M2−k
0

4(k − 1)η2

⎞⎟⎟⎟⎟⎠
k−1

k

r
1
k ,

⎛⎜⎜⎜⎜⎝ χ

2η
√

k − 1

⎞⎟⎟⎟⎟⎠
k−1

r
3−k

2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ and μ > max

⎧⎪⎪⎨⎪⎪⎩
(

30κ1
k − 1

)k−1

r2−k,
30κ1M2−k

0

k − 1
, (24κ1)k−1r

⎫⎪⎪⎬⎪⎪⎭ , (1.20)

there exists a positive constant γ̃� = γ̃�(χ, η, μ, r, k, κ1, κ2,N) such that the solution (n, c, u) fulfills

‖n(·, t) − (
r
μ

)
1

k−1 ‖L∞(Ω) ≤ Ce−γ̃�t

and
‖c(·, t) − (

r
μ

)
1

k−1 ‖L∞(Ω) ≤ Ce−γ̃�t

as well as
‖u(·, t)‖L∞(Ω) ≤ Ce−γ̃�t

for all t > t1.

Remark. For system (1.4) without logistic source, Black-Lankeit-Mizukam [3] established the global existence of

classical solutions in case of 0 < χ <
√

2
N . When the logistic source is included, Zhao-Zheng [57] studied the global

existence and boundedness of very weak solutions under the assumption that χ satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 < χ < 2
√

r and χ ≤ 2, k ∈ (2 − 1
N , 2],

2 < χ <
2
√

r
(
1 + k

(
2 − k

))
√

k(k + 1)(2 − k)(3 − k)
, k ∈ (2 − 1

N , 2],

0 < χ < min

⎧⎪⎪⎨⎪⎪⎩
√

2r(1 + r)

k
,

2√
k(k − 1)(k − 2)

⎫⎪⎪⎬⎪⎪⎭ , k ∈ (2,∞).

Comparing with [3] and [57], we established the global existence and boundedness of classical solutions as well as time

decay for any k > 1 provided that χ satisfies (1.7).
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2 Preliminaries and bounded estimates
We first give a local existence result. The proof is based on the using of Banach’s fixed point theorem in a closed

bounded set in L∞((0, T ); C0(Ω̄) × W1,ϑ(Ω) × D(Aα)) for suitably small T > 0 and we omit the details here.

Lemma 2.1 For N ∈ {2, 3}, λ ∈ {0, 1}, χ > 0, ϑ > N, α ∈ ( N
4
, 1), let Ω ⊂ RN be a bounded domain with smooth

boundary. Assume that n0, c0, u0, φ satisfy (1.6). Then there exist Tmax ∈ (0,∞] and a classical solution (n, c, u, P) to
system (1.4)-(1.5) in Ω × (0,Tmax) such that

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n ∈ C0(Ω̄ × [0,Tmax)
) ∩C2,1(Ω̄) × (0,Tmax)

)
,

c ∈ C0(Ω̄ × [0,Tmax)
) ∩C2,1((Ω̄) × (0,Tmax)

) ∩ L∞loc
(
[0,Tmax); W1,ϑ(Ω)

)
,

u ∈ C0(Ω̄ × [0,Tmax)
) ∩C2,1(Ω̄) × (0,Tmax)

)
,

P ∈ C1,0(Ω̄ × [0,Tmax)
) (2.1)

and
Tmax = ∞ or lim

t→Tmax

(‖n(·, t)‖L∞(Ω) + ‖c(·, t)‖W1,ϑ(Ω) + ‖Aαu(·, t)‖L2(Ω)

)
= ∞. (2.2)

Also, the solution is unique, up to addition of spatially constant function to P and, moreover, has the properties n(x, t) ≥
0, c(x, t) ≥ (

min
x∈Ω̄

c0(x)
)
e−t for all t ∈ (0,Tmax).

The following lemma is very basic but important and will be frequently used in the sequel.

Lemma 2.2 For k > 1, it holds that

∫
Ω

n(x, t)dx ≤ m∗ := max

⎧⎪⎪⎨⎪⎪⎩
∫
Ω

n0dx, |Ω|
(

r
μ

) 1
k−1

⎫⎪⎪⎬⎪⎪⎭ for all t ∈ (0,Tmax) (2.3)

and ∫
Ω

c(x, t)dx ≤ max

{∫
Ω

c0dx, m∗
}

for all t ∈ (0,Tmax). (2.4)

Proof. Integrate the first equation of (1.4) to get

d
dt

∫
Ω

ndx = r
∫
Ω

ndx − μ
∫
Ω

nkdx ≤ r
∫
Ω

ndx − μ

|Ω|k−1

( ∫
Ω

ndx
)k

for all t ∈ (0,Tmax) (2.5)

by the Hölder’s inequality and ∇ · u = 0. Then we obtain (2.3) by the Bernoulli inequality.

Integrate the second equation of (1.4) to get

d
dt

∫
Ω

cdx = −
∫
Ω

cdx +
∫
Ω

ndx for all t ∈ (0,Tmax).

We obtain (2.4), again by the Bernoulli inequality. �
To obtain a positive uniform-in-time lower bound of c, we need to construct estimates of negative exponents to make

use of reverse Hölder’s inequality.

Lemma 2.3 With k > 1, we have for p > 0 and q > q+ :=
p+1

2

( √
1 + pχ2 − 1

)
that

d
dt

∫
Ω

n−pc−qdx ≤ (q − rp)

∫
Ω

n−pc−qdx + μp
∫
Ω

n−p−1+kc−qdx − q
∫
Ω

n−p+1c−q−1dx (2.6)

for all t ∈ (0,Tmax).

Proof. With p, q > 0 to be determined, a direct computation with (1.4) shows

d
dt

∫
Ω

n−pc−qdx

= −p
∫
Ω

n−p−1c−q[Δn − χ∇ · (
n
c
∇c) + rn − μnk − u · ∇n]dx

− q
∫
Ω

n−pc−q−1(Δc − c + n − u · ∇c)dx

5



= −p(p + 1)

∫
Ω

n−p−2c−q|∇n|2dx + [p(p + 1)χ − 2pq]

∫
Ω

n−p−1c−q−1∇n · ∇cdx

+ [pqχ − q(q + 1)]

∫
Ω

n−pc−q−2|∇c|2dx + (q − rp)

∫
Ω

n−pc−qdx + μp
∫
Ω

n−p−1+kc−qdx

− q
∫
Ω

n−p+1c−q−1dx −
∫
Ω

u · ∇(n−pc−q)dx

≤
{

p[(p + 1)χ − 2q]2

4(p + 1)
+ pqχ − q(q + 1)

}∫
Ω

n−pc−q−2|∇c|2dx + (q − rp)

∫
Ω

n−pc−qdx

+ μp
∫
Ω

n−p−1+kc−qdx − q
∫
Ω

n−p+1c−q−1dx, t ∈ (0,T )

by the Young’s inequality and ∇·u = 0. Let f (q; p, χ) :=
p[(p+1)χ−2q]2

4(p+1)
+pqχ−q(q+1). It is easy to see that f (q; p, χ) < 0 is

equivalent to −4q2−4(p+1)q+ p(p+1)2χ2 < 0. Since Δq = 16(p+1)2(1+ pχ2) > 0, we get q > p+1

2
(
√

1 + pχ2−1) = q+.

�
The following two lemmas are cornerstone of our work.

Lemma 2.4 Let Ω ⊂ RN be a bounded domain with smooth boundary. Assume that the initial and boundary conditions
satisfy (1.5) and (1.4)4, and suppose that n0, c0 and u0 comply with (1.6). For any χ satisfying

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ < 2
√

r, 0 < χ ≤ 2, k ∈ (1, 2],

max

{
χ − 1,

χ2

4

(
1 − p2

0

)}
< r <

χ2

4
, χ > 2, k ∈ (1, 2], p0 := 4(k−1)

4+(2−k)kχ2 ,

0 < χ < min

⎧⎪⎪⎨⎪⎪⎩
√

4r(r + 1)k + r2 − r
k

,
2√

k(k − 1)(k − 2)

⎫⎪⎪⎬⎪⎪⎭ , k ∈ (2,+∞),

there exists η > 0 such that
c(x, t) ≥ η f or all x ∈ Ω, t ∈ (0,Tmax). (2.7)

Proof. To improve readability, we divide it into two steps.

Let β0 := 1
2

inf
x∈Ω

c0(x) > 0. Thanks to Lemma 2.1 and the sign-preserving property of limit, there exists t0 ∈ (0,Tmax),

such that c(x, t) ≥ β0 for all x ∈ Ω, t ∈ (0, t0] and n(x, t0) ≥ γ0 for all x ∈ Ω with some constants γ0 > 0. So we only need

to prove (2.7) for all t ∈ (t0,Tmax). If 1 − p + (k − 2)(q + 1) ∈ (0, 1), we can see from Young’s inequality and (2.3) that

μp
∫
Ω

n−p−1+kc−qdx ≤ q
∫
Ω

n−p+1c−q−1dx +
(
μp
q

)q+1 ∫
Ω

n1−p+(k−2)(q+1) ≤ q
∫
Ω

n−p+1c−q−1dx +C1. (2.8)

Substituting (2.8) into (2.6), we have

d
dt

∫
Ω

n−pc−qdx ≤ (q − rp)

∫
Ω

n−pc−qdx +C1, t ∈ (t0,Tmax) (2.9)

for some C1 > 0. If q − rp < 0, we can obtain the boundedness of
∫
Ω

n−pc−qdx by using Gronwall’s inequality.

Next, we will prove that there exist p, q such that p > 0, q > q+(p) =
p+1

2
(
√

1 + pχ2 − 1), g1(p, q+) := 1 − p + (k −
2)(q + 1) ∈ (0, 1) and g2(p, q+) := q+ − rp < 0. By the continuity of g1 and g2, there exist p∗ and q∗ > q+ such that

g1(p∗, q∗) > 0 and g2(p∗, q∗) < 0.

Step 1. At first we consider the case k ∈ (1, 2]. Since 1 − p + (k − 2)(q + 1) < 1, we only need to find p and q+ such

that g1(p, q+) > 0. In fact, thanks to
√

1 + s − 1 < s
2

for s > 0, we just need to check the following inequality

g1(p, q+) > −p + k − 1 +
1

4
(k − 2)(p + 1)pχ2 ≥ −p + k − 1 +

1

4
(k − 2)kpχ2 > 0

for all 0 < p < p0 < k − 1 and find some q > q+(p) satisfying g1(p, q) > 0.

Notice that g2(p, q+) = q+ − rp = p+1

2
(
√

1 + pχ2 − 1)− rp < 0 is equivalent to χ2 p2 + 2(χ2 − 2r2 − 2r)p+χ2 − 4r < 0.

Taking Δp = 16r2((1 + r)2 − χ2) > 0, we can get r > max{χ − 1, 0} such that p ∈ (p1, p2), where

p1,2 :=
2r2 + 2r − χ2

χ2
∓ 2r

√
(1 + r)2 − χ2

χ2
.
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If r ≥ χ2

4
, we have p1 ≤ 0 < p2 by the Vieta Theorem. Taking 0 < p∗ < min{p0, p2} and q∗ > q+, we gather that

g1(p∗, q∗) = 1 − p∗ + (k − 2)(q∗ + 1) ∈ (0, 1) and g2(p∗, q∗) = q∗ − rp∗ < 0. If max{χ − 1, χ
2

4
(1 − p2

0)} < r < χ
2

4
, owing

to Vieta Theorem again, there exist p∗, q∗ such that g1(p∗, q∗) ∈ (0, 1) and g2(p∗, q∗) < 0, where p∗ ∈ (p1,min{p0, p2}),
q∗ > q+, and 0 < p1 <

√
p1 p2 =

√
χ2−4r
χ2 < p0.

Using Gronwall’s inequality for (2.9), one has

∫
Ω

n−p∗c−q∗dx ≤ C1

rp∗ − q∗
+ e−(rp∗−q∗)(t−t0)

( ∫
Ω

n(x, t0)−p∗c(x, t0)−q∗dx − C1

rp∗ − q∗
)
≤ C2 for all t ∈ (t0,Tmax) (2.10)

with some C2 > 0.

If α3 :=
p∗

1+q∗ ∈ (0, p∗), then we have

∫
Ω

n−α3 dx ≤ ( ∫
Ω

n−p∗c−q∗dx
) α3

p∗ ( ∫
Ω

cdx
) p∗−α3

p∗ ≤ C3 for all t ∈ (t0,Tmax) (2.11)

by the Hölder’s inequality and (2.4) with some C3 > 0. Again using the Hölder’s inequality, we have

∫
Ω

ndx ≥ |Ω|
α3+1

α3
( ∫
Ω

n−α3 dx
)− 1
α3 ≥ C

− 1
α3

3
|Ω|

α3+1

α3 =: η0 > 0. (2.12)

By the pointwise lower bound estimate for the Neumann heat semigroup {etΔ}t≥0 ([13], Lemma 3.1), we obtain from

(2.12) that

c(·, t) = et(Δ−1)c0 +

∫ t

0

e(t−s)(Δ−1)(n(·, s) + u(·, s) · ∇c(·, s)
)
ds

≥
∫ t

0

1(
4π(t − s)

) n
2

e−((t−s)+ (diamΩ)2

4(t−s)
) ·

(∫
Ω

n(x, s) dx
)
ds +

∫ t

0

1(
4π(t − s)

) n
2

e−((t−s)+ (diamΩ)2

4(t−s)
) ·

(∫
Ω

u(x, s) · ∇c(x, s) dx
)
ds

≥ η0

∫ t

0

1(
4πl

) n
2

e−(l+ (diamΩ)2

4l) )dl ≥ η0

∫ t0

0

1(
4πl

) n
2

e−(l+ (diamΩ)2

4l) )dl := η1 > 0 for all t ∈ (t0,Tmax),

where diamΩ := max
x,y∈Ω̄

|x − y|.
Step 2. We consider the case k ∈ (2,+∞). If p ∈ ( 4(k−2)

4−k(k−2)χ2 , k − 1), χ2 < 4
k(k−1)(k−2)

, q > q+(p) by the definition of g1,

we have

g1(p, q) = 1 − p + (k − 2)(q + 1) > 1 − p + (k − 2) > 0

and

g1(p, q+) − 1 = −p + k − 2 +
1

2
(k − 2)(p + 1)(

√
1 + pχ2 − 1)

< −p + k − 2 +
1

4
pχ2(k − 2)(p + 1)

< −p + k − 2 +
1

4
pχ2k(k − 2) < 0,

So there exist p∗ and q∗ such that g1(p∗, q∗) ∈ (0, 1).

Next, we check the following inequalities

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

p1 =
2r2 + 2r − χ2

χ2
− 2r

√
(1 + r)2 − χ2

χ2
< k − 1,

p2 =
2r2 + 2r − χ2

χ2
+

2r
√

(1 + r)2 − χ2

χ2
> k − 1 >

4(k − 2)

4 − k(k − 2)χ2

to obtain that ( 4(k−2)

4−k(k−2)χ2 , k − 1) ∩ (p1, p2) � ∅.
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A simple calculation shows that, for all k > 2, r > 0

0 < χ < min

⎧⎪⎪⎨⎪⎪⎩2

√
(k − 1)r2 + rk

k
,

√
(4k + 1)r2 + 4kr − r

k
,

2√
k(k − 1)(k − 2)

⎫⎪⎪⎬⎪⎪⎭ ,
which yields

0 < χ < min

⎧⎪⎪⎨⎪⎪⎩
√

(4k + 1)r2 + 4kr − r
k

,
2√

k(k − 1)(k − 2)

⎫⎪⎪⎬⎪⎪⎭ ,

because

√
(4k+1)r2+4kr−r

k < 2

√
(k−1)r2+rk

k . For such p∗ ∈
(
max

{
4(k−2)

4−k(k−2)χ2 , p1

}
, k − 1

)
and q∗ > q+(p∗), by using a similar

method in step 1, we can obtain η2 > 0 such that c(x, t) ≥ η2. We complete the proof of Lemma 2.4 by taking

η = min
{
η1, η2

}
. �

Lemma 2.5 If 0 < χ < 1, p ∈ (1, 1
χ2 ) and s ∈ Ip, where

Ip :=
( p − 1

2

(
1 −

√
1 − pχ2

)
,

p − 1

2

(
1 +

√
1 − pχ2

))
:= (s1, s2),

then there exists C4 > 0 independent of μ such that
∫
Ω

n(x, t)pc(x, t)−sdx ≤ C4

μ
p

k−1

f or all t ∈ (0,Tmax). (2.13)

Furthermore, there exists C(T ) > 0 such that
∫ T

0

∫
Ω

|∇(n
p
2 c−

s
2 )|2dxdt ≤ C(T ) f or any T ∈ (0,Tmax). (2.14)

Proof. Multiplying the first equation of (1.4) by pnp−1c−s and the second equation of (1.4) by −snpc−s−1, summing up

and then integrating by parts, we have

d
dt

∫
Ω

npc−sdx = − p(p − 1)

∫
Ω

np−2c−s|∇n|2dx + [2ps + χp(p − 1)]

∫
Ω

np−1c−s−1∇n · ∇cdx

− [χps + s(s + 1)]

∫
Ω

npc−s−2|∇c|2dx + (s + pr)

∫
Ω

npc−sdx

− μp
∫
Ω

np−1+kc−sdx − s
∫
Ω

np+1c−s−1dx −
∫
Ω

u · ∇(npc−s)dx

:= J1 + J2 + J3 + J4 + J5 + J6 + J7.

(2.15)

The condition s ∈ Ip implies that

(s − s1)(s − s2) = s2 − (p − 1)s +
p(p − 1)2χ2

4
< 0,

that is

[2ps + χp(p − 1)]2 < 4p(p − 1)[χps + s(s + 1)].

Therefore, it will be a positive constant ε1 small enough such that

2ps + χp(p − 1) ≤ 2
√

p(p − 1) − ε1

√
χps + s(s + 1) − ε1.

Thus, one has

J2 ≤ 2
√

p(p − 1) − ε1

√
χps + s(s + 1) − ε1

∫
Ω

np−1c−s−1∇n · ∇cdx.
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Using Young’s inequality for above inequality, we obtain

J2 ≤ [p(p − 1) − ε1]

∫
Ω

np−2c−s|∇n|2dx +
[
χps + s(s + 1)

) − ε1

] ∫
Ω

npc−s−2|∇c|2dx

= −J1 − ε1

∫
Ω

np−2c−s|∇n|2dx − J3 − ε1

∫
Ω

npc−s−2|∇c|2dx

= −(J1 + J3) − ε1

( ∫
Ω

np−2c−s|∇n|2dx +
∫
Ω

npc−s−2|∇c|2dx
)
.

(2.16)

Applying the inequality |∇(n
p
2 c−

s
2 )|2 ≤ p2

2
np−2c−s|∇n|2 + s2

2
npc−s−2|∇c|2, we have

ε|∇(n
p
2 c−

s
2 )|2 ≤ p2ε

2
np−2c−s|∇n|2 + s2ε

2
npc−s−2|∇c|2 ≤ ε1

(
np−2c−s|∇n|2 + npc−s−2|∇c|2), (2.17)

where ε = min
{ 2ε1

p2 ,
2ε1

s2

}
> 0.

Since J5 ≤ 0, J6 ≤ 0, J7 = 0, we substitute (2.16) and (2.17) into (2.15) to obtain

d
dt

∫
Ω

npc−sdx + ε
∫
Ω

|∇(n
p
2 c−

s
2 )|2dx ≤ (s + pr)

∫
Ω

npc−sdx − μp
∫
Ω

np−1+kc−sdx, (2.18)

Using Young’s inequality and (2.7), we obtain

(s + pr + 1)

∫
Ω

npc−sdx ≤ μp
∫
Ω

np−1+kc−sdx + (s + pr + 1)
p+k−1

k−1 (μp)−
p

k−1

∫
Ω

c−sdx

≤ μp
∫
Ω

np−1+kc−sdx + (s + pr + 1)
p+k−1

k−1 (μp)−
p

k−1 η−s|Ω|.
(2.19)

Adding (2.19) to (2.18), one has

d
dt

∫
Ω

npc−sdx + ε
∫
Ω

|∇(n
p
2 c

s
2 )|2dx ≤ −

∫
Ω

npc−sdx + (s + pr + 1)
p+k−1

k−1 (μp)−
p

k−1 η−s|Ω|. (2.20)

Using Gronwall’s inequality and integrating (2.20) from 0 to t, we have

∫
Ω

npc−sdx ≤ e−t
∫
Ω

np
0
(x)c−s

0 (x)dx + (s + pr + 1)
p+k−1

k−1 (μp)−
p

k−1 η−s |Ω|(1 − e−t).

Combining this with (2.20), it immediately yields (2.13) and (2.14). �

Lemma 2.6 For all q ≥ 1,

1

q
d
dt

∫
Ω

cq(x, t)dx = −4(q − 1)

q2

∫
Ω

|∇c
q
2 (x, t)|2dx −

∫
Ω

cq(x, t)dx +
∫
Ω

n(x, t)cq−1(x, t)dx (2.21)

holds on (0,Tmax).

Proof. Multiplying cq−1 the second equation of (1.4) by cq−1, and then integrating by parts, we conclude (2.21).

Lemma 2.7 For all 0 < χ <
√

2
N , q ∈ (1,∞) and any T ∈ (0,Tmax), there exists a constant C5 > 0 such that

‖c(x, t)‖Lq(Ω) ≤ C5 f or all t ∈ (0,T ). (2.22)

Proof. Without loss of generality, we can assume that q ≥ 2. Then we take p ∈ ( N
2
, min{ 1

χ2 , 2}), s :=
p−1

2
∈ Ip and

q > p − s. Using Hölder’s inequality and the Gagliardo-Nirenberg inequality, we have

∫
Ω

n(x, t)cq−1(x, t)dx ≤ (

∫
Ω

np(x, t)c−s(x, t)dx)
1
p (

∫
Ω

c
pq−p+s

p−1 (x, t)dx)
p−1

p

≤ ( C4

μ
p

k−1

) 1
p
∥∥∥c

q
2 (x, t)

∥∥∥ 2(pq−p+s)
pq

L
2(pq−p+s)

q(p−1) (Ω)

(2.23)
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and ∥∥∥c
q
2 (x, t)

∥∥∥
L

2(pq−p+s)
q(p−1) (Ω)

≤ CGN‖∇c
q
2 (x, t)‖θ̃L2(Ω)

‖c q
2 (x, t)‖1−θ̃

L2(Ω)
+CGN‖c

q
2 (x, t)‖

L
2
q (Ω)

for all t ∈ (0,T ), where θ̃ = q−(p−s)
2
N [pq−(p−s)]

∈ (0, 1), q > p − s. By Young’s inequality, one has

‖∇c
q
2 (x, t)‖

2(pq−p+s)θ̃
pq

L2(Ω)
‖c q

2 (x, t)‖
2(pq−p+s)(1−θ̃)

pq

L2(Ω)
≤ 2(q − 1)

q2C
2(pq−p+s)

pq

GN
( C4

μ
p

k−1

) 1
p

‖∇c
q
2 (x, t)‖2

L2(Ω)
+C6‖c

q
2 (x, t)‖

2[q(2p−N)+(N−2)(p−s)]
2pq−N(q−p+s)

L2(Ω)

≤ 2(q − 1)

q2C
2(pq−p+s)

pq

GN
( C4

μ
p

k−1

) 1
p

‖∇c
q
2 (x, t)‖2

L2(Ω)
+

1

2C
2(pq−p+s)

pq

GN
( C4

μ
p

k−1

) 1
p

‖c q
2 (x, t)‖2

L2(Ω)
+C7,

(2.24)

because the power 0 <
2[q(2p−N)+(N−2)(p−s)]

2pq−N(q−p+s)
=

2[2pq−N(q−p+s)−2(p−s)]

2pq−N(q−p+s)
< 2.

Substituting (2.23)-(2.24) into (2.21), we have

1

q
d
dt

∫
Ω

cq(x, t)dx +
2(q − 1)

q2

∫
Ω

|∇c
q
2 (x, t)|2dx ≤ −1

2

∫
Ω

cq(x, t)dx +C8,

which means that there exists C5 such that

‖c(·, t)‖Lq(Ω) ≤ C5 for all t > 0.

Lemma 2.8 Let 0 < χ <
√

2
N . For any p ∈ [1, 1

χ2 ) and any finite T ∈ (0,Tmax], there exists a constant C9 > 0 such that

‖n(x, t)‖Lp(Ω) ≤ C9 f or all t ∈ (0,T ). (2.25)

Proof. Since we can use the interpolation inequality to get the boundedness of ‖n‖Lp(Ω) in p ∈ (1, N
2

], we can assume that

p ∈ ( N
2
, 1
χ2 ) for simplicity. Let p0 ∈ (p, 1

χ2 ) and s0 :=
p0−1

2
. Then we can see from Hölder’s inequality, Lemma 2.7 and

(2.13) that ∫
Ω

np(x, t)dx =
∫
Ω

(
np0 (x, t)c−s0 (x, t)

) p
p0 c

ps0
p0 (x, t)dx

=
∥∥∥(np0 (x, t)c−s0 (x, t)

) p
p0

∥∥∥
L

p0
p (Ω)

∥∥∥c
ps0
p0 (x, t)

∥∥∥
L

p0
p0−p (Ω)

≤ ∥∥∥np0 (x, t)c−s0 (x, t)
∥∥∥ p

p0

L1(Ω)

∥∥∥c(x, t)
∥∥∥ ps0

p0

L
ps0

p0−p (Ω)

≤ (
C4

μ
p

k−1

)
p

p0 C5

ps0
p0 .

Thus we complete the proof. �

3 Boundedness of u

Having obtained boundedness of ‖n‖Lp(Ω), we can use the standard semigroup technique in [3, 31, 51, 47, 50, 55] to

obtain the estimates for the fluid velocity.

Lemma 3.1 If 0 < χ <
√

2
N , then for any finite T ∈ (0,Tmax] there is C(T ) > 0 such that

‖u(·, t)‖2
L2(Ω)

≤ C(T ) f or all t ∈ (0,T ) (3.1)

and
‖∇u(·, t)‖2

L2(0,T ; L2(Ω))
≤ C(T ). (3.2)
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Proof. Multiplying the third equation (1.4) by u and integrating by parts, then using Hölder’s inequality, Sobolev’s

embedding and Young’s inequality, we have

1

2

d
dt
‖u‖2

L2(Ω)
+ ‖∇u‖2

L2(Ω)
=

∫
Ω

nu · ∇φdx

≤ ‖∇φ‖L∞(Ω)‖n‖Lp(Ω)‖u‖
L

p
p−1 (Ω)

≤ C10‖∇φ‖L∞(Ω)‖n‖Lp(Ω)‖∇u‖L2(Ω)

≤ 1

2
‖∇u‖2

L2(Ω)
+

1

2
C2

9C2
10‖∇φ‖2

L∞(Ω).

(3.3)

Here, we take p ∈ ( 2N
N+2
, 1
χ2 ) ⊂ [1, 1

χ2 ), thanks to W1,2
0

(Ω) ↪→ L
2N

N−2 (Ω) ↪→ L
p

p−1 (Ω) and
p

p−1
< 2N

N−2
. Integrating the two

sides of (3.3), we obtain (3.1), furthermore, we get (3.2). �
We have obtained the estimate for n and u in (2.25) and Lemma 3.1, respectively. These are sufficient to prove the

boundedness of u even in the case of N = 3. Arguments appearing in the proof of the lemmas below have been previously

used in [3, 47, 55].

The goal of this section will be to obtain the boundedness of the norm of n(·, t) in L∞(Ω) to finish the proof of

Theorem 1.1. We need some spatio-temporal integrability of n and Au, the estimates of ‖∇u‖L2(Ω), ‖Aα0 u‖L2(Ω), ‖u‖L∞(Ω),

and ‖∇c‖Lq(Ω), respectively. We shall use the following lemmas.

3.1 The case λ = 0

Lemma 3.2 If 0 < χ <
√

2
N , then for any finite T ∈ (0,Tmax] and any α0 ∈ ( N

4
, α] ⊂ ( N

4
, 1) satisfying α0 < 1− N

2
χ2 + N

4
,

there exists C(T ) > 0 such that

‖Aα0 u(·, t)‖L2(Ω) =
∥∥∥Aα0

(
e−tAu0 +

∫ t

0

e−(t−s)AP(n(·, s)∇φ)ds
)∥∥∥

L2(Ω)
≤ C(T ) (3.4)

and
‖u(·, t)‖L∞(Ω) ≤ C(T ) (3.5)

for all t ∈ (0,T ).

Proof. We pick p ∈ ( N
2
,min{2, 1

χ2 }) and δ1 ∈ (0, 1) sufficiently small such that α0 + δ1 +
N
2

( 1
p0
− 1

2
) < 1 holds. We then

fix p0 > p satisfying N
p − N

p0
< 2δ1 and notice that α0 + δ1 +

N
2

( 1
p0
− 1

2
) < 1. Since u0 ∈ D(Aα0 ) by α0 ≤ α, applying the

operator Aα0 acting on the Variation-of-constant formula for u, we have

‖Aα0 u(·, t)‖L2(Ω) =
∥∥∥Aα0

(
e−tAu0 +

∫ t

0

e−(t−s)AP(n(·, s)∇φ)ds
)∥∥∥

L2(Ω)

≤ ∥∥∥Aα0 e−tAu0

∥∥∥
L2(Ω)
+

∫ t

0

∥∥∥Aα0 e−(t−s)AP(
n(·, s)∇φ)∥∥∥L2(Ω)

ds

=
∥∥∥e−tAAα0 u0

∥∥∥
L2(Ω)
+

∫ t

0

∥∥∥Aα0+δ1 e−(t−s)AA−δ1P(
n(·, s)∇φ)∥∥∥L2(Ω)

ds

≤ ∥∥∥Aα0 u0

∥∥∥
L2(Ω)
+ K1

∫ t

0

(t − s)
−α0−δ1− N

2
( 1

p0
− 1

2
)e−λ1(t−s)

∥∥∥A−δ1P(
n(·, s)∇φ)∥∥∥Lp0 (Ω)

ds

≤ C11 + K1

∫ t

0

(t − s)
−α0−δ1− N

2
( 1

p0
− 1

2
)e−λ1(t−s)K2

∥∥∥n(·, s)∇φ∥∥∥Lp(Ω)
ds

≤ C11 + K1K2‖∇φ‖L∞(Ω)

∫ t

0

(t − s)
−α0−δ1− N

2
( 1

p0
− 1

2
)e−λ1(t−s)‖n(·, s)‖Lp(Ω)ds ≤ K3,

where λ1,K1,K2,K3 are positive constants. Using the conditions α0 + δ1 +
N
2

( 1
p0
− 1

2
) < 1, N

p − N
p0
< 2δ1, and p < 1

χ2 , we

can obtain

1 > α0 + δ1 +
N
2

( 1

p0

− 1

2

)
= α0 +

1

2

(
2δ1 +

N
p0

− N
2

)

> α0 +
1

2

(N
p
− N

p0

+
N
p0

− N
2

)
> α0 +

N
2
χ2 − N

4
.

(3.6)
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Next, we use the embedding D(Aα0 ) ↪→ Cγ1 (Ω) to obtain (3.5) for arbitrary γ1 ∈ (0, 2α0 − N
2

).

3.2 The case λ = 1 and N = 2

Lemma 3.3 If 0 < χ <
√

2
N , then for any finite T ∈ (0,Tmax], there exists C(T ) > 0 such that

∫ T

0

∫
Ω

n2(x, t)dxdt ≤ C(T ).

Proof. Let p ∈ (1, 1
χ2 ) and s :=

p−1

2
∈ Ip. First we recall from (2.13)-(2.14) that there exist C12 > 0 and C13 > 0 such that

∫
Ω

np(·, t)c−s(·, t)dx ≤ C12 and

∫ T

0

∫
Ω

|∇(n
p
2 c−

s
2 )|2dxdt ≤ C13

hold. In virtue of Gagliardo-Nirenberg inequality there exist C14 > 0 such that

∫ T

0

‖n(·, t)c(·, t)− s
p ‖2p

L2p(Ω)
dt =

∫ T

0

‖n(·, t) p
2 c(·, t)− s

2 ‖4
L4(Ω)

dt

≤ C14

∫ T

0

‖∇(
n(·, t) p

2 c(·, t)− s
2
)‖2

L2(Ω)
‖n(·, t) p

2 c(·, t)− s
2 ‖2

L2(Ω)
dt

+C14

∫ T

0

‖n(·, t) p
2 c(·, t)− s

2 ‖2
L2(Ω)

dt

≤ C12C13C14 +C12C14T,

which means that ∫ T

0

‖n(·, t)2pc(·, t)−(p−1)‖L1(Ω)dt ≤ C(T ) (3.7)

holds. Thanks to Young’s inequality, we can estimate

∫ T

0

∫
Ω

n2(x, t)dxdt =
∫ T

0

∫
Ω

(
n2(x, t)c−

p−1
p (x, t)

)
c

p−1
p (x, t)dxdt

≤
∫ T

0

∫
Ω

n2p(x, t)c−(p−1)(x, t)dxdt +
∫ T

0

∫
Ω

c(x, t)dxdt.

Therefore, we get (2.4) and (3.7) to finish the proof of Lemma 3.3. �
Then we use the methods in [3, 5, 12, 14, 46, 50] to lead the following estimates.

Lemma 3.4 For any 0 < χ <
√

2
N ,T ∈ (0,Tmax], there exists C(T ) > 0 such that

∫
Ω

|∇u(x, t)|2dx ≤ C(T ) f or all t ∈ (0,T ) (3.8)

and ∫ T

0

∫
Ω

|Au(x, t)|2dxdt ≤ C(T ). (3.9)

Proof. Multiplying the third equation in (1.4) by Au, integrating by parts and using the Young’s inequality, we see that

1

2

d
dt

∫
Ω

|∇u|2dx +
∫
Ω

|Au|2dx =
∫
Ω

(n∇φ)Audx −
∫
Ω

(u · ∇u)Au

≤ 1

2

∫
Ω

|Au|2dx + ‖∇φ‖2
L∞(Ω)

∫
Ω

n2dx +
∫
Ω

|u|2|∇u|2dx.
(3.10)

12



For the last term, we use the Gagliardo-Nirenberg inequality, Young’s inequality and (3.1) to obtain

∫
Ω

|u|2|∇u|2dx ≤ ‖u‖2
L∞(Ω)‖∇u‖2

L2(Ω)

≤ CGN‖u‖W2,2(Ω)‖u‖L2(Ω)‖∇u‖2
L2(Ω)

≤ C15CGN‖u‖W2,2(Ω)‖∇u‖2
L2(Ω)

≤ 1

4
‖Au‖2

L2(Ω)
+C16‖∇u‖4

L2(Ω)
.

(3.11)

Thus, substituting (3.11) into (3.10) and taking C17 = 2 max{‖∇φ‖L∞(Ω),C16}, we have

d
dt

∫
Ω

|∇u|2dx +
1

2

∫
Ω

|Au|2dx =
∫
Ω

(n∇φ)Audx −
∫
Ω

(u · ∇u)Au

≤ C17

( ∫
Ω

n2dx +
( ∫
Ω

|∇u|2dx
)2

)
.

(3.12)

We define y(t) :=
∫
Ω
|∇u|2dx on (0, T ), which satisfies

y′(t) ≤ C17

( ∫
Ω

n2dx + y2(t)
)
. (3.13)

Using the Variation-of-constant formula, we obtain

y(t) ≤ y(0)eC17

∫ t
0

∫
Ω
|∇u(·,s)|2ds +C17

∫ t

0

eC17

∫ t
s

∫
Ω
|∇u(·,σ)|2dσ

(∫
Ω

n2(x, s)dx
)

ds ≤ C18, (3.14)

Noticing that ‖∇u‖2
L2(0,T ; L2(Ω))

≤ C in (3.2). That is (3.8). Integrating the two sides of inequality (3.12) about the time t
and applying the boundedness of y(t) in (3.14), we obtain (3.9). �

Lemma 3.5 For any 0 < χ <
√

2
N ,T ∈ (0,Tmax] and any α0 ∈ ( N

4
, α] ⊂ ( N

4
, 1), there exists C(T ) > 0 such that

‖Aα0 u(·, t)‖L2(Ω) ≤ C(T ) (3.15)

and
‖u(·, t)‖L∞(Ω) ≤ C(T ) (3.16)

for all t ∈ (0,T ).

Proof. We fix α0 ∈ ( N
4
, 1) and take p such that

pα0

p−1
∈ (0, 1). Applying the operator Aα0 on the Variation-of constant

formula of u and Hölder’s inequality, due to (3.4), we have

‖Aα0 u(·, t)‖L2(Ω) =
∥∥∥Aα0

(
e−tAu0 +

∫ t

0

e−(t−s)AP(n(·, s)∇φ − u(·, s) · ∇u(·, s)
)
ds

)∥∥∥
L2(Ω)

≤ C0 +C19

∫ t

0

(t − s)−α0‖u(·, s) · ∇u(·, s)‖L2(Ω)ds

≤ C0 +C19

( ∫ t

0

(t − s)−
pα0
p−1 ds

) p−1
p
( ∫ t

0

‖u(·, s) · ∇u(·, s)‖p
L2(Ω)

ds
) 1

p
for all t ∈ (0,T ).

In order to estimate the last term of above inequality, using the Hölder’s inequality, Sobolev’s embedding W1,2(Ω) ↪→
Lp(Ω), p ∈ ( 1

1−α0
,+∞), Poincaré’s inequality, we can find positive constants C20,C21,CGN such that

( ∫ t

0

‖u(·, s) · ∇u(·, s)‖p
L2(Ω)

ds
)
≤

∫ T

0

‖u(·, s)‖p
Lp(Ω)

‖∇u(·, s)‖p

L
2p
p−2 (Ω)

ds

≤ C20

∫ T

0

‖u(·, s)‖p
W1,2(Ω)

‖∇u(·, s)‖p

L
2p
p−2 (Ω)

ds

≤ C20C21

∫ T

0

‖∇u(·, s)‖p
L2(Ω)

‖∇u(·, s)‖p

L
2p
p−2 (Ω)

ds
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≤ C20C21CGN

∫ T

0

‖∇u(·, s)‖p
L2(Ω)

‖∇u(·, s)‖p−2

L2(Ω)
‖Δu(·, s)‖2

L2(Ω)
ds

≤ C20C21CGN sup
t∈(0,T )

‖∇u(·, s)‖2p−2

L2(Ω)

∫ T

0

‖Δu(·, s)‖2
L2(Ω)

ds

≤ C20C21CGN sup
t∈(0,T )

‖∇u(·, s)‖2p−2

L2(Ω)

∫ T

0

‖Au(x, s)‖2
L2(Ω)

ds.

In virtue of (3.8) and (3.9), we obtain (3.15). Using the embedding of D(Aα0 ) ↪→ L∞(Ω), we get (3.16). �

4 Boundedness of n

Next, we will give the following estimates of ‖∇c‖Lq(Ω) and ‖n‖L∞(Ω) through obtained results.

Lemma 4.1 Assume that 0 < χ <
√

2
N and λ = 0,N = {2, 3} or λ = 1, N = 2 hold. For any 1 ≤ p ≤ q < ∞ satisfying

q ∈ [1, 1

χ2− 1
N

) ∩ [1, ϑ] and 1
2
+ N

2
( 1

p − 1
q ) < 1, there exists C(T ) > 0 such that

‖∇c(·, t)‖Lq(Ω) ≤ C(q,T ) f or all T ∈ (0,Tmax) and t ∈ (0,T ). (4.1)

Proof. Applying the Variation-of-constant formula of c, one has

c(·, t) = et(Δ−1)c0 +

∫ t

0

e(t−s)(Δ−1)(n(·, s) + u(·, s) · ∇c(·, s)
)
ds for all t ∈ (0,Tmax). (4.2)

Using standard semigroup estimates for the Neumann heat semigroup of ([46]) Lemma 1.3) provide us positive constants

C22 > 0 and C23 > 0 such that for any ϑ > N, t ∈ (0,Tmax) fulfilling

‖∇et(Δ−1)c0‖Lq(Ω) ≤ C22‖∇c0‖Lϑ(Ω) (4.3)

and ∫ t

0

‖∇e(t−s)(Δ−1)n(·, s)‖Lq(Ω)ds ≤ C23

∫ t

0

(
1 + (t − s)−

1
2
− N

2
( 1

p− 1
q ))e−λ1(t−s)‖n(·, s)‖Lp(Ω)ds

≤ C23 sup
s∈(0,T )

‖n(·, s)‖Lp(Ω)

∫ ∞

0

(1 + σ−
1
2
− N

2
( 1

p− 1
q ))e−λ1σdσ.

(4.4)

Because 0 < 1
2
+ N

2
( 1

p − 1
q ) < 1, the last integral of above inequality is finite.

For any positive constants κ1 and δ2, if 1
2
+ N

2
( 1
ι
− 1

q ) < κ1 and δ2 <
1
2
− κ1, we can use the following embedding in

([12], Theorem 1.6.1) and ([14], Lemma 2.1) to obtain

‖w‖W1,q(Ω) ≤ C24‖(−Δ + 1)κ1 w‖Lι(Ω) for any w ∈ D((−Δ + 1)κ1 ), ι > q (4.5)

and

‖(−Δ + 1)κ1 e−τ(−Δ+1)∇ · w‖Lι(Ω) ≤ C25τ
−κ1− 1

2
−δ2 e−λ1τ‖w‖Lι(Ω) for any τ > 0 and w ∈ Lι(Ω). (4.6)

Applying (4.5) and (4.6), one has

∫ t

0

‖∇e(t−s)(Δ−1)u(·, s) · ∇c(·, s)‖Lq(Ω)ds ≤
∫ t

0

‖e(t−s)(Δ−1)∇ · (u(·, s)c(·, s)
)‖W1,q(Ω)ds

≤ C24

∫ t

0

‖(−Δ + 1)κ1 e(t−s)(Δ−1)∇ · (u(·, s)c(·, s)
)‖Lι(Ω)ds

≤ C24C25

∫ t

0

(t − s)−κ1−
1
2
−δ2‖c(·, s)u(·, s)‖Lι(Ω)ds

≤ C24C25

∫ t

0

(t − s)−κ1−
1
2
−δ2‖u(·, s)‖L∞(Ω)‖c(·, s)‖Lι(Ω)ds for all t ∈ (0,Tmax).

(4.7)

Since by (2.22), (3.5) or (3.16), and 1
2
< κ1 +

1
2
+ δ2 < 1, we can conclude that (4.7) is bounded. Combining (4.2)-(4.4)

with (4.7), we establish the asserted inequality (4.1). �
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Lemma 4.2 Suppose that χ satisfies (1.7). If λ = 1, additionally suppose that N = 2. Then for any finite T ∈ (0,Tmax]

there exists a constant C(T ) > 0 satisfying

‖n‖L∞(Ω) ≤ C(T ) f or all t ∈ (0,T ).

Proof. We define M(T ′) := sup
t∈(0,T ′)

‖n(·, t)‖L∞(Ω) for all T ′ ∈ (0,T ) and let t0 = (t − 1)+. The Variation-of-constant

formula and the nonnegative of n(·, t) imply that

n(·, t) = e(t−t0)Δn(·, t0) −
∫ t

t0
e(t−s)Δ

{
∇ ·

(
χ

n(·, s)

c(·, s)
∇c(·, s) + n(·, s)u(·, s)

)
− rn(·, s) + μnk(·, s)

}
ds

≤ e(t−t0)Δn(·, t0) −
∫ t

t0
e(t−s)Δ

{
∇ ·

(
χ

n(·, s)

c(·, s)
∇c(·, s) + n(·, s)u(·, s)

)
− rn(·, s)

}
ds.

If t0 = 0 (i.e. t ≤ 1), then we have the pointwise estimate to the first term on the right hand side

‖e(t−t0)Δn(·, t0)‖L∞(Ω) = ‖etΔn0‖L∞(Ω) ≤ ‖n0‖L∞(Ω).

Otherwise, if t0 > 0 (i.e. t − t0 = 1), we can obtain from the semigroup estimate
(
[46], Lemma 1.3 (i)

)
and (2.3) that of

the above inequality

‖e(t−t0)Δn(·, t0)‖L∞(Ω) ≤ (1 + (t − t0)−
N
2 )‖n(·, t0)‖L1(Ω) ≤ C26.

Again using the semigroup estimate in
(
[46], Lemma 1.3 (iv)

)
, Hölder’s inequality, interpolation inequality, (2.3), (2.7),

(3.16) and (4.1), one has

‖n(·, t)‖L∞(Ω) ≤ C27 +

∫ 1

0

χ
(
1 + (t − s)−

1
2
− N

2ς

)∥∥∥∥n(·, s)

c(·, s)
∇c(·, s) + n(·, s)u(·, s)

∥∥∥∥
Lς(Ω)

ds +
∫ 1

0

(1 + (t − s)−
N
2l )‖n‖Lς(Ω)ds

≤ C27 +C28η
−1

∫ 1

0

(‖n(·, s)∇c(·, s)‖Lς(Ω) + η‖n(·, s)u(·, s)‖Lς(Ω)

)
ds + m

1
ς∗ (M(T ′))

ς−1
ς

∫ 1

0

(1 + (t − s)−
N
2ς )ds

≤ C27 +C28η
−1

∫ 1

0

(‖n(·, s)‖
L
ςq

q−ς (Ω)
‖∇c(·, s)‖Lq(Ω) + η‖u(·, s)‖L∞(Ω)‖n(·, s)‖Lς(Ω)

)
ds +C29m

1
ς∗ (M(T ′))

ς−1
ς

≤ C27 +C28η
−1

∫ 1

0

(‖n(·, s)‖
q−ς
ςq

L1(Ω)
‖n(·, s)‖1− q−ς

qς

L∞(Ω)
‖∇c(·, s)‖Lq(Ω) + η‖u(·, s)‖L∞(Ω)‖n(·, s)‖

1
ς

L1(Ω)
‖n(·, s)‖

ς−1
ς

L∞(Ω)

)
ds

+C29m
1
ς∗ (M(T ′))

ς−1
ς

≤ C27 +C30

(
(M(T ′))1− q−ς

ςq + (M(T ′))
ς−1
ς

)
,

for all q > ς > N, where C27 = max{‖n0‖L∞(Ω), C26} > 0,C28 > 0,C29 > 0, and C30 > 0. The conditions q > ς > N ≥ 2

implies that 0 < 1 − q−ς
ςq < 1 and 0 < ς−1

ς
< 1. Thus, we have

M(T ′) ≤ C27 +C30

(
(M(T ′))1− q−ς

ςq + (M(T ′))
ς−1
ς

)
,

which implies M(T ′) is finite by means of Young’s inequality. This completes the proof. �
Proof of Theorem 1.1. We take α0 ∈ ( N

4
, α] satisfying α0 < 1− N

2
χ2 + N

4
and u0 ∈ D(Aα0 ). Using Lemma 2.1, we obtain

the solution that either global exists or satisfies

lim
t→Tmax

(‖n(·, t)‖L∞(Ω) + ‖c(·, t)‖W1,ϑ + ‖Aα0 u(·, t)‖L2(Ω)

)
= ∞. (4.8)

If Tmax were finite, we could apply Lemma 4.2, Lemma 2.7 and invoking Lemma 4.1, and (3.4) or (3.15) with T = Tmax

to see that ‖n(·, t)‖L∞(Ω) + ‖c(·, t)‖W1,ϑ + ‖Aα0 u(·, t)‖L2(Ω) < ∞ on (0,Tmax). That would give rise to a contradiction to (4.8).

Therefore, we get Tmax = ∞. Thus we conclude the proof of (1.8). In order to complete the proof of (1.9), we give the

following several lemmas.

Lemma 4.3 Assume that the conditions in Theorem 1.1 hold. Let (n, c, u) be the global classical solution of (1.4). There
are C31 > 0 and θ ∈ (0, 1) such that for every t > 0

‖Aα0 u(·, t)‖L2(Ω) ≤ C31 (4.9)
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and
‖u(·, t)‖

Cθ,
θ
2 (Ω̄×(0,∞))

≤ C31. (4.10)

Proof. Thanks to (3.4) and (3.15), we obtain (4.9) immediately. Now by a straightforward adaptation of a well-known

reasoning [9], in quite a similar method it is furthermore possible to find θ1 ∈ (0, 1) and b1 = b1(T ) > 0 satisfying

‖Aα0 u(·, t) − Aα0 u(·, t0)‖L2(Ω) ≤ b1|t − t0|θ1 for all t ∈ (0,T ) and t0 ∈ (0,T ),

which finally implies (4.10) due to the fact that D(Aα
2
) ↪→ Cθ2 (Ω̄; RN) in [12] for any θ2 ∈ (0, 2α0 − N

2
). �

Lemma 4.4 Assume that the conditions in Theorem 1.1 are satisfied. Let (n, c, u) be the global classical solution of
(1.4). Then there exist C32 > 0 and θ ∈ (0, 1) such that

‖u(·, t)‖
C2+θ,1+ θ

2 (Ω̄×(0,+∞))
≤ C32.

Proof. Due to the estimates provided by Lemma 4.2 and Lemma 4.3, this follows upon a straightforward application of

well-known Schauder theory for the linear inhomogeneous Stokes evolution equation in [32].

Lemma 4.5 Assume that the conditions in Theorem 1.1 are satisfied. Let (n, c, u) be the global classical solution of
(1.4). There are C33 > 0 and θ ∈ (0, 1) such that for every t > 0

‖n(·, t)‖
Cθ,
θ
2 (Ω×(0,∞))

≤ C33 (4.11)

and
‖c(·, t)‖

C2+θ,1+ θ
2 (Ω×(0,∞))

≤ C33 (4.12)

as well as
‖n(·, t)‖W1,∞(Ω) + ‖c(·, t)‖W1,∞(Ω) ≤ C33. (4.13)

Proof. We rewrite the first equation in (1.4) in the form

nt = ∇ · a(x, t, ξ) + b(x, t), x ∈ Ω, t ∈ (0,∞), ξ = ∇n ∈ RN ,

with

a(x, t, ξ) = ξ − χn(x, t)
c(x, t)

∇c(x, t) − n(x, t)u(x, t), (x, t, ξ) ∈ Ω × (0,∞) × RN

and

b(x, t) = rn − μnk, (x, t, ξ) ∈ Ω × (0,∞) × RN .

Using the Young’s inequality and (2.7), (3.5) or (3.16) and Lemma 4.2, there exist some c18 > 0, c19 > 0, c20 > 0

fulfilling

a(x, t, ξ) · ξ ≥ |ξ|2
2
− c18|∇c|2 − c18 for all (x, t, ξ) ∈ Ω × (0,∞) × RN

and

|a(x, t, ξ)| ≤ |ξ| + c19|∇c| + c19 for all (x, t, ξ) ∈ Ω × (0,∞) × RN

as well as

|b(x, t)| ≤ c20 for all (x, t) ∈ Ω × (0,∞).

Since Lemma 4.1 provided a boundedness for |∇c|2 in L8((0, T ); L2(Ω)), with the exponents fulfilling 1
8
+ N

2×2
= 1+2N

8
≤

7
8
< 1 for N = {2, 3}, the estimate (4.11) directly results on applying the standard result on Hölder regularity in scalar

parabolic equations (see [30], Theorem 1.3). Thereupon (4.12) are immediate consequences of Lemma 4.3 and standard

parabolic Schauder theory in [16]. Finally, with the aforementioned regularity properties of n and c at hand, we can

obtain form ([16] Theorem IV. 5.3) that (4.13) holds. �
The stated boundedness of the classical solution in (1.9) comes from Lemma 4.3-4.5. This completes the proof of

Theorem 1.1. �
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5 Asymptotic behavior
In this section, we first consider the asymptotic behavior of k ≥ 2, and then give the asymptotic behavior of 1 < k < 2

by suitable energy functional for (1.4). The following ideas originate from [34] and [45], respectively. To show the

solution (n, c, u) exponentially stabilizes to the constant stationary solution
(
( r
μ
)

1
k−1 , ( r

μ
)

1
k−1 , 0

)
, we use the following scale

transformation.

Let U(x, t) = μr n(x, t) and V(x, t) = c(x, t) − ( r
μ
)

1
k−1 . Then we can transform (1.4) into the following model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ut + u · ∇U = ΔU − χ∇ · (
U
c
∇V) + rU

(
1 − (

r
μ

)k−2Uk−1
)
, x ∈ Ω, t > 0,

Vt + u · ∇V = ΔV − V + (
r
μ

)
1

k−1

(
(

r
μ

)
k−2
k−1 U − 1

)
, x ∈ Ω, t > 0,

ut + λ (u · ∇)u = Δu + ∇P + n∇φ, x ∈ Ω, t > 0,

∂U
∂ν
=
∂V
∂ν
= 0, x ∈ ∂Ω, t > 0,

U(x, 0) := U0(x) =
μ

r
n0(x), V(x, 0) := V0(x) = c0(x) − (

r
μ

)
1

k−1 , x ∈ Ω,
∇ · u = 0, x ∈ Ω, t > 0.

(5.1)

Lemma 5.1 Assume that s ≥ 0, k ≥ 2 and in addition r, μ are given in (1.4). Then

(
1 −

( r
μ

)k−2
sk−1

) (( r
μ

) k−2
k−1 s − 1

)
+

(( r
μ

) k−2
k−1 s − 1

)2

≤ 0. (5.2)

Proof. It is obvious that if
(

r
μ

) k−2
k−1 s = 1, then (5.2) holds. Now we assume that

(
r
μ

) k−2
k−1 s > 1. One has

(
1 −

( r
μ

)k−2
sk−1

)
= 1 −

(( r
μ

) k−2
k−1 s

)k−1

≤ 1 −
(( r
μ

) k−2
k−1 s

)
< 0. (5.3)

Multiplying (5.3) by
(

r
μ

) k−2
k−1 s − 1, we obtain (5.2). For the case of

(
r
μ

) k−2
k−1 s < 1, proceeding similarly, we can also obtain

(5.2). �

Lemma 5.2 Let (n, c) be a global classical solution of (1.4). Assume that χ
2

8η2 < L < μ
2

k−1 r
k−3
k−1 holds for k ≥ 2. Then for

all t > 0 the function

F (t) :=

∫
Ω

(( r
μ

) k−2
k−1 U − 1 − ln

( r
μ

) k−2
k−1 U + LV2

)
dx

satisfies
F ′(t) ≤ −D(t), (5.4)

with

D(t) := D0

∫
Ω

(( ( r
μ

) k−2
k−1 U − 1

)2
+ LV2

)
dx (5.5)

and

D0 := min

{
1, r − L

( r
μ

) 2
k−1

}
> 0.

Proof. The strong maximum principle along with the assumption U0 � 0 yields U > 0 in Ω̄ × (0,∞). Multiplying the

second equation in (5.1) by V and using the Young’s inequality, we have

1

2

d
dt

∫
Ω

V2dx +
∫
Ω

|∇V |2dx = −
∫
Ω

V2dx + (
r
μ

)
1

k−1

∫
Ω

V
(
(

r
μ

)
k−2
k−1 U − 1

)
dx

≤ −1

2

∫
Ω

V2dx +
1

2
(

r
μ

)
2

k−1

∫
Ω

(
(

r
μ

)
k−2
k−1 U − 1

)2dx for all t > 0.

(5.6)

Multiplying the first equation in (5.1) by ( r
μ
)

k−2
k−1 − 1

U , integrating by parts, and using the Young’s inequality and (5.2), one
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has

d
dt

∫
Ω

(
(

r
μ

)
k−2
k−1 U − 1 − ln(

r
μ

)
k−2
k−1 U

)
dx +

∫
Ω

|∇U |2
U2

dx = χ
∫
Ω

1

Uc
∇U · ∇Vdx + r

∫
Ω

(
1 − (

r
μ

)k−2Uk−1
)(

(
r
μ

)
k−2
k−1 U − 1

)
dx

≤
∫
Ω

|∇U |2
U2

dx +
χ2

4

∫
Ω

|∇V |2
c2

dx − r
∫
Ω

(
(

r
μ

)
k−2
k−1 U − 1

)2dx

≤
∫
Ω

|∇U |2
U2

dx +
χ2

4η2

∫
Ω

|∇V |2dx − r
∫
Ω

(
(

r
μ

)
k−2
k−1 U − 1

)2dx

for all t > 0, because c(x, t) ≥ η > 0 and (5.2). That is

d
dt

∫
Ω

(
(

r
μ

)
k−2
k−1 U − 1 − ln(

r
μ

)
k−2
k−1 U

)
dx ≤ χ

2

4η2

∫
Ω

|∇V |2dx − r
∫
Ω

(
(

r
μ

)
k−2
k−1 U − 1

)2dx for all t > 0. (5.7)

We multiply (5.6) by 2L, where L ∈ (
χ2

8η2 , r
k−3
k−1 μ

2
k−1 ) and then add it into (5.7) to obtain

d
dt

∫
Ω

(
(

r
μ

)
k−2
k−1 U − 1 − ln(

r
μ

)
k−2
k−1 U + LV2

)
dx +

(
2L − χ

2

4η2

) ∫
Ω

|∇V |2dx

+
(
r − L(

r
μ

)
2

k−1
) ∫
Ω

(
(

r
μ

)
k−2
k−1 U − 1

)2dx +
∫
Ω

LV2dx ≤ 0 for all t > 0.

(5.8)

Taking D0 = min
{
1, r − L( r

μ
)

2
k−1

}
together with the definition of F and D implies that (5.4) holds. �

Lemma 5.3 Let ϕ(s) := ( r
μ
)

k−2
k−1 s − 1 − ln ( r

μ
)

k−2
k−1 s. Then there exists a positive constant δ0 < 1

10
satisfying

ϕ(s) ≥ 0 f or all s > 0 (5.9)

and
1

6

(
(

r
μ

)
k−2
k−1 s − 1

)2
< ϕ(s) <

5

6

(
(

r
μ

)
k−2
k−1 s − 1

)2 f or all 0 <
∣∣∣s − (

μ

r
)

k−2
k−1

∣∣∣ < δ0. (5.10)

Proof. Since ϕ′(s) = ( r
μ
)

k−2
k−1 − 1

s and ϕ′′(s) = 1
s2 > 0 for all s > 0, we have ϕ(s) ≥ ϕ((

μ
r )

k−2
k−1 ) = 0. That is (5.9). Because

lim
s→(

μ
r )

k−2
k−1

( r
μ
)

k−2
k−1 s − 1 − ln( r

μ
)

k−2
k−1 s(

( r
μ
)

k−2
k−1 s − 1

)2
=

1

2
,

we can find a positive constant δ0 <
1

10
such that

∣∣∣∣∣
( r
μ
)

k−2
k−1 s − 1 − ln( r

μ
)

k−2
k−1 s(

( r
μ
)

k−2
k−1 s − 1

)2
− 1

2

∣∣∣∣∣ < 1

3
for all 0 < |s − (

μ

r
)

k−2
k−1 | < δ0.

We complete the proof of (5.10). �

Corollary 5.1 Under the assumption of Lemma 5.2, we have
∫ ∞

1

∫
Ω

(
(

r
μ

)
k−2
k−1 U − 1

)2dxdt < ∞ and
∫ ∞

1

∫
Ω

V2dxdt < ∞. (5.11)

Proof. Integrating the two side of (5.4) from 1 to ∞, we have

F (t) +
∫ ∞

1

D(s)ds ≤ F (1) for all t > 1.

Since F (t) is nonnegative by Lemma 5.3, this entails that
∫ ∞

1
D(s)ds ≤ F (1) < ∞, which according to the definition of

D(t) in (5.5) directly implies (5.11). �
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Lemma 5.4 Assume the hypothesis of Theorem 1.2 holds. Then if (n, c) is a nonnegative global classical solution of
(1.4), we have

lim
t→∞ ‖U(·, t) − (

μ

r
)

k−2
k−1 ‖L∞(Ω) = 0 (5.12)

and
lim
t→∞ ‖V(·, t)‖L∞(Ω) = 0. (5.13)

Proof. Suppose to the contrary that (5.12) was false. There would exist c21 > 0 and sequences (t j) j∈N ⊂ (1,+∞) and

(x j) j∈N ⊂ Ω such that ∣∣∣U(x j, t j) − (
μ

r
)

k−2
k−1

∣∣∣ ≥ c21 for all j ∈ N.
Also note that Lemma 4.5 implies that the function |U(x, t) − 1| is uniformly continuous in Ω × (1,∞). So, we can find

r1 > 0 and τ > 0 fulfilling

|U(x, t) − (
μ

r
)

k−2
k−1 | ≥ c21

2
for all x ∈ Br1

(x j) ∩Ω and t ∈ (t j, t j+τ). (5.14)

Now since the smoothness of ∂Ω ensures the existence of c22 > 0 such that

|Br1
(x) ∩Ω| ≥ c22 for all x ∈ Br1

(x j) ∩Ω, (5.15)

from (5.14) and (5.15) we infer that

∫ t j+τ

t j

∫
Ω

∣∣∣U(x, t) − (
μ

r
)

k−2
k−1

∣∣∣2dxdt ≥
∫ t j+τ

t j

∫
Br1

(x j)∩Ω

∣∣∣U(x, t) − (
μ

r
)

k−2
k−1

∣∣∣2dxdt

≥ c2
21

4

∫ t j+τ

t j

|Br1
(x j) ∩Ω|dt

≥ c2
21c22τ

4
for all j ∈ N.

(5.16)

But on the other hand, from Corollary 5.1 we know that since t j → ∞ as j → ∞ we must have

∫ t j+τ

t j

∫
Ω

|U(x, t) − (
μ

r
)

k−2
k−1 |2dxdt ≤

∫ ∞

t j

∫
Ω

|U(x, t) − (
μ

r
)

k−2
k−1 |2dxdt → 0 as j → ∞,

which is a contradiction to (5.16). We show that (5.12) actually was true. Similarly, we can obtain (5.13). �
Proof of Theorem 1.2. First, we prove the convergence of n(·, t) and c(·, t). In light of (5.12), then there exists t0 > 0

such that for the above δ0 > 0

‖U(·, t) − (
μ

r
)

k−2
k−1 ‖L∞(Ω) < δ0 for all t > t0.

Thanks to (5.10), we obtain

1

6

(
(

r
μ

)
k−2
k−1 U(x, t) − 1

)2
< ϕ(U) <

5

6

(
(

r
μ

)
k−2
k−1 U(x, t) − 1

)2 ≤ (
(

r
μ

)
k−2
k−1 U(x, t) − 1

)2
for all x ∈ Ω, t > t0,

which on account of the definition of F yields to

1

6

∫
Ω

(( r
μ

) k−2
k−1 U(·, t) − 1

)2
dx + L

∫
Ω

V2(·, t)dx < F (t) ≤
∫
Ω

(( r
μ

) k−2
k−1 U(x, t) − 1

)2
dx + L

∫
Ω

V2(·, t)dx. (5.17)

In virtue of (5.4), we have

F ′(t) ≤ −D0

∫
Ω

((
(

r
μ

)
k−2
k−1 U − 1

)2
+ LV2

)
dx ≤ −D0F (t),

from which we obtain

F (t) ≤ F (t0)e−D0(t−t0). (5.18)

Combining (5.17) with (5.18), one has

1

6

∫
Ω

(( r
μ

) k−2
k−1 U(·, t) − 1

)2
dx + L

∫
Ω

V2(·, t)dx ≤ F (t0)e−D0(t−t0),
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which implies that there exists a constant C34 > 0 such that

‖( r
μ

)
k−2
k−1 U(·, t) − 1‖L2(Ω) ≤ C34e−

D0
2

(t−t0)

and

‖V(·, t)‖L2(Ω) ≤ C34e−
D0
2

(t−t0)

for all t > t0.

Due to the relationship of translation about (n, c) and (U,V), there exists a constant C35 > 0 such that

‖n(·, t) − (
r
μ

)
1

k−1 ‖L2(Ω) ≤ C35e−
D0
2

(t−t0) (5.19)

and

‖c(·, t) − (
r
μ

)
1

k−1 ‖L2(Ω) ≤ C35e−
D0
2

(t−t0)

for all t > t0.

Using the Gagliardo-Nirenberg inequality and (4.13),we can find two positive constants C36 and C37 such that

∥∥∥n(·, t) − (
r
μ

)
1

k−1

∥∥∥
L∞(Ω)

≤ C36

∥∥∥∇n(·, t)∥∥∥ N
N+2

L∞(Ω)

∥∥∥n(·, t) − (
r
μ

)
1

k−1

∥∥∥ 2
N+2

L2(Ω)
+C36

∥∥∥n(·, t) − (
r
μ

)
1

k−1

∥∥∥
L2(Ω)

≤ C37e−
D0
N+2

t

and

‖c(·, t) − (
r
μ

)
1

k−1 ‖L∞(Ω) ≤ C37e−
D0
N+2

t

for all t > t0.

Taking γ = D0

N+2
, we obtain (1.11) and (1.12).

Next, we give the proof of convergence for u. Multiplying the third of (1.4) by u and integrating by parts, we have

1

2

d
dt

∫
Ω

|u|2dx +
∫
Ω

|∇u|2dx =
∫
Ω

n∇φ · udx =
∫
Ω

(
n(x, t) − (

r
μ

)
1

k−1
)∇φ · udx. (5.20)

By using Hölder’s inequality, Young’s inequality and Poincaré’s inequality, we can find κ1 > 0 such that

∫
Ω

∣∣∣(n(x, t) − (
r
μ

)
1

k−1
)∇φ · u

∣∣∣dx ≤ κ1
∫
Ω

(
n(x, t) − (

r
μ

)
1

k−1
)2dx +

1

2

∫
Ω

|∇u|2dx (5.21)

holds for all t ∈ (0,Tmax), where we used the boundedness of ‖∇φ‖L∞(Ω).

Thus substituting (5.21) into (5.20), we have

d
dt

∫
Ω

|u|2dx +
∫
Ω

|∇u|2dx ≤ 2κ1

∫
Ω

(
n(x, t) − (

r
μ

)
1

k−1
)2dx. (5.22)

Due to U(x, t) = μr n(x, t), we can obtain

d
dt

∫
Ω

|u|2dx +
∫
Ω

|∇u|2dx ≤ 2κ1(
r
μ

)
2

k−1

∫
Ω

(
(

r
μ

)
k−2
k−1 U − 1

)2dx. (5.23)

Substituting (5.23) into (5.8), we have

d
dt

∫
Ω

(
(

r
μ

)
k−2
k−1 U − 1 − ln(

r
μ

)
k−2
k−1 U + LV2 + |u|2

)
dx +

(
2L − χ

2

4η2

) ∫
Ω

|∇V |2dx +
∫
Ω

|∇u|2dx

+
(
r − (L + 2κ1)(

r
μ

)
2

k−1
) ∫
Ω

(
(

r
μ

)
k−2
k−1 U − 1

)2dx +
∫
Ω

LV2dx ≤ 0 for all t > 0.
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As once again using the Poincaré’s inequality, there is a constant κ2 > 0 such that

d
dt

∫
Ω

(
(

r
μ

)
k−2
k−1 U − 1 − ln(

r
μ

)
k−2
k−1 U + LV2 + |u|2

)
dx +

(
2L − χ

2

4η2

) ∫
Ω

|∇V |2dx

+
(
r − (L + 2κ1)(

r
μ

)
2

k−1
) ∫
Ω

(
(

r
μ

)
k−2
k−1 U − 1

)2dx +
∫
Ω

LV2dx + κ2

∫
Ω

u2dx ≤ 0 for all t > 0.

(5.24)

Let G(t) :=
∫
Ω

(
( r
μ
)

k−2
k−1 U −1− ln( r

μ
)

k−2
k−1 U + LV2 + |u|2

)
dx and let H0 = min{r− (L+2κ1)( r

μ
)

2
k−1 , 1, κ2} > 0. We also require

χ2

8η2 < L < μ
2

k−1 r
k−3
k−1 − 2κ1. Thanks to (5.24), we have

d
dt
G(t) ≤ −H(t),

where

H(t) := H0

∫
Ω

((
(

r
μ

)
k−2
k−1 U − 1

)2
+ LV2 + u2

)
dx.

By means of quite a similarly argument, we have

d
dt
G(t) ≤ −H0G(t)

and hence there exists a constant C38 > 0 such that

‖u(·, t)‖L2(Ω) ≤ C38e−
H0
2

(t−t0) for all t > t0. (5.25)

We also recall from the Gagliardo-Nirenberg inequality, (5.25), and Lemma 4.4 that there are some constants C39 > 0

and C40 > 0 fulfilling

‖u(·, t)‖L∞(Ω) ≤ C39

∥∥∥u(·, t)∥∥∥ 2
N+2

L2(Ω)

∥∥∥∇u(·, t)∥∥∥ N
N+2

L∞(Ω)
+C39‖u(·, t)‖L2(Ω)

≤ C40e−
H0
N+2

t for all t > t0.

Taking γ� =
H0

N+2
, we obtain (1.14) and (1.15) as well as (1.16). �

Now let us consider the asymptotic behavior of 1 < k < 2 to prove Theorem 1.3. The following ideas come from the

proof of Theorem 1.2 and the energy construction of asymptotic behavior in [45].

Let n∗ = ( r
μ
)

1
k−1 . We define the following functions

Fn∗,B (n, c) :=

∫
Ω

ψn∗(n)dx +
B
2

∫
Ω

(c − n∗)2dx, (5.26)

where

ψn∗(s) := s − n∗ − n∗ ln
s

n∗
(5.27)

and B is a fixed positive constant.

From the discussion of Lemma 5.3, we can see that

ψn∗(s) ≥ 0 for all s > 0. (5.28)

For the convenience of proving the Theorem 1.3, we first prove the following several lemmas.

Lemma 5.5 Suppose that χ > 0, 1 < k < 2 and

μ ≥ max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎝ χ

2M2−k
0

4(k − 1)η2

⎞⎟⎟⎟⎟⎠
k−1

k

r
1
k ,

⎛⎜⎜⎜⎜⎝ χ

2η
√

k − 1

⎞⎟⎟⎟⎟⎠
k−1

r
3−k

2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
hold. Here η > 0 come from (2.7) and M0 = sup

t
‖n(·, t)‖L∞(Ω) be defined in Theorem 1.3. Then, we have the following

energy inequality
d
dt
Fn∗,B(n, c) +A(n, c) ≤ 0, (5.29)
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where

A(n, c) =
n∗
2

∫
Ω

|∇n|2
n2

dx +
(
B − χ

2n∗
2η2

) ∫
Ω

|∇c|2dx +
B
4

∫
Ω

(c − n∗)2dx +
B
6

∫
Ω

(n − n∗)2dx. (5.30)

Proof. We use the first two equation in (1.4) and the fact that ∇ · u = 0 to compute

d
dt
Fn∗,B(n, c) =

∫
Ω

ntdx − n∗
∫
Ω

nt

n
dx + B

∫
Ω

(c − n∗)ctdx

= r
∫
Ω

ndx − μ
∫
Ω

nkdx − n∗
∫
Ω

1

n
·
{
Δn − χ∇ · (

n
c
∇c) + rn − μnk − u · ∇n

}

+ B
∫
Ω

(c − n∗) ·
{
Δc − c + n − u · ∇c

}
dx

= r
∫
Ω

ndx − μ
∫
Ω

nkdx − n∗
∫
Ω

|∇n|2
n2

dx + χn∗
∫
Ω

∇n · ∇c
nc

dx − rn∗|Ω| + μn∗
∫
Ω

nk−1dx

− B
∫
Ω

|∇c|2dx − B
∫
Ω

(c − n∗)2dx + B
∫
Ω

(c − n∗)(n − n∗)dx

:= J̃1 + · · · + J̃9.

(5.31)

We deduce from the Young’s inequality and (2.7) that

J̃4 ≤ n∗
2

∫
Ω

|∇n|2
n2

dx +
χ2n∗
2η2

∫
Ω

|∇c|2dx. (5.32)

For J̃9, using Young’s inequality again, we have

J̃9 ≤ 3B
4

∫
Ω

(c − n∗)2dx +
B
3

∫
Ω

(n − n∗)2dx. (5.33)

We control J̃1 + J̃2 + J̃5 + J̃6 as follows

J̃1 + J̃2 + J̃5 + J̃6 +
B
2

∫
Ω

(n − n∗)2dx =
∫
Ω

{
rn − μnk − rn∗ + μn∗nk−1 +

B
2

(n − n∗)2
}

dx

=

∫
Ω

(n − n∗) ·
{
μ(

r
μ
− nk−1) +

B
2

(n − n∗)
}

dx.
(5.34)

We now substitute (5.32)-(5.34) into (5.31) to obtain that

d
dt
Fn∗,B(n, c) +

n∗
2

∫
Ω

|∇n|2
n2

dx +
(
B − χ

2n∗
2η2

) ∫
Ω

|∇c|2dx +
B
4

∫
Ω

(c − n∗)2dx

+
B
6

∫
Ω

(n − n∗)2dx ≤
∫
Ω

(n − n∗) ·
{
μ(

r
μ
− nk−1) +

B
2

(n − n∗)
}

dx for all B ≥ χ
2

2η2
n∗.

Let ω(s) := (s − n∗)h(s), where h(s) = μ
( r
μ
− sk−1) + B

2
(s − n∗). A derivation with respect to s gives

h′(s) = −μ(k − 1)sk−2 +
B
2

for all B ≥ χ
2

2η2
(

r
μ

)
1

k−1 .

Notice that h′(s) = 0 is equivalent to s =
(

2μ(k−1)

B

) 1
2−k

. We take two times derivatives for ω(s) to obtain

ω′(s) = μ(
r
μ
− sk−1) − μ(k − 1)sk−2(s − n∗) + B(s − n∗)

ω′′(s) = −2μ(k − 1)sk−2 − μ(k − 1)(k − 2)sk−3(s − n∗) + B.

A direct computation shows that ω(n∗) = ω′(n∗) = 0 and ω′′(n∗) = B− 2(k − 1)μ
1

k−1 r
k−2
k−1 . We take B ≤ 2(k − 1)μ

1
k−1 r

k−2
k−1 to

ensure ω′′(n∗) ≤ 0. Therefore, we have
(

2μ(k−1)

B

) 1
2−k ≥

(
2μ(k−1)

2(k−1)μ
1

k−1 r
k−2
k−1

) 1
2−k
= n∗, h(0) = r− B

2
n∗ ≥ r− (k−1)μ

1
k−1 r

k−2
k−1 ( r

μ
)

1
k−1 =

(2 − k)r > 0, h(n∗) = 0, and ω(0) = −rn∗ + B
2

n2∗ = −n∗(r − B
2

n∗) < 0. We use the method of analyzing graph to capture
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a point which is called arrest point. Thus arrest point is
(( 2μ(k−1)

B
) 1

2−k , ω
(
(

2μ(k−1)

B )
1

2−k
))

. If we truncate the right part about

arrest point, then the function is not positive. That is if M0 ≤
(

2μ(k−1)

B

) 1
2−k

, we have

ω(n) ≤ 0 for all B ≤ 2(k − 1)μ

M2−k
0

,

which completes the proof of Lemma 5.5. �

Corollary 5.2 Under the assumptions of Lemma 5.5, we have
∫ ∞

1

∫
Ω

(c − n∗)2dxdt < ∞ and
∫ ∞

1

∫
Ω

(n − n∗)2dxdt < ∞.

Proof. Integrating both side of (5.29) from 1 to ∞ about the time, we have

Fn∗,B(n, c) +

∫ ∞

1

A(n, c)dt ≤ Fn∗,B(n(·, 1), c(·, 1)).

Since Fn∗,B(n, c) is nonnegative by (5.26) and (5.28), this entails that
∫ ∞

1
A(n, c)dt ≤ Fn∗,B(n(·, 1), c(·, 1)) < ∞, which

according to the definition of A(n, c) in (5.30) directly implies Corollary 5.2. �

Lemma 5.6 Assume the hypothesis of Theorem 1.3 holds. Then if (n, c) is a nonnegative global bounded classical
solution of (1.4), we have

lim
t→∞ ‖n(·, t) − n∗‖L∞(Ω) = 0 (5.35)

and
lim
t→∞ ‖c(·, t) − n∗‖L∞(Ω) = 0.

Proof. Thanks to the boundedness of
∫ ∞

1

∫
Ω

(c − n∗)2dxdt and
∫ ∞

1

∫
Ω

(n − n∗)2dxdt, which is obtained in Corollary 5.2.

The following processes are similar to the proof of Lemma 5.4. Thus we omit the details. �

Lemma 5.7 Let ψn∗(s) be defined by (5.27). Then there exists a positive constant δ3 < 1
10

satisfying

1

6n∗
(s − n∗)2 < ψn∗(s) <

5

6n∗
(s − n∗)2 f or all 0 <

∣∣∣s − n∗
∣∣∣ < δ3. (5.36)

Proof Because

lim
s→n∗

s − n∗ − n∗ ln s
n∗

(s − n∗)2
=

1

2n∗
,

we can find a positive constant δ3 <
1

10
such that

∣∣∣ s − n∗ − n∗ ln s
n∗

(s − n∗)2
− 1

2n∗

∣∣∣ < 1

3n∗
for all 0 < |s − n∗| < δ3.

We thereupon readily arrive at (5.36). �

Proof of Theorem 1.3. The proof is similar to that of Theorem 1.2. Here we only give the key steps. In virtue of

(5.35), there exists t1 > 0 large enough such that

1

6n∗
(n − n∗)2 < ψn∗(n) <

5

6n∗
(n − n∗)2 for all t > t1, x ∈ Ω. (5.37)
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Due to (5.29) and (5.37), there exists A0 = min{ 1
2
, Bn∗

5
} such that

d
dt
Fn∗,B(n, c) ≤ −A(n, c)

≤ −B
4

∫
Ω

(c − n∗)2dx − B
6

∫
Ω

(n − n∗)2dx

≤ −A0

{ ∫
Ω

ψn∗(n)dx +
B
2

∫
Ω

(c − n∗)2dx
}

= −A0Fn∗,B(n, c) for all t > t1, x ∈ Ω.

(5.38)

Using the Gronwall’s inequality, we have

Fn∗,B(n, c) ≤ C41e−A0t, (5.39)

where C41 = Fn∗,B(n0, c0) > 0.

Using the Gagliardo-Nirenberg inequality and (5.39), we can find two positive constants C42 and C43 such that

∥∥∥n(·, t) − (
r
μ

)
1

k−1

∥∥∥
L∞(Ω)

≤ C42

∥∥∥∇n(·, t)∥∥∥ N
N+2

L∞(Ω)

∥∥∥n(·, t) − (
r
μ

)
1

k−1

∥∥∥ 2
N+2

L2(Ω)
+C42

∥∥∥n(·, t) − (
r
μ

)
1

k−1

∥∥∥
L2(Ω)

≤ C43e−
A0
N+2

t

and

‖c(·, t) − (
r
μ

)
1

k−1 ‖L∞(Ω) ≤ C43e−
A0
N+2

t

for all t > t1. Taking γ̃ = A0

N+2
, we obtain (1.18) and (1.19).

Thanks to (5.22), we obtain
d
dt

∫
Ω

|u|2dx +
∫
Ω

|∇u|2dx ≤ 2κ1

∫
Ω

(
n(x, t) − n∗

)2dx. (5.40)

Adding (5.40) into (5.38) and then using the Poincaré’s inequality and (5.37), we have

d
dt

(
Fn∗,B(n, c) +

∫
Ω

u2dx
)
+ κ2

∫
Ω

u2dx ≤ d
dt

(
Fn∗,B(n, c) +

∫
Ω

u2dx
)
+

∫
Ω

|∇u|2dx

≤ −A0Fn∗,B(n, c) + 2κ1

∫
Ω

(
n(x, t) − n∗

)2dx

≤ −A0Fn∗,B(n, c) + 12κ1n∗
∫
Ω

ψn∗(n)dx

≤ −A1Fn∗,B(n, c),

where 0 < A1 ≤ A0 − 12κ1n∗ ≤ min{ 1
2
, Bn∗

5
} − 12κ1n∗ and κ2 is given by (5.24).

Moving the second term on the left hand side to the right hand side, we have

d
dt

(
Fn∗,B(n, c) +

∫
Ω

u2dx
)
≤ −A1Fn∗,B(n, c) − κ2

∫
Ω

u2dx

≤ −A2

(
Fn∗,B(n, c) +

∫
Ω

u2dx
)
,

where 0 < A2 = min{A1, κ2} ≤ min
{

min{ 1
2
, Bn∗

5
} − 12κ1n∗, κ2

}
= min

{
min{ 1

2
, B

5
( r
μ
)

1
k−1 } − 12κ1( r

μ
)

1
k−1 , κ2

}
.

Using the Gronwall’s inequality, we can find C44 > 0 such that

Fn∗,B(n, c) +

∫
Ω

u2dx ≤ C44e−A2t, (5.41)

where μ > (24κ1)k−1r and B > 60κ1.

Again using the Gagliardo-Nirenberg inequality, (5.26), (5.36), and (5.41), we can find two positive constants C45 and

C46 such that ∥∥∥u(·, t)∥∥∥L∞(Ω)
≤ C45

∥∥∥∇u(·, t)∥∥∥ N
N+2

L∞(Ω)

∥∥∥u(·, t)∥∥∥ 2
N+2

L2(Ω)
+C45

∥∥∥u(·, t)∥∥∥L2(Ω)

≤ C46e−
A2
N+2

t for all t > t1.

Taking γ̃� =
A2

N+2
, we complete the proof of Theorem 1.3. �
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Anal. Non Linéaire 33 (2016) 1329-1352.

[53] M. Winkler, How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system?, Trans. Amer.

Math. Soc. 369 (2017) 3067-3125.

[54] M. Winkler, Stabilization in a two-dimensional chemotaxis-(Navier-)Stokes system, Arch. Ration. Meth. Anal. 211

(2014) 455-487.

[55] C. Wu, Z. Xiang, The small-convection limit in a two-dimensional Keller-Segel-Navier-Stokes system, J. Differen-

tial Equations 267 (2019) 938-978.

[56] Q. Zhang, Y. Li, Convergence rates of solutions for a two-dimensional chemotaxis-Navier-Stokes system, Discrete

Contin. Dyn. Syst. Ser. B 20 (2015) 2751-2759.

[57] X. Zhao, S. Zheng, Global existence and boundedness of solutions to a chemotaxis system with singular sensitivity
and logistic-type source, J. Diferential Equations 267 (2019) 826-865.

27


