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This paper is concerned with the analysis of a class of optimal control problems 
governed by a time-harmonic eddy current system with a dipole source, which is 
taken as the control variable. A mathematical model is set up for the state equation 
where the dipole source takes the form of a Dirac mass located in the interior 
of the conducting domain. A non-standard approach featuring the fundamental 
solution of a curl curl−Id operator is proposed to address the well-posedness of 
the state problem, leading to a split structure of the state field as the sum of a 
singular part and a regular part. The aim of the control is the best approximation 
of desired electric and magnetic fields via a suitable L2-quadratic tracking cost 
functional. Here, special attention is devoted to establishing an adjoint calculus 
which is consistent with the form of the state variable and in this way first order 
optimality conditions are eventually derived.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The aim of devising optimal control procedures for Maxwell’s equations and eddy current systems is not 
new in itself, considering the important role of electromagnetic fields in various modern technologies. Once 
suitable mathematical tools became available in the literature1 many researchers have started focusing their 
attention on this kind of problems, most of the times considering distributed controls in the form of a current 
density in the interior of a conducting domain, or in the form of a voltage excitation on the boundary (i.e., 
via electric ports): we refer to Tröltzsch and Valli [22], [21] and to Yousept [25] for linear time-harmonic 
eddy current problems, and to Tröltzsch and Valli [23] or Nicaise et al. [15] for the time-dependent case. 
We also mention the work of Bommer and Yousept [6] featuring the full Maxwell system as well as the one 
of Yousept [26] where a quasi-linear case is investigated.

At the same time, there are several applied contexts in which one is interested in finding an optimal way 
to place sensors or actuators; along with this, if it is not possible - or not enough efficient - to distribute 
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control devices all over the domain, the problem of identifying which sub-regions are actually important 
in order to achieve the minimization of the objective functional arises. Following the archetype work of 
Stadler [18], it became clear that the addition of a non-smooth L1-regularization term in the cost functional 
entails sparse properties of the optimal solutions, namely that they have small support with respect to 
the Lebesgue measure. These techniques have already been applied, though not extensively, in the context 
electromagnetic PDEs, see for instance Tröltzsch and Valli [22] and the author [9].

In more recent times, the lack of reflexivity, compactness and differentiability (regularity) properties of 
the L1-spaces and norms led to the study of optimal control problems in measure spaces like M(Ω), the 
space of regular Borel measures, or L2(I, M(Ω)), which both exhibit better functional properties as well as 
similar sparsity features of optimal solutions; see Casas et al. [8], Clason and Kunish [10] and Trautmann 
et al. [19], where all these issues are widely discussed.

Let us focus our attention on controls of the form:

u =
N∑
i=1

uiδxi
, xi ∈ Ω, (1)

where ui is, say, either a complex number or a time-dependent intensity t �→ ui(t). These are typical 
examples of singular elements in M(Ω) (respectively in L2(I; M(Ω)) in the time-dependent framework) that 
are usually of interest for modeling phenomena related to geology or acoustics: we refer to Pieper et al. [17], 
where an inverse problem from point-wise measurements (state observations) is analyzed; nevertheless, a 
work by Alonso Rodríguez et al. [3] concerning inverse problems for eddy current equations suggests that 
sources (controls) of type (1) can be meaningful also for electromagnetic problems: a weighted Dirac mass 
pδx0 represents a dipole source of intensity p ∈ R3 concentrated at x = x0.

In principle, this would lead to consider controls that can be a priori expressed as a linear combination of 
deltas with unknown positions and unknown intensities, an assumption which, in turn, yields a non-convex 
optimization problem. A common idea to overcome this difficulty is precisely to lift the problem to a more 
general one with controls lying in a suitable space of measures, and then discuss if and under what conditions 
the solution has the desired structure (1).

However, the latter step is far from being reliable, often providing just some necessary conditions and/or 
information on the support of the optimal measure. For what concerns electromagnetic state equations, the 
situation is even more complicated since the analysis of PDEs with measure-valued sources usually requires 
some structural regularity of the differential operator, while Maxwell’s equations naturally exhibit singular 
solutions in most instances; see e.g. Costabel et al. [12]. For these reasons, we decided to work with a fixed 
number of deltas (i.e., one, without loss of generality) in a fixed location, say x = x0. A similar approach 
has been carried out rather recently by Allendes et al. [1], but there the state equation takes the form of a 
Poisson problem and the focus is shifted on the a posteriori error analysis for a FEM approximation.

Despite the adopted simplifications, several mathematical difficulties are here present: the most impor-
tant, as mentioned, is that our state equation is an eddy current system with a Dirac distribution as source. 
We propose an approach that seems new in this context; the resolution of the problem is split into three 
steps, the first one being the determination of a fundamental solution to deal with the singularity at x0 (this 
idea has been already used to tackling some inverse problems; see for instance Wolters et al. [24] and Alonso 
Rodríguez et al. [3]). After that, the specific structure of the eddy current problem leads to a state variable 
that is composed by two terms, a vector one and (the gradient of) a scalar one. The control analysis inherits 
these issues and thus two adjoint states, corresponding to two different parts of the state variable, need 
to be defined in a non-standard way. Moreover, the underlying complex structure of the spaces involved 
in the analysis of time-harmonic Maxwell’s equations entails that some attention is required to discuss the 
differentiability of the objective functional.
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It is worth to note that this kind of approach, based on the determination of a fundamental solution, 
could be used also for tackling the control problem associated with more canonical operators, as the Laplace 
operator or other elliptic operators.

Now we briefly summarize the content of this paper. In next section we introduce our notation and our 
basic geometrical assumptions. Section 3 is devoted to the mathematical analysis of the state equation: 
here, its solution is built up starting from the fundamental solution of a curl curl operator. In section 4, we 
present the optimal control problem and eventually derive first order optimality conditions.

To our best knowledge, this article represents the first contribution towards the optimal control of elec-
tromagnetic fields in the presence of spike sources.

2. Preliminaries

Geometrical assumptions. The computational domain Ω is a bounded simply connected open set in R3

with Lipschitz boundary ∂Ω =: Γ. A non-empty open, connected subset ΩC ⊂ Ω denotes the conducting 
region and consequently ΩI := Ω \ΩC is the insulator, which is also assumed to be connected for simplicity; 
ΩC is strictly contained in Ω in such a way that Γ ∩ ∂ΩC = ∅ and it is assumed to be simply connected, 
implying that ΩI is also simply connected. The set ΓC := ∂ΩI ∩∂ΩC is the interface between the conductor 
and the insulator. We finally set ΓI := ∂ΩI = Γ ∩ ΓC and denote by n, nC and nI respectively the 
unit outward normal vectors on Γ, ΓC and ΓI . From now on, for the sake of clarity we use the notation 
HI := H|ΩI

, σC := σ|ΩC
(and similar for other fields) to explicitly underline to which subdomain a certain 

vector or matrix valued map is restricted.

Notation. Throughout this paper, we shall work with functional spaces on the field of complex numbers – 
unless otherwise specified - and we shall use a bold typeface to denote a three-dimensional vector map, or 
a vector space of three-dimensional vector functions. For instance, we set:

L2(Ω) := {u : Ω → C3 | |u| ∈ L2
R(Ω)}

H1(Ω) := {u : Ω → C | |u| ∈ L2
R(Ω), |∇u| ∈ L2

R(Ω)};
(2)

the spaces H(curl; Ω), H(div; Ω) are thus defined as

H(curl; Ω) := {u : Ω → C3 | u ∈ L2(Ω), curlu ∈ L2(Ω)},
H(div; Ω) := {u : Ω → C3 | u ∈ L2(Ω), divu ∈ L2

C(Ω)}.

The corresponding trace spaces are defined, e.g., in Monk [14, Section 3.5] or in Alonso Rodríguez and Valli 
[2, Appendix A.1].

The matrix-valued coefficients μ ∈ L∞(Ω; R3×3), σ ∈ L∞(ΩC ; R3×3) and ε ∈ L∞(ΩI ; R3×3) are all 
assumed to be symmetric and uniformly positive definite; moreover they satisfy an homogeneity condition
which is below introduced and motivated, see (4).

3. Analysis of the state equation: the eddy current problem with a dipole source

Let us consider an E-based formulation for the eddy current problem with a dipole source in the form of 
a Dirac mass, namely:
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

curl(μ−1 curlE) + iωσE = −iωpδx0 in Ω

div(εIEI) = 0 in ΩI

(μ−1 curlEI) × n = 0 on Γ

εIEI · n = 0 on Γ,

(3)

where p ∈ R3, ω > 0, x0 ∈ ΩC and δx0 stands for the Dirac distribution centered at x0. Equations (3)3,4
correspond to the choice of the so called magnetic boundary condition(s), see Alonso Rodríguez and Valli 
[2, Section 1.3], reinterpreted after eliminating the magnetic field from the eddy current system.

We also point out that (3) is somehow already a simplified model, since our geometrical assumptions 
entail that a couple of equations related to the topology of ΩI can be a priori dropped, see again Alonso 
Rodríguez and Valli [2, p. 22].

Prior to the control analysis, we need to address the well-posedness of problem (3). The first existence 
and uniqueness result for (3) is due to Alonso Rodríguez et al. [3] in the context of inverse problems; in this 
sense, Theorem 3 is not new. However, here we are focused towards the analysis of a corresponding optimal 
control problem and thus we need to keep track of the dependence of the solution (that is, the state variable) 
on the control p, see Remarks 1, 2 and Corollary 2, and we also need to introduce and study some operators 
that will be involved in the adjoint calculus (for instance the sesquilinear forms (25)). None of these issues 
are addressed in [3]. Moreover we discuss in Remark 3 how to treat another significant boundary condition.

From now on we shall assume that physical parameters μ, σ satisfy a local homogeneity condition: there 
exists a ball Br(x0) centered at x0 and two real positive constants μ0, σ0 for which:

μ(x) = μ0 IdR3 and σ(x) = σ0 IdR3 ∀x ∈ Br(x0). (4)

The latter assumption is not that much restrictive in most instances because the location of the point 
source, i.e. x0, is more or less free to choose and it seems reasonable to opt for a point that does not lie on 
an interface region separating different materials. On the other hand, it is pivotal for giving a meaning to 
our fundamental solution-based approach: μ being constant in a neighborhood of x0 entails that locally we 
are dealing with the curl curl− Id operator - up to constants -, whose fundamental solution is known in the 
literature. The following result is adapted from Ammari et al. [5]:

Proposition 1. Let z =
√
−iωμ0σ0 with Re z < 0 and q = −iωp; the distributional solution K = K(·; x0) of 

the equation

curl curlK − z2K = qδx0 (5)

is given by

K = K(x;x0) = qΦx0(x) + 1
z2 (q · ∇)∇Φx0(x), (6)

where

Φx0(x) = exp(iz|x − x0|)
4π|x − x0|

(7)

is the fundamental solution - up to translation in x0 - of the Helmholtz operator

−Δ − z2 Id .
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Remark 1 (Dependence of K on the intensity q). Since q is constant, we have

K = qΦ + 1
z2 (q · ∇)∇Φ

= Id(qΦ) + 1
z2 (∇2Φ)q

= [Id Φ + ∇2Φ]q =: Nq,

(8)

where N = N(x0, Φx0) is then a symmetric matrix with entries in H−2(Ω), since it inherits the singularity 
of Φx0(·) at x = x0.

If x ∈ Br(x0), equation (3)1 reads

μ−1
0 curl curlE(x) + iωσ0E(x) = −iωpδx0(x),

thus Proposition 1 applies and we are suggested to look for the solution of (3) in the form

E = K + M, (9)

where M has to read the behavior outside the ball Br(x0) through a modified source on the RHS. More 
precisely, M is formally the solution to

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

curl(μ−1 curlM) + iωσM = J in Ω

div(εM) = − div(εK) in ΩI

(μ−1 curlM) × n = −(μ−1 curlK) × n on Γ

εM · n = −εK · n on Γ,

(10)

where

J =
{

0 in Br(x0)

− curl(μ−1 curlK) − iωσK in Ω \Br(x0);
(11)

later on we shall see the correct weak formulation of this formal problem.
Focusing now on (10), we first aim at homogenizing it by finding a vector field – in the form of a gradient – 

which has both the same divergence in ΩI and the same normal component on Γ of εQ.

Let

W := {w ∈ H1(ΩI) : w = 0 on ΓC}; (12)

ηI ∈ W is defined as the solution of the weak boundary value problem

b[ηI , ξ] :=
∫
ΩI

εI∇ηI · ∇ξ = −
∫
ΩI

εIK · ∇ξ ∀ξ ∈ W, (13)

which is clearly well-posed since K|ΩI
∈ L2(ΩI)3. It is straightforward to see that ηI is the weak solution 

of the strong, mixed boundary value problem
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⎧⎪⎪⎨⎪⎪⎩
− div(εI∇ηI) = div(εIK) in ΩI

ηI = 0 on ΓC

εI∇ηI · n = −εIK · n on Γ.

(14)

We then extend ηI by zero outside ΩI and define

η :=
{
ηI in ΩI

0 in ΩC

∈ H1(Ω). (15)

Remark 2 (Dependence of η on p). Since q = −iωμ0p, the dependence with respect to p is given by

K = −iωμ0Np =: Ap, (16)

where A = A(x0, Φx0) is defined as A = −iωμ0N . Since linearity is preserved by extensions to zero, the 
mapping R3 � p �→ η(p) ∈ H1(Ω) is linear; in particular, the same is true for p �→ (∇η)(p).

Back to problem (10), we can now split its solution as

M = Q + ∇η, (17)

where Q ∈ H(curl; Ω) has now to satisfy⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

curl(μ−1 curlQ) + iωσQ = J in Ω

div(εQ) = 0 in ΩI

(μ−1 curlQ) × n = −(μ−1 curlK) × n on Γ

εQ · n = 0 on Γ,

(18)

J being still defined as in (11). Notice that the singularity at x = x0 of the initial problem (3) is directly 
read by the fundamental solution K via (9), hence we are left with a boundary value problem where K
appears as a datum, but only in subsets of the domain where it is smooth.

In order to set up a weak formulation of the eddy current problem (18), we introduce the linear space

V := {v ∈ H(curl; Ω) : div(εvI) = 0 in ΩI , εv · n = 0 on Γ}, (19)

which turns out to be a Hilbert space if endowed with the (semi)weighted inner product

〈u,v〉V :=
∫
Ω

εu · v +
∫
Ω

curlu · curlv. (20)

Notice that the linear space V turns out to be suitable thanks to the preliminary homogenization by means 
of ∇η.

Multiplying equation (18)1 by (the complex conjugate of) a test function v ∈ V, integrating in Ω and 
then by parts we obtain:∫

Ω

J · v =
∫
Ω

μ−1 curlQ · curlv −
∫
Γ

[(μ−1 curlQ) × n] · v + iω

∫
ΩC

σQ · v

=
∫

μ−1 curlQ · curlv + iω

∫
σQ · v +

∫
[(μ−1 curlK) × n] · v.

(21)
Ω ΩC Γ
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It is important to point out that the boundary integrals shall be generally understood as duality pairings 
between (μ−1 curlK ×n) ∈ H−1/2(divτ ; Γ) and n× v×n ∈ H−1/2(curlτ ; Γ). Let us rigorously see what is ∫
Ω

J · v for the datum J defined in (11). Let Bc
x0

:= Ω \ Br(x0); by the homogeneity condition (4) we can 

write: ∫
Ω

J · v

=
∫

Bc
x0

[− curl(μ−1 curlK) − iωσK] · v

=
∫
Ω

[− curl(μ−1 − μ−1
0 ) curlK) · v − iω(σ − σ0)K · v]

=
∫
Ω

[−(μ−1 − μ−1
0 ) curlK · curlv − iω(σ − σ0)K · v]

−
∫
Γ

n × [(μ−1 − μ−1
0 ) curlK] · v

=
∫
Ω

[−(μ−1 − μ−1
0 ) curlK · curlv − iω(σ − σ0)K · v] +

∫
Γ

(n × μ−1
0 curlK) · v

−
∫
Γ

(n × μ−1 curlK) · v,

where with a slight abuse of notation μ−1
0 has been used in place of μ−1

0 IdR3 . Combining the above com-
putation with (21) and (18)3, we conclude that the weak formulation of (18) reads as follows:

Problem 1. Let K be defined in (6). To find Q ∈ V such that

a+[Q,v] :=
∫
Ω

μ−1 curlQ · curlv + iω

∫
ΩC

σQC · v

=
∫

Bc
x0

[−(μ−1 − μ−1
0 ) curlK · curlv − iω(σ − σ0)K · v]

+
∫
Γ

(n × μ−1
0 curlK) · v,

(22)

for all v ∈ V.

The following Poincaré-type inequality (see Alonso Rodríguez and Valli [2, Lemma 2.1], Fernandes and 
Gilardi [13]) will be pivotal to prove the well-posedness of Problem 1.

Lemma 1. There is a constant C0 > 0 such that

‖wI‖0,ΩI
≤ C0(‖ curlwI‖0,ΩI

+ ‖ div(εIwI)‖0,ΩI
+ ‖wI × nI‖−1/2,divτ,ΓC

+‖εw · n‖ )
(23)
I −1/2,Γ
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for all wI ∈ H(curl; ΩI) ∩HεI (div; ΩI) with wI ⊥εI HεI (ΓC , Γ; ΩI), where

HεI (ΓC ,Γ; ΩI) = {qI ∈ L2(ΩI) : curlqI = 0,div(εIqI) = 0,

qI × nI = 0 on ΓC , εIqI · nI = 0 on Γ},
(24)

and ⊥εI denotes the orthogonality with respect to the εI-weighted L2(ΩI) inner product, that is (εI ·, ·)L2(ΩI).

We shall briefly explain why the above lemma actually applies to functions in V. Indeed first of all 
V ⊂ H(curl; ΩI) ∩HεI (div; ΩI) due to the divergence-free constraint. Moreover, the space HεI (ΓC , Γ; ΩI)
has dimension equal to pΓC

+ nΓ, where the former denotes the number of connected components of ΓC

minus one, while the latter denotes the number of Γ-independent non-bounding cycles2 in ΩI , and both 
these numbers vanish under the hypothesis that ΓC is connected and Ω is simply connected.3

A consequence of the previous lemma is the following:

Corollary 1. The sesquilinear forms

a+[w,v] =
∫
Ω

μ−1 curlw · curlv + iω

∫
ΩC

σw · v,

a−[w,v] :=
∫
Ω

μ−1 curlw · curlv − iω

∫
ΩC

σw · v
(25)

are (strongly) coercive in V× V.

Proof. For all v ∈ V, we have:

|a+[v,v]|2 =

⎛⎝∫
Ω

μ−1 curlv · curlv

⎞⎠2

+ ω2

⎛⎝∫
ΩC

σvC · vC

⎞⎠2

≥
{
μ−2

min‖ curlv‖4
0,Ω + ω2σ−2

min‖vC‖4
0,ΩC

)
}

≥ C(‖ curlv‖2
0,Ω + ‖vC‖2

0,ΩC
)2.

By Lemma 1 together with the continuity of the tangential trace, we also have:

‖v‖2
0,ΩI

≤ C0(‖ curlvI‖0,ΩI
+ ‖vI × nI‖−1/2,divτ ,ΓC

)2

= C0(‖ curlvI‖0,ΩI
+ ‖vC × nC‖−1/2,divτ ,ΓC

)2

≤ C1(‖ curlvI‖2
0,ΩI

+ ‖vC‖2
0,ΩC

+ ‖ curlvC‖2
0,ΩC

).

Therefore

|a+[v,v]|2 ≥ C2(‖ curlv‖2
0,Ω + ‖vC‖2

0,ΩC
+ ‖vI‖2

0,ΩI
)2

= C2‖v‖4
V,

2 More precisely, we say that a family C of disjoint cycles of ΩI is formed by Γ-independent, non-bounding cycles if, for each non 
trivial subfamily C∗ ⊂ C, the union of the cycles in C∗ cannot be equal to S \ γ, where S denotes a surface contained in ΩI and γ
a union of cycles contained in Γ.
3 The fact that the computational domain Ω is simply connected is sufficient to make nΓ equal to zero. However, this may also 

happen when the topology of Ω is non-trivial. For a detailed discussion and examples we refer to Alonso Rodríguez and Valli [2, 
Section 1.4].
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C, C0, C1, C2 being positive real constants, which do not depend on v. Since a+[·, ·] and a−[·, ·] have the 
same magnitude, the proof is complete. �

For the sake of completeness, we briefly discuss how to proceed when ΓC is not assumed to be connected4; 
in this case pΓC

≥ 1, then it is known (Alonso Rodríguez and Valli [2, Appendix A.4]) that HεI (ΓC , Γ; ΩI)
is spanned by {∇wi}i=1...pΓC

, wi ∈ H1(ΩI) being the solution of the mixed problem:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

div(εI∇wi) = 0 in ΩI

εI∇wi · n = 0 on Γ

wi = 0 on ΓC \ Γi

wi = 1 on Γi,

(26)

where (Γi)i=1...pΓC
denotes the i-th connected component. Fix any j ∈ {1 . . . pΓC

}; for each v ∈ V, we have:

∫
ΩI

εIvI · ∇wj = −
∫
ΩI

wj div(εIvI) +
∫

∂ΩI

wjεIvI · n

=
∫
Γ

wjεIvI · n +
pΓC∑
i=1

∫
Γi

wjεIvI · n

=
∫
Γj

εIvI · n,

since εIvI · n vanishes identically on the external boundary Γ. Hence we see that it suffices to require the 
functions of V to satisfy the additional constraints

∫
Γi

εIvI · n = 0 ∀i = 1 . . . pΓC

concerning the fluxes through each connected component of the boundary of the conductor, ΓC.
With this adjustment, V is yet again a Hilbert space endowed with the H(curl; Ω) inner product (20)

and its elements satisfy the orthogonality hypothesis of Lemma 1, which, in turn, implies that Corollary 1
and the following lemma still hold.

Lemma 2 (Existence for Q). Problem 1 has a unique solution Q ∈ V.

Proof. The mapping L : H(curl; Ω) �→ C defined via

L(v)

:=
∫

Bc
x0

[−(μ−1 − μ−1
0 ) curlK · curlv − iω(σ − σ0)K · v] +

∫
Γ

(n × μ−1
0 curlK) · v (27)

4 Since ΩI is assumed to be connected, this can only happen if ΩC itself is a non-connected conductor, that is ΩC =
∐
i

Ω(i)
C with 

Ω(i)
C connected for each i. The presence of more conductors in a device is a situation that often arises in engineering applications.
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(that is, the complex conjugate of the right hand side of (22)) is linear and continuous on V owing again 
to the continuity of the tangential trace; moreover by Corollary 1 the sesquilinear form a[·, ·] is coercive on 
V×V, hence the Lax-Milgram lemma applies ensuring the existence of a unique weak solution to (22). �

Summarizing the whole discussion on the state equation, we end up with:

Theorem 3 (Well-posedness for the state equation). Assuming that condition (4) is satisfied, there exists a 
solution E ∈ H−2(Ω) to (3), which can be written as:

E = Q + ∇η + K, (28)

where Q is the solution of (18), η is the solution of (13) and K is the fundamental solution defined in (6). 
Moreover, it is unique among all solutions Ê such that (Ê− K) ∈ H(curl; Ω).

Proof. Uniqueness is the only assertion yet to be proved. Assume that Ê is another solution for which 
(Ê−K) ∈ H(curl; Ω), we can write it as Ê = K +(Ê−K) and it is easy to see that the addendum Ê−K is 
a solution to (10), a problem for which one has uniqueness in H(curl; Ω). Hence we conclude Ê−K = E −K
and E = Ê. �
Corollary 2 (Linearity in p). The solution mapping S : R3 → H−2(Ω) acting as

p �→ Sp := E(p), with (E(p) − Kp) ∈ H(curl; Ω) (29)

is linear (with respect to real numbers).

Proof. We see that each term on the RHS of (28) is linear in p. Indeed Remark 2 is enough for K, ∇η; for 
what concerns Q, it suffices to observe that the mapping V � v �→ Lp(v) defined via (27) depends linearly 
on p, that is Lαp1+βp2 = αLp1 + βLp2 as elements of L(V; C), with α, β ∈ R and p1, p2 ∈ R3. �
Remark 3 (Other boundary conditions). The boundary conditions (3)3,4 are not the most commonly seen 
for an E-based eddy current system. Let us briefly state what changes if the so called electric boundary 
condition

EI × n = 0 on Γ (30)

is considered in place of (3)3.4. Again we look for a solution in the form E = K + M +∇η (see (9) together 
with (17)), exception made for the fact that now η|∂ΩI

= 0 instead of (14)3 and we are left with the following 
formal problem:

⎧⎪⎪⎨⎪⎪⎩
curl(μ−1 curlQ) + iωσQ = J in Ω

div(εQ) = 0 in ΩI

Q × n = −K × n =: G on Γ.

(31)

We set

V0 := {u ∈ H(curl; Ω) : div(εIuI) = 0 in ΩI , uI × n = 0 on Γ};
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since the bilinear form a+[·, ·] is coercive in V0 (Lemma 1, and thus Corollary 1, applies to functions of V0
too), the resolution procedure becomes standard if we are able to find a suitable5 lifting G̃ of G, that is 
G̃ ∈ V0 and G̃ × n = G on Γ.

Let us consider the following curl− div system for G̃I ∈ H(curl; ΩI):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

curl G̃I = Ψ in ΩI

div(εIG̃I) = 0 in ΩI

G̃I × n = G on Γ

G̃I × n = 0 on ΓC∫
Γ

G̃I · n = 0,

(32)

where Ψ = ∇φ and φ ∈ H1(ΩI) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δφ = 0 in ΩI

∇φ · n = 0 on ΓC

∇φ · n = divτ G on Γ∫
ΩI

φ = 0.

(33)

In this way, we see that all compatibility conditions for the solvability of the curl− div system (we refer 
to Alonso Rodríguez et al. in [4, Chap. 1, Sec. 2.1]) are satisfied. In particular, they are also sufficient for 
existence and uniqueness.

Indeed the Neumann problem (33) is well-posed since 
∫
Γ divτ G = − 

∫
Γ G · (∇τ1) = 0, while for (32) we 

have divΨ = div∇φ = 0 in ΩI and divτ G = ∇φ · n = Ψ · n on Γ by construction. Moreover the space of 
harmonic fields

H(m; ΩI) := {ρ ∈ L2(ΩI) : curlρ = 0 in ΩI ,div(ρ) = 0 in ΩI ,ρ · n = 0 on ∂ΩI}

is trivial since ΩI is simply connected (see Alonso Rodríguez and Valli [2, Appendix A.4]). Hence (32) has 
a unique solution and eventually we can define

G̃ :=
{

G̃I in ΩI

0 in ΩC

∈ V0 ⊂ H(curl; Ω),

which is the desired lifting.

4. The control problem

Let us now discuss the optimal control problem; our analysis will be driven by the following task: suppose 
we want to approach two given desired electric field (state functions) Ed, Hd ∈ L2(Ω) controlling the dipole 
intensity p ∈ R3 (its location has already been fixed in x0, see (3)); since the solution E to (3) does not 

5 Note that G̃ ∈ H(curl; Ω) would not be enough: if, say, Q0 solves the problem with homogeneous boundary datum (31)3 and 
G̃ ∈ H(curl; Ω), then Q = Q0 + G̃ does not need to satisfy the divergence-free constraint (31)2, although it satisfies the boundary 
condition (31)3.
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belong to L2(Ω) due to the singularity at x = x0 of the fundamental solution K, we shall optimize the 
distance between the solution and the desired fields with respect to L2(Bxc

0), where Bc
x0

= Ω \ Br(x0)
(the radius r has already been chosen prior to the homogeneity assumption (4)). In other words, although 
the eddy current state equation is driven by a (Dirac) dipole source concentrated at x0, the optimization 
problem disregards the behavior of the state variable around (close to) the point x0. This may seem to be 
unreasonable at first sight, however, our resolution approach guarantees a priori the presence of a singularity 
of the same kind of K at x = x0 and therefore we precisely focus the attention on the state variable away 
from that point. In other words, we shall not be interested in a specific shape at the actuators, we aim 
at given fields in the complement of the actuators instead. This kind of approach is often seen in optimal 
control problems for PDEs where a control domain Ωctr and a disjoint state observation domain Ωo are 
considered, see e.g. Clason and Kunisch [11] or Pieper and Vexler [16]. In this sense, here we are doing 
something similar taking Ωo := Bc

x0
and Ωctr := {x0}.

Summing up, we are then led to the following regularized problem:

min
p∈Pad

F (E,p) := νE
2

∫
Bc

x0

|E − Ed|2 + νH
2

∫
Bc

x0

|μ−1 curlE − Hd|2 + ν

2 |p|
2
R3 , (34)

subject to

curl(μ−1 curlE) + iωσE = −iωpδx0 in Ω

div(εIEI) = 0 in ΩI

(μ−1 curlEI) × n = 0 on Γ

εIEI · n = 0 on Γ,

(35)

(36)

(37)

(38)

where

Pad := {p ∈ R3 : |(p)i| ≤ pmax, i = 1 . . . 3},

0 < pmax being a bound for the maximal component-wise dipole intensity.
The fact that K is smooth far from x0 together with the assumption that Ed, Hd ∈ L2(Ω) ensure that 

both (E −Ed) and (μ−1 curlE − Hd) lie in L2(Bc
x0

), making F well-defined on H−2(Ω) × Pad.
Before proceeding further, we define the following reduced cost functional by composition with the control-

to-state mapping (29):

F (p) := νE
2 ‖Sp − Ed‖2

0,Bc
x0

+ νH
2 ‖μ−1 curl(Sp) − Hd‖2

0,Bc
x0

+ ν

2 |p|
2
R3

= νE
2 ‖Ep − Ed‖2

0,Bc
x0

+ νH
2 ‖μ−1 curlEp − Hd‖2

0,Bc
x0

+ ν

2 |p|
2
R3 ;

(39)

if ν > 0, thanks to the continuity of S we obtain at once that F is weakly lower semi-continuous and strictly 
convex. This together with the fact that Pad is compact entails by standard arguments (see Tröltzsch [20, 
Section 2.5]) the existence and uniqueness of an optimal control p∗ ∈ Pad such that

F (p∗) = min
p∈Pad

F (p);

with this optimal control an optimal state E∗ = Sp∗ ∈ H−2(Ω) is associated. If ν = 0, we still have 
existence but uniqueness is no longer guaranteed.
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5. Necessary and sufficient conditions for optimality

By theorem (3), we know that to each control p ∈ Pad there corresponds a unique state

Ep = Qp + ∇ηp + Kp; (40)

prior to deriving and discussing necessary (and sufficient) conditions for optimality, we need to further 
clarify Corollary 2 on the dependence of E on p, in particular the one of Q, η on p.

We shall verify that the whole RHS of (13) depends linearly (at least w.r.t real numbers) on the control 
p: this will be pivotal for deriving optimality conditions with an effective notation. We then perform a 
similar computation for the RHS of problem (22). For (13) we have:

−
∫
ΩI

εIKp · ∇ξ = −
∫
ΩI

εIAp · ∇ξ = −
∫
ΩI

p ·AT (εI∇ξ) = p ·

⎛⎝ ∫
ΩI

−AT (εI∇ξ)

⎞⎠ , (41)

and we thus define

G̃(ξ) :=
∫
ΩI

−AT (εI∇ξ), ξ ∈ W. (42)

Instead for (22) we obtain∫
Bc

x0

[−(μ−1 − μ−1
0 ) curlKp · curlv − iω(σ − σ0)Kp · v]

+
∫
Γ

(n × μ−1
0 curlKp) · v

=
∫

Bc
x0

[−(μ−1 − μ−1
0 ) curl(Ap) · curlv − iω(σ − σ0)Ap · v]

+
∫
Γ

(n × μ−1
0 curl(Ap)) · v

=
∫

Bc
x0

[−(μ−1 − μ−1
0 )

3∑
j=1

curlA(j)pj · curlv − iωp ·AT (σ − σ0)v]

+
∫
Γ

n × μ−1
0

3∑
j=1

curlA(j)pj · v

=
3∑

j=1
pj

⎛⎜⎝−
∫

Bc
x0

[(μ−1 − μ−1
0 ) curlA(j) · curlv −

∫
Bc

x0

iωp ·A(j)[(σ − σ0)v]

+
∫
Γ

[n × μ−1
0 curlA(j)] · v

⎞⎠ ,

(43)

and we define the vector G(v) component-wise via
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(G(v))j := −
∫

Bc
x0

[(μ−1 − μ−1
0 ) curlA(j) · curlv −

∫
Bc

x0

iωp ·A(j)[(σ − σ0)v]

+
∫
Γ

[n × μ−1
0 curlA(j)] · v.

(44)

Exploiting this notation, (13), (22) now respectively read:

b[η, ξ] = G̃(ξ) · p ∀ξ ∈ W, (45)

and

a+[Q,v] = G(v) · p ∀v ∈ V. (46)

The squared norm | ·|2 : C → R is nowhere complex differentiable,6 exception made for the origin; however, 
since our controls lie in a real vector space, this has no consequences concerning Fréchet differentiability or 
the existence of the Gateaux derivative. We compute the directional (Gateaux) derivatives at each point 
p̂ ∈ R3:

F (p̂ + tp) − F (p̂)
t

= νEt

∫
Bc

x0

|Ep|2 + νE Re
∫

Bc
x0

(Ep̂ − Ed) · Ep + tνH

∫
Bc

x0

|μ−1 curlEp|2

+ νH Re

⎧⎪⎨⎪⎩
∫

Bc
x0

(μ−1 curlEp̂ − Hd) · μ−1 curlEp

⎫⎪⎬⎪⎭ + tν|p|2 + νp̂ · p,

therefore

lim
t→0+

F (p̂ + tp) − F (p̂)
t

= νE Re
∫

Bc
x0

(Ep̂ − Ed) · Ep + νH Re

⎧⎪⎨⎪⎩
∫

Bc
x0

(μ−1 curlEp̂ − Hd) · μ−1 curlEp

⎫⎪⎬⎪⎭
+ νp̂ · p

for each chosen direction p.

Hence it follows that the directional derivative of the cost functional F in the direction p ∈ R3 at an 
arbitrary fixed control p̂ with associated state E = Ep̂ is given by:

6 Indeed if z0 �= 0,

lim
z→z0

|z|2 − |z0|2

z − z0
= lim

z→z0

|z| + |z0|
z − z0

(
|z| − |z0|

)
,

and the latter limit vanishes if we move along the circle {z : |z| = |z0|} and is equal to 2z0 if we move on the ray {rz0 : r > 0}.
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F ′(p̂)p

= Re

⎧⎪⎨⎪⎩νE

∫
Bc

x0

(Ep̂ − Ed) · Ep + νH

∫
Bc

x0

(μ−1 curlEp̂ − Hd) · μ−1 curlEp

⎫⎪⎬⎪⎭
+ νp̂ · p.

(47)

Looking at the above expression, we see that the free control p (i.e., the direction) appears implicitly via 
the mappings p �→ Ep and p �→ μ−1 curlEp, a situation which is usually to be avoided mainly because 
of how inefficient would be a numerical scheme that requires a PDE solver to act at every iteration. The 
introduction of an adjoint state is a standard method in optimal control theory to make such dependencies 
explicit; here the procedure is less straightforward, since we have to somehow take into account the split 
structure of the state variable (40).

To this end, we define two adjoint states: a vector one and a scalar one, which respectively correspond 
to Q and η in (40).

Definition 1 (Adjoint state(s)). Let p̂ ∈ R3 be a given control with associated state E = Ep̂. The problem 
to find (T, Ψ) ∈ V ×W such that:

a−[T,v] = νE

∫
Bc

x0

(Ep̂ − Ed) · v + νH

∫
Bc

x0

(μ−1 curlEp̂ − Hd) · μ−1 curlv ∀v ∈ V,

b[Ψ, ξ] = νE

∫
Bc

x0

(Ep̂ − Ed) · ∇ξ ∀ξ ∈ W,

(48)

is called adjoint equation of the control problem to minimize (34) subject to (35) − (38). The functional 
spaces V, W have already been defined respectively in (19) and (12), b[·, ·] is the Hermitian form appearing 
in the weak formulation for η and a−[·, ·] is the conjugate transpose of the sesquilinear form a+[·, ·] appearing 
in the weak formulation for Q: see (25), (22) and (13).

Corollary 3 (Existence of adjoint states). For all given target fields Ed, Hd ∈ L2(Ω), for every fixed control 
p̂ ∈ Pad, the adjoint system (48) has a unique solution (Tp̂, Ψp̂) =: (T̂, Ψ̂) ∈ V×W ; T̂, Ψ̂ are respectively 
called first and second adjoint state associated with p̂.

This result again follows from the Lax and Milgram lemma because the sesquilinear forms on the LHS 
are coercive in the corresponding spaces.

We fix p̂ ∈ Pad; testing the weak formulations (48) with respectively Qp−p̂ ∈ V ↪−→ H(curl; Ω) and 
ηp−p̂ ∈ W ↪−→ H1(Ω) and summing up the two terms, we get

a−[T̂,Qp−p̂]+b[Ψ̂, ηp−p̂]

= νE

∫
Bc

x0

(Ep̂ − Ed) · Qp−p̂ + νE

∫
Bc

x0

(Ep̂ − Ed) · ∇ηp−p̂

+ νH

∫
Bc

x0

(μ−1 curlEp̂ − Hd) · μ−1 curlQp−p̂

= νE

∫
Bc

(Ep̂ − Ed) · [Qp−p̂ + ∇ηp−p̂]

x0
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+ νH

∫
Bc

x0

(μ−1 curlEp̂ − Hd) · μ−1(curlEp−p̂ − curlA(p − p̂))

= νE

∫
Bc

x0

(Ep̂ − Ed) · [Ep−p̂ −A(p − p̂)]

+ νH

∫
Bc

x0

(μ−1 curlEp̂ − Hd) · μ−1(curlEp−p̂ − curlA(p − p̂)).

(49)

On the other hand, the sesquilinear forms a+[·, ·], a−[·, ·] satisfy

a+[u,v] = a−[v,u] ∀u,v ∈ V

while b[·, ·] is Hermitian and therefore rearranging the terms in (49) it follows that:

νE

∫
Bc

x0

(Ep̂ − Ed) · Ep−p̂ + νH

∫
Bc

x0

(μ−1 curlEp̂ − Hd) · μ−1 curlEp−p̂

= [G(T̂) + G̃(Ψ̂)] · (p − p̂) + νE

∫
Bc

x0

[(Ep̂ − Ed) ·A(p − p̂)]

+νH

∫
Bc

x0

(μ−1 curlEp̂ − Hd) · μ−1 curlA(p − p̂),

(50)

where the definitions of G, G̃ are respectively given in (44), (42): they correspond to the linear mappings 
appearing on the right hand sides in the weak formulations for η, Q, see (13), (22) and (44), (42).

The above expression is not yet completely satisfying since the free control p still somehow appears 
implicitly in the right hand side of (50). Nevertheless, we can still make use of the adjoint states to overcome 
this problem. Indeed we have:

∫
Bc

x0

[(Ep̂ − Ed) ·A(p − p̂)] =
∫

Bc
x0

A
T (Ep̂ − Ed) · (p − p̂)

=

⎛⎜⎝ ∫
Bc

x0

A
T (Ep̂ − Ed)

⎞⎟⎠ · (p − p̂)

=
3∑

i=1
(p − p̂)i

∫
Bc

x0

⎛⎝ n∑
j=1

(Ep̂ − Ed)j(A
T )ij

⎞⎠

=
3∑

i=1
(p − p̂)i

∫
Bc

x0

(Ep̂ − Ed) ·A
(i)
, (51)



G. Caselli / J. Math. Anal. Appl. 489 (2020) 124152 17
where A
(i) denotes the i-th column of the matrix A. Similarly, for the last term in (50) we can write7:∫

Bc
x0

(μ−1 curlEp̂ − Hd) · μ−1 curlA(p − p̂) =

=
∫

Bc
x0

(μ−1 curlEp̂ − Hd) · μ−1
3∑

i=1
(p − p̂)i curlA(i)

=
3∑

i=1
(p − p̂)i

∫
Bc

x0

(μ−1 curlEp̂ − Hd) · μ−1 curlA(i)
.

(52)

The above identities can be now exploited to eventually derive necessary (and sufficient) optimality condi-
tions. Before doing that, let us define by A(i) a suitable extension in Bx0 of the vector function A(i) whose 
components A(i)

j are given by:

A
(i)
j = −iωμ0[Φx0δij + DiDjΦx0 ].

Here, for suitable extension we mean that A(i) ∈ H(curl; Ω). Moreover, for each j = 1, . . . 3, let uj ∈ H1(ΩI)
be the solution of the following problem:⎧⎪⎪⎨⎪⎪⎩

div(εI∇uj) = div(εIA(j)) in ΩI

εI∇uj · n = εIA
(j) · n on Γ

uj = 0 on ΓC ,

and set

ũj :=
{
uj in ΩI

0 in ΩC .

Then by construction

A(j) −∇ũj ∈ V

for each j = 1, . . . 3, so that A(j) −∇ũj is now an admissible test function for (48)1.

7 In the first equality in (52), we use the fact that:

curl(Aq) =
3∑

k=1

qk curlA(k)
,

where q is a fixed vector of R3 and A(k) denotes the k-th column of the matrix A = A(x). Using the Levi-Civita symbol, the LHS 
can be rewritten as:

curl(Aq) = ∂i(Ajlql)εijkek = [ql∂iAjl + ∂iqlAjl]εijkek = ql∂iAjlεijkek;

the RHS is equal to

3∑
l=1

ql curlA(l) = ql curlA(l) = ql∂iA
(l)
j εijkek,

on the other hand, A(l)
j is the j-th component of the column vector A(l), namely Ajl.



18 G. Caselli / J. Math. Anal. Appl. 489 (2020) 124152
Theorem 4 (First order optimality conditions). Let p∗ ∈ Pad ⊂ R3 be an optimal control for problem (34)
and let Ep∗ be the corresponding optimal electric field; then there exists a unique adjoint state (T∗, Ψ∗) ∈
(V ×W ) which solves (48), such that the following inequality holds:

Re
{
G(T∗) + G̃(Ψ∗) + a−[T∗,A] + b[Ψ∗, ũ] + νp∗

}
· (p − p∗) ≥ 0 ∀p ∈ Pad, (53)

where G, G̃ are defined in (44), (42),

a−[T∗,A] :=

⎛⎝a−[T∗,A(1) −∇ũ1]
a−[T∗,A(2) −∇ũ2]
a−[T∗,A(3) −∇ũ3]

⎞⎠
and

b[Ψ∗, ũ] :=
(
b[Ψ∗, ũ1]
b[Ψ∗, ũ2]
b[Ψ∗, ũ3]

)
.

Conversely, if inequality (53) holds for some p∗ and ν > 0, then p∗ is optimal for (34).

Proof. It is well known that for an optimal control p∗, the inequality

F ′(p∗)(p − p∗) ≥ 0 ∀p ∈ Pad (54)

holds. The fact that if ν > 0 this variational inequality is both necessary and sufficient follows from the strict 
convexity of the objective functional. We shall show that (54) is actually equivalent to (53). The derivative 
of the cost functional (47) evaluated at p̂ := p∗ in the direction p := p − p∗ reads:

F ′(p∗)(p−p∗)

= Re

⎧⎪⎨⎪⎩νE

∫
Bc

x0

(Ep∗ − Ed) ·Ep−p∗

⎫⎪⎬⎪⎭
+ Re

⎧⎪⎨⎪⎩νH

∫
Bc

x0

(μ−1 curlEp∗ − Hd) · μ−1 curlEp−p∗

⎫⎪⎬⎪⎭
+ νp∗ · (p − p∗).

(55)

Owing to (50), (51) and (52), we see that the first two addenda in (55) are equal to (disregarding the real 
part operator in front of the whole expression):

[G(T∗) + G̃(Ψ∗)] · (p − p∗)

+
3∑

i=1
(p − p∗)i

⎧⎪⎨⎪⎩νE

∫
Bc

x0

(Ep∗ − Ed) ·A
(i)

⎫⎪⎬⎪⎭
+

3∑
i=1

(p − p∗)i

⎧⎪⎨⎪⎩νH

∫
Bc

(μ−1 curlEp∗ − Hd) · μ−1 curlA(i)

⎫⎪⎬⎪⎭ .

(56)
x0
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On the other hand, for each i ∈ {1, 2, 3} we have by (48)1:

a−[T∗,A(i) −∇ũi]

= νE

∫
Bc

x0

(Ep∗ − Ed) · (A(i) −∇ũi) + νH

∫
Bc

x0

(μ−1 curlEp∗ − Hd) · μ−1 curlA(i)

= νE

∫
Bc

x0

(Ep∗ − Ed) ·A
(i) + νH

∫
Bc

x0

(μ−1 curlEp∗ − Hd) · μ−1 curlA(i)

− νE

∫
Bc

x0

(Ep∗ − Ed) · ∇ũi

︸ ︷︷ ︸
=b[Ψ∗,ũi]

since A(i) = A(i)|Bc
x0

by construction. The latter computation together with (56) gives the result. �
Remark 4. If p∗ lies in the interior of Pad, then by standard argument it can be shown that the explicit 
formula

p∗ = −1
ν

Re
{
G(T∗) + G̃(Ψ∗) + a−[T∗,A] + b[Ψ∗, ũ]

}
holds.
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