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The Navier-Stokes equation with rough data arises in many problems of fluid 
dynamics but mathematical analysis of such problems is notoriously difficult. In 
this paper we consider a two-dimensional fluid moving on the surface of a rotating 
sphere under the influence of an impulsive force that is very irregular in time. More 
precisely, we assume that the impulsive force is associated to a Brownian Motion 
subordinated by a stable subordinator. Then we prove the existence and uniqueness 
of a strong solution (in PDE sense) to the stochastic Navier-Stokes equations on the 
rotating 2-dimensional unit sphere perturbed by a stable Lévy noise. This strong 
solution turns out to exist globally in time.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The deterministic Navier-Stokes system (NSEs) on the rotating sphere serves as a basic model in large 
scale ocean dynamics. Many authors have studied the NSEs on the unit spheres. Notably, Il’in and Filatov 
[18,16] tackled the well-posedness of these equations and identified the Hausdorff dimension of their global 
attractors [17]. Temam and Wang investigated the inertial forms of NSEs on the sphere while Teman and 
Ziane show that the NSEs on a 2D sphere is a limit of NSE defined on a spherical cell [29]. Our paper is 
concerned with the following stochastic Navier-Stokes equations (SNSEs) on a 2D rotating sphere:

∂tu + ∇uu− νLu + ω × u + ∇p = f + η(x, t), div u = 0, u(0) = u0, (1.1)

where L is the stress tensor, ω is the Coriolis acceleration, f is the external force and η is the noise process 
that can be informally described as the derivative of an H-valued Lévy process. Rigorous definitions of all 
relevant quantities in this equation will be given in sections 2 and 3. To the best of our knowledge, there 
are only three papers which discuss stochastic Navier-Stokes equations on spheres [6,7,31]. All these were 
concerned with the Gaussian case. In particular, the authors in [6] proved the existence and uniqueness of 
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weak solutions to (1.1) with additive Gaussian noise. Moreover, they proved that the associated random dy-
namical system is asymptotically compact, which induces the existence of both a compact random attractor 
and an invariant measure in their accompanying paper [7]. The author in [31] studied the Navier-Stokes 
system on spheres with a Gaussian kick force and a deterministic force. The main contribution was the 
existence and uniqueness of a time-invariant measure.

Much effort has been made in recent years to study the Navier-Stokes equations (and other important 
equations of mathematical physics and fluid dynamics) perturbed by impulsive noise. The most challenging 
is the case of cylindrical impulsive noise that is a model for very rough noise and leads, formally at least, 
to equations with very interesting ergodic properties. At present, it is not known how to obtain a rigorous 
theory for a general cylindrical impulsive noise. For this reason, a special case of cylindrical Lévy noise 
defined as a subordination of a standard cylindrical Wiener process by a stable subordinator has attracted 
a lot of attention. Let us note: the linear equation with general cylindrical impulsive noise has been recently 
studied by Riedle (see for instance [19] and reference therein) but this theory is not sufficiently developed 
to be used in the analysis of the stochastic Navier-Stokes equations.

Our paper is the first paper to discuss SNSEs on the sphere with a stable Lévy noise. There are three new 
features which distinguish our paper from other work in the literature on SNSEs on spheres and SNSEs with 
Lévy noise. First, the domain of consideration is a sphere. Second, the noise is of a stable type which is ruled 
out by many existing studies on stochastic PDEs with Lévy noise. Third, we present a new well-posedness 
result that holds for strong solutions which are sufficiently smooth.

The aim of our paper is to prove the existence and uniqueness of a global strong solution to (1.1). In 
particular, we prove that given a L4-valued noise, H-valued forcing f and small V -valued initial data, there 
exists a unique global strong solution in a PDE sense for the abstract stochastic Navier-Stokes equations 
on the 2D unit sphere perturbed by stable Lévy noise, which depends continuously on the initial data. The 
time interval of existence depends on the regularity of the forcing and the assumptions imposed on noise.

The paper is organised as follows: In section 2, we review the fundamental mathematical theory of the 
deterministic Navier-Stokes equations (NSEs) on the sphere. We state some known results without proofs. 
In section 3, we define the SNSEs on spheres. We start with some analytic facts; we introduce the driving 
noise process, which is a stable Lévy noise via subordination. The SNSEs are then decomposed into an 
Ornstein-Uhlenbeck (OU) process (associated with the linear part of the SNSEs) and nonlinear PDEs. In 
section 4, we prove a strong classical solution (see the proof of Theorem 3.11) for smooth initial data with 
sufficient regular noise following the classical lines in the proof of Theorem 3.1 [5].

2. Navier-Stokes equations on a rotating 2D unit sphere

The sphere is the simplest example of a compact Riemannian manifold without boundaries, hence one 
may employ the well-developed tools from Riemannian geometry to study objects on such a manifold. 
Nevertheless, all objects of interest in this thesis are defined explicitly under the spherical coordinates. The 
presentation here follows closely from Goldys et al. [6] and references therein.

2.1. Preliminaries

Let S2 be a 2D unit sphere in R3; that is S2 = {x = (x1, x2, x3) ∈ R3 : |x| = 1}. An arbitrary point x on 
S2 can be parametrized in the spherical coordinates as

x = x̂(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ), 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π.

The corresponding angles θ and φ will be denoted by θ(x) and φ(x) respectively, or simply by θ and φ.
Let eθ = eθ(θ, φ) and eφ = eφ(θ, φ) be the standard unit tangent vectors of S2 at point x̂(θ, φ) ∈ S2 in 

the spherical coordinates, that is,
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eθ = (cos θ cosφ, cos θ sinφ,− sin θ), eφ = (− sinφ, cosφ, 0).

We remark that

eθ = ∂x̂(θ, φ)
∂θ

, eφ = 1
sin θ

∂x̂(θ, φ)
∂φ

,

where the second identity holds whenever sin θ �= 0.
Our first objective is to give a meaning to all of the terms in the deterministic Navier-Stokes equations 

for the velocity field u(x̂, t) = (uθ(x̂, t), uφ(x̂, t)) of a geophysical fluid flow on the 2D rotating unit sphere 
S2 under the external force f = (fθ, fφ) = fθeθ + fφeφ. The motion of the fluid is governed by the equation

∂tu + ∇uu− νLu + ω × u + 1
ρ
∇p = f, div u = 0, u(x, 0) = u0. (2.1)

Here ν and ρ are two positive constants denoting the viscosity and the density of the fluid. The normal 
vector field

ω = 2Ω cos(θ(x))x,

where x = x̂(θ(x), φ(x)); Ω is the angular velocity of the Earth; and θ is the parameter representing the 
colatitude. Note that θ(x) = cos−1(x3). In what follows we will identify ω with the corresponding scalar 
function ω defined by ω(x) = 2Ω cos(θ(x)). We will introduce now the other terms that appear in the 
equation (1.1). The surface gradient for a scalar function f on S2 is given by

∇f = ∂f

∂θ
eθ + 1

sin θ

∂f

∂φ
eφ, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π.

Unless specified otherwise, by a vector field on S2 we mean a tangential vector field, that is, a section of 
the tangent vector bundle of S2.

On the other hand, for a vector field u = (uθ, uφ) on S2, that is u = uθeθ + uφeφ, one puts

divu = 1
sin θ

(
∂

∂θ
(uθ sin θ) + ∂

∂φ
uφ

)
. (2.2)

Given two vector fields u and v on S2, there exist vector fields ũ and ṽ defined in some neighbourhood of 
the surface S2 and such that their restrictions to S2 are equal to u and v. More precisely, see Definition 
3.31 in [11],

ũ|S2 = u : S2 → TS2, and ṽ|S2 = v : S2 → TS2 .

For x ∈ R3, we define the orthogonal projection πx : R3 → TxS2 of x onto TxS2, that is

πx : R3 � y �→ y − (x · y)x = −x× (x× y) ∈ TxS
2. (2.3)

Lemma 2.1 ([7]). Suppose ũ and ṽ are R3-valued vector fields on S2, and u, v are tangent vector fields on 
S2, defined by u(x) = πx(ũ(x)) and v(x) = πx(ṽ(x)), x ∈ S2. Then the following identity holds:

πx(ũ(x) × ṽ(x)) = u(x) × ((x · v(x))x) + ((x · u(x))x× v(x), x ∈ S2. (2.4)
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Proof. Let us fix x ∈ S2. Then one can decompose vectors ũ and ṽ into tangential and normal components 
as follows:

ũ = u + u⊥ with u ∈ TxS
2, u⊥ = (u · x)x,

ṽ = v + v⊥ with v ∈ TxS
2, v⊥ = (v · x)x.

Since u × v is normal to TxS2, πx(u × v) = 0. Likewise, u⊥ × v⊥ = 0 since the cross-product of two parallel 
vectors yields the 0 vector. Hence, it follows that

πx(ũ× ṽ) = πx(u× v + u× v⊥ + u⊥ × v) = u× v⊥ + u⊥ × v. � (2.5)

We will denote by ∇̃ the usual gradient in R3 and then we have

(∇f)(x) = πx(∇̃f̃(x)). (2.6)

The operator curl is defined by the formula

(curlu)(x) = (I − πx)((∇̃ × ũ)(x)) = (x · (∇̃ × ũ)(x))x. (2.7)

Let u be a tangent vector field on S2. Applying formula (2.5) to the vector fields ũ and ṽ = ∇̃× ũ, one gets

πx(ũ× (∇̃ × ũ)) = ũ× (∇̃ × (u⊥ + u)

= u× ((∇× u)⊥) + u⊥ × (∇× u)

= u× ((x · (∇̃ × ũ))x)

= (x · (∇̃ × ũ))(u× x), x ∈ S2. (2.8)

So, we can now define the curl of the vector field u on S2, by,

curl u := x̂ · (∇̃ × ũ)|S2 . (2.9)

Equations (2.9) and (2.4) together yield

πx[ũ× (∇̃ × ũ)](x) = [u(x) × x] curlu(x), x ∈ S2.

Therefore, we have the following:

Definition 2.2. Let u be a tangent vector field on S2, and let the vector field ψ be normal to S2. We set

curlu = (x̂ · (∇̃ × ũ))|S2 , Curlψ = (∇̃ × ψ)|S2 . (2.10)

The first equation above indicates a projection of ∇ × ũ onto the normal direction, while the second equation 
means a restriction of ∇ × ψ to the tangent field on S2. The definitions presented above do not depend on 
the extensions ũ and ψ̃. A vector field ψ normal to S2 will often be identified with a scalar function on S2

when it is convenient to do so. The following expressions describe the relationships among Curl of a scalar 
function ψ, Curl of a normal vector field w = wx̂, and curl of a vector field v on S2.

Curlψ = −x̂×∇ψ, Curlw = −x̂×∇w, curl v = −div(x̂× v). (2.11)
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Let

(∇vu)(x) = πx

( 3∑
i=1

ṽi(x)∂iũ(x)
)

= πx

(
(ṽ(x) · ∇̃)ũ(x)

)
, x ∈ S2. (2.12)

Invoking (2.4) and the formula

(ũ · ∇̃)ũ = ∇̃ |ũ2|
2 − ũ× (∇̃ × ũ),

we find that the covariant derivative ∇uu takes the form

∇uu = ∇|u2|
2 − πx(ũ× (∇̃ × ũ)).

In particular, using (2.4) we obtain

∇uu = ∇|u|2
2 − πx(ũ× (∇̃ × ũ)).

The surface diffusion operator acting on vector fields on S2 is denoted by Δ (known as the Laplace de 
Rham operator) and is defined as

Δv = ∇div v − Curl curl v. (2.13)

Using (2.11) one can derive the following relations connecting the above operators:

div Curl v = 0, curl Curl v = −x̂Δv, ΔCurl v = CurlΔv. (2.14)

Next, we recall the definition of the Ricci tensor Ric of the 2D sphere S2. Since

Ric =
(
E F
F C,

)
where the coefficients E, F, G of the first fundamental form are given by

E = xθ · xθ = 1;

F = xθ · xφ = xφ · xθ = 0;

C = xφ · xφ = sin2 θ,

we find that

Ric =
(

1 0
0 sin2 θ

)
. (2.15)

Finally we define the stress tensor L by

L = Δ + 2Ric,

where Δ is the Laplace-de Rham operator.
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2.2. Function spaces on the sphere

In what follows we denote by dS the surface measure on S2. In the spherical coordinates one has locally 
dS = sin θ dθdφ. For p ∈ [1, ∞), we denote by Lp := Lp(S2, R) of p-integrable scalar function on S2, endowed 
with the norm

|v|Lp =

⎛⎝∫
S2

|v(x)|pdS(x)

⎞⎠1/p

, v ∈ Lp

For p = 2, the corresponding inner product is denoted by

(v1, v2) = (v1, v2)L2(S2) =
∫
S2

v1v2 dS.

On the other hand, we denote by Lp = Lp(S2) the space Lp(S2, TS2) of vector fields v : S2 → TS2 endowed 
with the norm

|v|Lp =

⎛⎝∫
S2

|v(x)|pdS(x)

⎞⎠1/p

, v ∈ Lp

where, for x ∈ S2, |v(x)| denotes the length of v(x) in the tangent space TxS2. For p = 2, the corresponding 
inner product is denoted by

(v1, v2) = (v1, v2)L2 =
∫
S2

v1 · v2 dS.

In this paper, the induced norm on L2(S2) is denoted by | · |. For other inner product spaces, say V with 
the inner product (·, ·)V , the associated norm is denoted by | · |V .

The following identities hold for appropriate real valued scalar functions and vector fields on S2; see 
(2.4)-(2.6) in [16]:

(∇ψ, v) = −(ψ, div v), (2.16)

(Curl ψ, v) = (ψ, curl v), (2.17)

(Curlcurl w, z) = (curl w, curl z). (2.18)

In (2.17), the L2(S2) inner product is used on the left hand side, while the L2(S2) is used on the right hand 
side. Throughout this paper, we identify a normal vector field w with a scalar field w and by w = x̂w. We 
hence put

(ψ,w) := (ψ,w)L2(S2), if w = x̂w, ψ,w ∈ L2(S2). (2.19)

Let us now introduce the Sobolev spaces H1(S2) and H1(S2) of scalar functions and vector fields on S2. 
Let ψ be a scalar function and let u be a vector field on S2, respectively. For s ≥ 0 we define

|ψ|2H1(S2) = |ψ|2L2(S2) + |∇ψ|2L2(S2), (2.20)

and
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|u|2H1(S2) = |u|2 + |∇ · u|2 + |Curlu|2 . (2.21)

One has the following Poincaré inequality

λ1|u|2 ≤ |divu|2 + |Curlu|2, u ∈ H1(S2), (2.22)

where λ1 > 0 is the first positive eigenvalue of the Laplace-Hodge operator; see below. By the Hodge 
decomposition theorem in Riemannian geometry [10], the space of C∞ smooth vector fields on S2 can be 
decomposed into three components:

C∞(TS2) = G ⊕ V ⊕H,

where

G = {∇ψ ∈ C∞(S2)}, V = {Curlψ ∈ C∞(S2)},

and H is the finite-dimensional space of harmonic vector fields. Since the sphere is simply connected, that 
is, the map S2 → S2 is a diffeomorphism, we have H = {0}. The condition of orthogonality to H is dropped 
out. We introduce the following spaces:

H := {u ∈ L2(S2) : ∇ · u = 0}, (2.23)

V := H ∩H1(S2).

In other words, H is the closure of the

{u ∈ C∞(TS2) : ∇ · u = 0}

in the L2 norm |u| = (u, u)1/2, where u = (uθ, uφ) and

(u, v) =
∫
S2

(uθvθ + uφvφ) dS(x). (2.24)

The space V is the closure of

{u ∈ C∞(TS2) : ∇ · u = 0}

in the norm of H1 (S2). Since V is densely and continuously embedded into H, and H can be identified 
with its dual H ′, one has the following Gelfand triple:

V ⊂ H ∼= H ′ ⊂ V ′. (2.25)

2.3. Stokes operator

We will recall first that the Laplace-Beltrami operator on S2

Δf = 1
sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+ 1

sin2 θ

∂2f

∂φ2 (2.26)

can be defined in terms of spherical harmonics Yl,m as follows (see also [32]). For θ ∈ [0, π], φ ∈ [0, 2π), we 
define
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Yl,m(θ, ϕ) =
[
(2l + 1)(l − |m|)!

4π(l + |m|)!

]1/2

Pm
l (cos θ)eimϕ, m = −l, · · · , l, l = 0, 1, · · · (2.27)

with Pm
l being the associated Legendre polynomials. The family {Yl,m : l = 0, 1, . . . , m = −l, . . . , l} form 

an orthonormal basis in L2 (S2) and we then can define the well known Laplace-Beltrami operator on S2

(2.26) by putting

ΔYl,m = −l(l + 1)Yl,m.

Then one can extend by linearity to all functions f ∈ L2 (S2) such that

∞∑
l=0

l∑
m=−l

l2(l + 1)2 (f, Yl,m)2L2(S2) < ∞ .

We consider the following linear Stokes problem [6]. That is, given f ∈ V ′, find v ∈ V such that

νCurlcurlu− 2νRic(u) + ∇p = f, divu = 0. (2.28)

By taking the inner product of the first equation above with a test field v ∈ V , and then using (2.18), the 
pressure term drops and we obtain

ν(curlu, curl v) − 2ν(Ricu, v) = (f, v) ∀ v ∈ V.

Without loss of generality, letting ν = 1, we define a bilinear form a : V × V → R by

a(u, v) = (−Lu, v). (2.29)

By performing some elementary calculations, one can write (2.29) as follows:

a(u, v) := (curlu, curl v) − 2(Ricu, v), u, v ∈ V. (2.30)

In view of (2.21) and formula (2.15) for the Ricci tensor on S2, the bilinear form a satisfies

a(u, v) ≤ |u|H1 |v|H1 (2.31)

and so it is continuous on V . So, by the Riesz representation theorem, there exists a unique operator 
A : V → V ′ where V ′ is the dual of V , such that a(u, v) = (Au, v), for {u, v} ∈ V . Let us recall that by the 
results in [28], p. 1446, we also have

a(u, u) = |Defu|22, u ∈ V

where Def is the deformation tensor (see [28] for more details). Then by the Poincaré inequality (2.22)
we find that a(u, u) ≥ α|u|2V , for a certain α > 0, which implies that a is coercive in V . Hence, by the 
Lax-Milgram theorem, the operator A : V → V ′ is an isomorphism. Let A be a restriction of A to H:{

D(A) := {u ∈ V : Au ∈ H},
Au := Au, u ∈ D(A).

(2.32)

It is well known (see for instance [27], Theorem 2.2.3) that A is positive definite, self-adjoint in H, and 
D(A1/2) = V with equivalent norms. Furthermore, for some positive constants c1, c2 we have
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c1|u|D(A) ≤ |Au| ≤ c2|u|D(A) ,

〈Au, u〉 = ((u, u)) = |u|V = |∇u|2 = |Du|2, u ∈ D(A). (2.33)

The spectrum of A consists of an infinite sequence of eigenvalues λl. Using the stream function ψl for which 
wl = Curlψl,m and identities (2.14), one can show that each λl is in fact the vector of eigenvalues of the 
Laplace-Beltrami operator Δ, that is λl = l(l+1). Additionally, there exists an orthonormal basis (Zl,m)l≥1
of H consisting of the eigenvectors of A, where

Zl,m = λ
−1/2
l CurlYl,m, l = 1, . . . ,m = −l, . . . , l. (2.34)

Therefore, for any v ∈ H, one has

v =
∞∑
l=1

l∑
m=−l

v̂l,mZl,m, v̂l,m =
∫
S2

v · Zl,mdS = (v,Zl,m). (2.35)

An equivalent definition of the operator A can be given using the so-called Leray-Helmholtz projection 
P that is defined as an orthogonal projection from L2(S2) onto H. Let H2(S2) denote the domain of the 
Laplace-Hodge operator in H endowed with the graph norm. It can be shown from [13] that D(A) =
H2(S2) ∩ V and A = −P (Δ + 2Ric). Therefore, we obtain an equivalent definition of the so-called Stokes 
operator on the sphere.

Definition 2.3. The Stokes operator A on the sphere is defined as

A : D(A) ⊂ H → H, A = −P (Δ + 2Ric), D(A) = H2(S2) ∩ V, (2.36)

where Δ is the Laplace-De Rham operator.

It can be shown that V = D(A1/2) when endowed with the norm |x|V = |A1/2x| and the inner product 
((x, y)) = 〈Ax, y〉. After identification of H with its dual space we have V ⊂ H ⊂ V ′ with continuous 
dense injection. The dual pairing between V and V ′ is denoted by (·, ·)V×V ′ . Moreover, there exist positive 
constants c1, c2 such that

c1|u|2V ≤ (Au, u) ≤ c2|u|2V , u ∈ D(A).

Let us now introduce the Sobolev spaces Hs(S2) and H2(S2) of scalar functions and vector fields on S2. 
Let ψ be a scalar function and let u be a vector field on S2, respectively. For s ≥ 0 we define

|ψ|2Hs(S2) = |ψ|2L2(S2) + |(−Δ)s/2ψ|2L2(S2), (2.37)

and

|u|2Hs(S2) = |u|2 + |(−Δ)s/2u|2, (2.38)

where Δ is the Laplace-Beltrami operator and Δ is the Laplace-de Rham operator on the sphere. Note 
that, for k = 0, 1, 2, · · · and θ ∈ (0, 1) the space Hk+θ(S2) can be defined as the interpolation space between 
Hk(S2) and Hk+1(S2). One can apply the procedure given in [7] for Hk+θ(S2). The fractional power As/2

of the Stokes operator A in H for any s ≥ 0 is given by



10 L. Dong / J. Math. Anal. Appl. 489 (2020) 124182
D(As/2) =
{
v ∈ H : v =

∞∑
l=1

l∑
m=−l

v̂l,mZl,m,
∞∑
l=1

l∑
m=−l

λs
l |v̂l,m|2 < ∞

}
,

As/2v :=
∞∑

m=1

l∑
m=−l

λ
s/2
l v̂l,mZl,m ∈ H.

The Coriolis operator C1 : L2(S2) → L2(S2) is defined by the formula1

(C1v)(x) = 2Ω(x× v(x))cosθ, x ∈ S2. (2.39)

It is clear from the above definition that C1 is a bounded linear operator defined on L2(S2). In what follows 
we will need the operator C = PC1 which is well defined and bounded in H. Furthermore, for u ∈ H,

(Cu, u) = (C1u, Pu) =
∫
S2

2Ωcosθ((x× u) · u(x))dS(x) = 0. (2.40)

In addition,

Lemma 2.4. For any smooth function u and s ≥ 0

(Cu,Asu) = 0. (2.41)

Proof. The case s = 0 is obvious as in the line above, due to the fact that (ω × u) · u = 0. For s > 0 we 
refer readers to Lemma 5 in [26]. �
Let X = H ∩ L4 (S2) be endowed with the norm

|v|X = |v|H + |v|L4(S2) ,

then X is a Banach space. It is known that the Stokes operator A generates an analytic C0-semigroup 
{e−tA}t≥0 in X (see Theorem A.1 in [6]). Since the Coriolis operator C is bounded on X, we can define in 
X an operator

Â = νA + C, D(Â) = D(A),

with ν > 0.

Lemma 2.5. Suppose that V ⊂ H ∼= H ′ ⊂ V ′ is a Gelfand triple of Hilbert spaces. If a function u being 
L2(0, T ; V ) and ∂tu belongs to L2(0, T ; V ′) in weak sense, then u is almost everywhere equal to a continuous 
function from [0, T ] to H; the real function |u|2 is absolutely continuous; and, in the weak sense one has

∂t|u(t)|2 = 2〈∂tu(t), u(t)〉. (2.42)

Proposition 2.6. The operator Â with the domain D(Â) = D(A) generates a strongly continuous and analytic 
semigroup {e−tA}t≥0 on X. In particular, there exist M ≥ 1 and μ > 0 such that

|e−tÂ|L(X,X) ≤ Me−μt, t ≥ 0 ; (2.43)

1 The angular velocity vector of Earth is denoted by Ω consistent with geophysical fluid dynamics literature. It should not be 
confused with the notation for probability space Ω used in this paper.
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and for any δ > 0 there exists Mδ ≥ 1 such that

|Âδe−tÂ|L(X,X) ≤ Mδt
−δe−μt, t > 0. (2.44)

Proof. See the proof of Proposition 5.3 in [6]. �
Now consider the trilinear form b on V × V × V , defined as

b(v, w, z) = (∇vw, z) =
∫
S2

∇vw · zdS = πx

3∑
i,j=1

∫
Ω

vjDiwjzjdx, v, w, z ∈ V. (2.45)

Using the following identity (see [6]),

2∇wv = −curl(w × v) + ∇(w · v) − v div w + w div v − v × curl w − w × curl v,

and equation (2.13), one can write the divergence free fields v, w, z in the trilinear form as follows:

b(v, w, z) = 1
2

∫
S2

[−v × w · curl z + curl v × w · z − v × curl w · z]dS. (2.46)

Now, we know that the bilinear form B : V × V → V ′ is defined by

(B(u, v), w) = b(u, v, w) =
3∑

i,j=1

∫
Ω

ui
∂(vk)j
∂xi

ujdx, w ∈ V. (2.47)

Moreover,

b(v, w,w) = 0, b(v, z, w) = −b(v, w, z), for v ∈ V,w, z ∈ H1(S2), (2.48)

and

|B(u, v), w| = |b(u, v, w)| ≤ c|u||w|(|curl v|L∞(S2) + |v|L∞(S2)), u ∈ H, v ∈ V,w ∈ H, (2.49)

|B(u, v), w| = |b(u, v, w)| ≤ c|u|1/2|u|1/2V |v|1/2|v|1/2V |w|V , u, v, w ∈ V, (2.50)

|B(u, v), w| = |b(u, v, w)| ≤ c|u|1/2|u|1/2V |v|1/2V |Au|1/2|w|, ∀u ∈ V, v ∈ D(A), w ∈ H, n = 2, (2.51)

|b(u, v, w)| ≤ c|u|L4(S2)|v|V |w|L4(S2), v ∈ V, u, w ∈ H1(S2). (2.52)

In view of (2.50), one has

sup
z∈V,|z|V �=0

|(B(u, v), z)|
|z|V

= |B(u, v)|V ′ ≤ c|u|1/2|u|1/2V |v|1/2|v|1/2V

which implies

|B(u, u)|V ′ ≤ c|u||u|V , (2.53)

|B(u, u)|H ≤ c|u||u|V ,

and
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sup
z∈H,|z|H �=0

|(B(u, v), z)|
|z|H

= |B(u, v)|H ≤ c|u|1/2|u|1/2V |v|1/2|v|1/2V ,

which implies

|B(u, u)|H ≤ c|u||u|V . (2.54)

In view of (2.51),

sup
z∈H,|z|H �=0

|(B(u, v), z)|
|z|H

= |B(u, v)|H ≤ c|u|1/2|u|1/2V |u|1/2|Au|1/2

one has

|B(u, u)|H ≤ c|u|1/2|u|V |Au|1/2 ≤ c|u|1/2V |u|V |Au|1/2 ∀ u ∈ D(A). (2.55)

In view of (2.52), b is a bounded trilinear map from L4(S2) × V × L4(S2) to R.

Lemma 2.7. The trilinear map b can be uniquely extended from V × V × V to a trilinear map

b : (L4(S2) ∩H) × L4(S2) × V → R .

Finally, we recall the interpolation inequality (see [18], p. 12),

|u|L4(S2) ≤ C|u|1/2L2(S2)|u|
1/2
V . (2.56)

Inequality (2.50) is deduced from the following Sobolev embedding:

H1/2 = W 1/2,2(S2) ↪→ L4(S2).

Then using (2.13), (2.16), (2.32) and (2.46), we arrive at the weak solution of the Navier-Stokes equations 
(2.2), which is a vector field u ∈ L2([0, T ]; V ) with u(0) = u0 that satisfies the weak form of (2.2):

(∂tu, v) + b(u, u, v) + ν(curlu, curlv) − 2ν(Ric u, v) + (Cu, v) = (f, v), v ∈ V, (2.57)

where the bilinear form is defined earlier. With a slight abuse of notation, we denote B(u) = B(u, u) and 
B(u) = π(u, ∇u).

3. Stochastic Navier-Stokes equations on the 2D unit sphere

By adding a Lévy white noise to (2.1), we obtain the main equation in this paper:

∂tu + ∇uu− νLu + ω × u + ∇p = f + η(x, t), (3.1)

div u = 0, u(x, 0) = u0, x ∈ S2.

We assume that u0 ∈ H, f ∈ V ′ and η(x, t) is Lévy white noise. This noise process can informally be 
described as the derivative of an H-valued Lévy process that is rigorously defined in Lemma 3.7. Applying the 
Leray-Helmholtz projection, we can interpret equation (3.1) as an abstract stochastic differential equation 
in H
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du(t) + Au(t) + B(u(t), u(t)) + Cu = fdt + GdL(t), u(0) = u0, (3.2)

where L is an H-valued stable Lévy process, and G : H → H is a bounded operator. In order to study this 
equation we need to consider first some properties of stochastic convolution.

3.1. Stochastic convolution of β-stable noise

In this section we will recall a linear version of equation (3.2)

dz(t) + Az(t) + Cz(t) = GdL(t), z(0) = 0 . (3.3)

Under appropriate assumptions formulated below, its solution takes the form

z(t) =
t∫

0

e−Â(t−s)GdL(s), (3.4)

where Â = A + C. Let W be a cylindrical Wiener process on a Hilbert space K continuously embedded 
into H, and let X be a β/2-stable subordinator.2 Denote the stable distribution Sα(σ, β, μ) consistent with 
page 9 in [25], where α ∈ (0, 2], σ ≥ 0, β ∈ [−1, 1], μ ∈ R. Then the process L = W (X) is a symmetric 
cylindrical β-stable process in H.

We need the Ornstein-Uhlenbeck process (3.4) to take value in X. To this end, we need the following 
definition.

Definition 3.1. Let K be a separable Hilbert space and let X be not necessarily Hilbert. Let γK be the 
canonical cylindrical (finitely additive) Gaussian measure on K. A bounded linear operator U : K → X is 
said to be γ-radonifying iff U(K) is a Borel Gaussian measure on X.

Assume that G : H → H is γ-radonifying. Then the process GL is a well defined Lévy process taking 
values in H. Under these assumptions the process z defined by (3.4) is a well defined H-valued process and 
moreover, it can be considered as a solution to the following integral equation:

z(t) = −
t∫

0

e−(t−s)ACz(s) ds +
t∫

0

e−(t−s)AGdL(s). (3.5)

With some abuse of notation, we will denote now by λl, eigenvalues of the Stokes operator A, λ1 ≤ λ2 ≤ · · · ; 
and by el, the corresponding eigenvectors that form an orthonormal basis in H. We will impose a stronger 
condition on the operator G. We will suppose that there exists a bounded sequence σl in R so that

Gel = σlel, l = 1, 2, . . . .

We will consider the process

z0(t) =
t∫

0

e−(t−s)AGdL(s) =
∞∑
l=1

z0
l (t)el, (3.6)

2 See definition on p. 50, Eg 1.3.19 in [1].
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where

z0
l (t) =

t∫
0

e−λl(t−s)σldL
l(s). (3.7)

Lemma 3.2. Suppose that there exists some δ > 0 such that 
∑

l≥1 |σl|βλβδ
l < ∞. Then for all p ∈ (0, β),

E|AδL(t)|p ≤ C(β, p)

⎛⎝∑
l≥1

|σl|βλβδ
l

⎞⎠
p
β

t
p
β < ∞. (3.8)

Proof. Let L(t) =
∑

l≥1 L
l(t)el, t ≥ 0 be the cylindrical β-stable process on H, where el is the complete 

orthonormal system of eigenfunctions on H; and L1, L2, · · · , Ll are i.i.d. R-valued, symmetric β-stable 
processes on a common probability space (Ω, F , P ). Now take a bounded sequence of real numbers σ =
(σl)l∈N . Define

Gσ : H → H; Gσu :=
∞∑
l=1

σl〈u, el〉el,

where σl are chosen such that

GσL(t) =
∞∑
l=1

σl〈Ll(t), el〉el =
∞∑
l=1

σlL
l(t)el.

To show (3.8), we follow the argument in the proof of Lemma 3.1 in [34] and Theorem 4.4 in [24]. Take 
a Rademacher sequence {rl}l≥1 in a new probability space (Ω′, F ′, P ′), that is, {rl}l≥1 are i.i.d. with 
P{rl = 1} = P{rl = −1} = 1

2 . By the following Khintchine inequality: for any p > 0, there exists some 
C(p) > 0 such that for an arbitrary real sequence {hl}l≥1,⎛⎝∑

l≥1

h2
l

⎞⎠1/2

≤ C(p)

⎛⎝E′|
∑
l≥1

rlhl|p
⎞⎠1/p

.

Using this inequality, we get

E|AδL(t)|q = E

⎛⎝∑
l≥1

λ2δ
l |σl|2|Ll(t)|2

⎞⎠p/2

≤ CEE′

∣∣∣∣∣∣
∑
l≥1

rlλ
δ
l |σl||Ll(t)|

∣∣∣∣∣∣
p

= CE′E

∣∣∣∣∣∣
∑
l≥1

rlλ
δ
l |σl||Ll(t)|

∣∣∣∣∣∣
p

,

where C = C(p). For any λ ∈ R, and |rk| = 1, the formula (4.7) of [24] yields

E exp

⎧⎨⎩iη
∑
l≥1

rlη
δ
l |σl|Ll(t)

⎫⎬⎭ = exp

⎧⎨⎩−|η|δ
∑
l≥1

|σl|βλβδ
l t

⎫⎬⎭ .
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Now we know that any symmetric β-stable random variable X ∼ S̃α(σ, 0, 0) satisfies

EeiηX = e−σβηβ

for some β ∈ (0, 2), η ∈ R. Then, for any p ∈ (0, β),

E|X|p = C(β, p)σp.

Since 
∑

l≥1 |σl|βλβδ
l < ∞, (3.8) holds. �

Lemma 3.3. Suppose that there exists δ > 0 such that

∞∑
l=1

|σl|βλβδ
l < ∞ ,

then for all p ∈ (0, β) and T > 0

E sup
0≤t≤T

|Âδz(t)|p ≤ C
(
1 + T p(1−δ)

)
T p/β . (3.9)

Proof. It is proved in [34] that for p > 1

E sup
0≤t≤T

|Aδz(t)|p ≤ CT p/β . (3.10)

In order to prove the lemma for the process z, we use formula (3.5). Let Z = z − z0. Then (3.5) yields

dZ

dt
= −AZ − C

(
Z + z0) = −ÂZ − Cz0, Z(0) = 0 .

Therefore

Z(t) = −
T∫

0

e−(t−s)ÂCz0(s) ds, t ≥ 0 .

Then, by the properties of analytic semigroups we find that

∣∣∣ÂδZ(t)
∣∣∣ ≤ t∫

0

∣∣∣Âδe−(t−s)Â
∣∣∣ ∣∣Cz0(s)

∣∣ ds
≤ sup

s≤t

∣∣Cz0(s)
∣∣ t∫

0

c

(t− s)δ ds

≤ c1t
1−δ sup

s≤t

∣∣Cz0(s)
∣∣

≤ c1|C|t1−δ sup
s≤t

∣∣z0(s)
∣∣ .

Since C is bounded, we have D
(
Â
)

= D(A) by Theorem 2.11 in [23]. Since A ≥ 0 is self-adjoint, the 
domains of fractional powers can be identified as the complex interpolation spaces, see Section 1.15.3 of 
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[30]. Therefore, D
(
Aδ

)
= D

(
Âδ

)
for every γ ∈ (0, 1), which yields the existence of constants, r1, r2

depending on δ only, such that

r1

∣∣∣Âδx
∣∣∣ ≤ ∣∣Aδx

∣∣ ≤ r2

∣∣∣Âγx
∣∣∣ , x ∈ D (Aγ) .

Using (3.10), we find that

E sup
t≤T

∣∣AδZ(t)
∣∣p ≤ cp1r

p
2 |C|pT p(1−δ)E sup

s≤T

∣∣z0(s)
∣∣p < ∞.

Now the lemma follows since z(t) = Z(t) + z0(t).
Finally, for completeness we prove the case p ∈ (0, 1) for the process z0. As (3.9) is proved for q ∈ (1, β), 
we fix q ∈ (1, β) and then

E

(
sup

0≤t≤T
|Aδz0(t)|q

)
≤ CT q/β.

Using the Hölder inequality (see for instance [14], p. 191) one has

E(|X|p · 1) ≤ (EXpq)1/q.

We then have

E

(
sup

0≤t≤T
|Aδz0(t)|p

)
= E

({
sup

0≤t≤T
|Aδz0(t)|

}p)

≤ E

({
sup

0≤t≤T
|Aδz0(t)|

}pq)1/q

≤ E

({
sup

0≤t≤T
|Aδz0(t)|

}q)p/q

≤ (C1T
q/β)p/q

= C
p/q
1 T p/β

≤ CT p/β . �
Proposition 3.4 (p.110 of [24]). Suppose 

∑
l≥1

σβ
l

λ+α < ∞, then for any 0 < p < β, t ≥ 0,

E|z0(t)|p ≤ c̃p

( ∞∑
l=1

|σl|β
1 − e−β(λl+α)t

β(λl + α)

)p/β

,

where cp depends on p and β. Moreover, as α → ∞,

E|z0(t)|p → 0.

Proof. In the spirit of the proof of Lemma 3.2, we follow the argument in the proof of Theorem 4.4 in [24]. 
Let z0(t) be the solution of
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dz0(t) + (A + αI)z0(t) = GdL(t), z0(0) = 0

which has the expression

z0(t) =
t∫

0

S(t− s)GdL(s)

=
∞∑
l=1

⎛⎝ t∫
0

e−(λl+α)(t−s)σldL
l
s

⎞⎠ el,

where we used the notation S(t) = e−t(A+αI). Take a Rademacher sequence {rl}l≥1 in a new probability 
space (Ω′, F ′, P ′), that is {rl}l≥1 are i.i.d. with P (rl = 1) = P (rl = −1) = 1

2 . By the following Khintchine 
inequality: for any p > 0, there exists some cp > 0 such that for any arbitrary real sequence {cl}l∈N ,

⎛⎝∑
l≥1

c2l

⎞⎠1/2

≤ cp

⎛⎝E′|
∑
l≥1

rlcl|p
⎞⎠1/p

,

where cp depends only on p.
Now fixing ω ∈ Ω, t ≥ 0, we have

⎛⎝∑
l≥1

|z0
l (t, ω)|2

⎞⎠1/2

≤ cp(E′|
∑
l≥1

rlz
0
l (t, ω)|p)1/p.

Then

E|z0(t)|p =

⎛⎝ ∞∑
l=1

|
t∫

0

e−(λl+α)(t−s)σldL
l
s|2

⎞⎠
p
2

≤ cppE

(
E′|

∞∑
l=1

rlz
0
l (t)|p

)
= cppE

′

(
E|

∑
l=1

rlz
l
t|p

)
= cppE

′

⎛⎝E|
∞∑
l=1

rl

t∫
0

e−(λl+α)(t−s)σldL
l
s|p

⎞⎠ .

For any t ≥ 0, κ ∈ R using the fact |rl| = 1, l ≥ 1 and formula (4.7) in [24],

Eeiκ
∑

l≥1 rlz
0
l (t) = e−|κ|β

∑
l≥1

|σl|β
t∫

0

e−β(λl+α)(t−s)ds.

Now we use (3.2) in [24]: If X is a symmetric β-stable r.v. with distribution S(β, γ, 0) satisfying

EeiκX = e−γβ |κ|β

for some β ∈ (0, 2) and any κ ∈ R, then for any p ∈ (0, β), one has

EXp = C(β, p)γp.

Since 
∑ σβ

l < ∞, the assertion follows. Furthermore, E|zt|0p → 0 as α → ∞. �
l≥1 λl+α
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Let us now recall the definition of Skorohod space D = D([a, b]; E), which consists of a function x :
[0, T ] → E which admits a limit x(t−) from the left at each point t ∈ (0, T ] and the limit x(t+) from the 
right at each point t ∈ (0, T ]. The Skorohod space can be endowed with a metric topology such that it 
becomes a complete separable metric space (see for instance, Billingsley [2]).

Here we present a Lemma that allows us to claim that the solution of SNSEs has càdlàg trajectories. The 
proof follows closely with Lemma 3.3 in [34].

Lemma 3.5. Assume that for a certain δ ∈ [0, 1)

∞∑
l=1

|σl|βλβδ
l < ∞ .

Then the process z defined by (3.7) has a version in D
(
[0,∞];D

(
Aδ

))
.

Proof. By Lemma 3.3 we have

E sup
0≤t≤T

|Aδz(t)|p < ∞

for any p ∈ (0, β). Now, by Theorem 2.2 in [21] z0 has a càdlàg modificationin V . By representation (3.5)
the process z is càdlàg as well, and the proof of the Lemma is completed. �
Let B : H → H be a self-adjoint operator with the complete orthonormal system of eigenfunctions (el) ⊂
Lp(S2) and the corresponding set of eigenvalues (λl). It follows from Theorem 2.3 of [8] that if, further, B
has a compact inverse B−1, then the operator U−s : H → Lp(S2) is well-defined and γ-radonifying iff

∫
S2

(∑
l

λ−2s
l |el(x)|2

)p/2

dS(x) < ∞. (3.11)

We now present some results about the γ-radonifying property.

Lemma 3.6. Let Δ denote the Laplace-de Rham operator on S2 and q ∈ (1, ∞). Then the operator

(−Δ + 1)−s : H → Lq(S2) is γ − radonifying iff s > 1/2.

Proof. See proof of Lemma 3.1 in [7]. �
Let X = L4(S2) ∩H be the Banach space endowed with the norm

|x|X = |x|H + |x|L4(S2).

It follows from Lemma 3.6 that the operator

A−s : H → X is γ − radonifying iff s > 1/2. (3.12)

One has to choose X wisely, so that U : K → X is γ-radonifying in checking validity of subordinator 
condition as on page 156, [9]. The following is our standing assumption.

Assumption 1. A continuously embedded Hilbert space K ⊂ H ∩ L4 is such that for any δ ∈ (0, 1/2),

A−δ : K → H ∩ L4 is γ-radonifying. (3.13)
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It follows from (3.12) that if K = D(As) for some s > 0, then Assumption 1 is satisfied.

Remark. Under the above assumption, we have the fact that K ⊂ H and Banach space X is taken as 
H ∩ L4. In fact, space K := Q1/2(W ) is the RKHS of noise W (t) on H ∩ L4 with the inner product 
〈·, ·〉K = 〈Q−1/2x, Q−1/2y〉W , x, y ∈ K. The notation Q denotes the covariance of the noise W .

Note: The parameters used in Lemma 3.6 and Assumption 1 are independent. In Lemma 3.6, we start 
with the whole space; a smaller exponent is required to map onto H ∩ L4(S2), so the assumption s > 1/2
is justified. On the other hand, in Assumption 1, we start with a smaller space, so a bigger exponent is 
required to map onto H ∩ L4(S2), so δ ∈ (0, 1/2).

Corollary. In the framework of Proposition 2.6, let us additionally assume that there exists a separable 
Hilbert space K ⊂ X such that the operator A−δ : K → X is γ-radonifying for some δ ∈ (0, 12 ). Then

∞∫
0

|e−tA|2R(K,X)dt < ∞.

Proof. Since e−tA = Aδe−tAA−δ, it follows by Neidhardt [22] that

|e−tA|R(K,X) ≤ |Aδe−sA|L(X,X)|A−δ|R(K,X),

and then Proposition 2.6 yields finiteness of the integral. �
Let us recall what one means by M -type p Banach space (see for instance [4]). Suppose p ∈ [1, 2] is fixed, 

then the Banach space E is called type p, iff there exists a constant Kp(E) > 0, such that

E

∣∣∣∣∣
n∑

i=1
ξixi

∣∣∣∣∣
p

≤ Kp(E)
n∑

i=1
|xi|p,

for any finite sequence of symmetric i.i.d. random variables ξ1, · · · , ξn : Ω → [−1, 1], n ∈ N, and any finite 
sequence x1, · · · , xn from E.

Moreover, a Banach space E is of martingale type p iff there exists Lp(E) > 0 such that for any E-valued 
martingale {Mn}Nn=0 the following holds:

sup
n≤N

E|Mn|p ≤ Lp(E)
N∑

n=0
E|Mn −Mn−1|p.

The following is an abstract result from [15] which will be needed for the rest of this paper.

Lemma 3.7 ([15], Corollary 8.1). Assume that: p ∈ (1, 2]; X is a subordinator Lévy process from the class 
Sub(p); E is a separable type p Banach space; U is a separable Hilbert space; E ⊂ U ; and W = (W (t), t ≥ 0)
is an U -valued Wiener process.

Define a U -valued Lévy process as

L(t) = W (X(t)), t ≥ 0 .

Then the E-valued process
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z(t) =
t∫

0

e−(t−s)(A+αI)dL(s)

is well defined. Moreover, with probability 1, for all T > 0,

T∫
0

|z(t)|pEdt < ∞,

T∫
0

|z(t)|4L4dt < ∞.

The following existence and regularity result is a version of the result in [9].

Theorem 3.8. Let the process L be defined in the same way as in Lemma 3.7. Assume that one of the 
following conditions is satisfied:

(i) p ∈ (0, 1] or
(ii) the Banach space E is separable and of martingale type p for a certain p ∈ (1, 2].

Then the process

zα(t) =
t∫

−∞

e−(t−s)(Â+αI)dL(s) (3.14)

is well defined in E for all t > 0. Moreover, if p ∈ (1, 2], then the process z of (3.14) is càdlàg.

Proof. As S = (S(t), t ≥ 0) is a C0 semigroup in the separable martingale type p-Banach space E, there 
exists a Hilbert space H as the reproducing Kernel Hilbert space of W (1) such that the embedding i : H ↪→ E

is γ-radonifying. The proof of this theorem is a straightforward application of Theorem 4.1 and 4.4 in [9]. �
In order to obtain well-posedness of (3.1), one needs some regularity on the noise term. Fortunately, this 

becomes attainable using Lemma 3.7. In view of this, we construct the driving Lévy noise L = L(t) by 
subordinating a cylindrical Wiener process W on a Hilbert space H as defined in (2.23). Let {W l(t), t ≥ 0}
be a sequence of independent standard one-dimensional Wiener processes on some given probability space 
(Ω, F , P ). The cylindrical Wiener process on H is defined by

W (t) :=
∑
l

W l(t)el,

where el is the complete orthonormal system of eigenfunctions on H.
For β ∈ (0, 2), let X(t) be an independent symmetric β/2-stable subordinator. That is, an increasing, 

one dimensional Lévy process with the Laplace Transform

Ee−rX(t) = e−t|r|β/2
, r > 0.

The subordinated cylindrical Wiener process {L(t), t ≥ 0} on H is defined by

L(t) := W (X(t)), t ≥ 0.
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Note in general that L(t) does not belong to H. More precisely, L(t) lives on some larger Hilbert space U
with the γ-radonifying embedding H ↪→ U . Now, let us consider the abstract Itô equation in (3.2) (which 
we restate here) in H = L2(S2):

du(t) + νAu(t)dt + B(u(t), u(t))dt + Cu = fdt + GdL(t), u(0) = u0. (3.15)

Writing (3.2) into the usual mild form, one has

u(t) = S(t)u0 −
t∫

0

S(t− s)B(u(s))ds +
t∫

0

S(t− s)fds +
t∫

0

S(t− s)GdL(s), (3.16)

where S(t) is an analytic C0 semigroup (e−tÂ) generated by Â = νA + C, and A is the Stokes operator in 
H. Note that Â is a strictly positive self-adjoint operator in H, that is A : D(A) ⊂ H → H, Â = Â∗ > 0, 
〈Av, v〉 ≥ γ|v|2 for any v ∈ D(A) for some γ > 0 and v �= 0. The operator G : H → H is a bounded linear 
operator. For a fixed α > 0 we introduce the process

zα(t) :=
t∫

0

e−(t−s)(α+Â)GdL(t) (3.17)

that solves the OU equation

dzα(t) + (νA + C + α)zα(t)dt = GdL(t), t ≥ 0 . (3.18)

Now let v(t) = u(t) − zα(t). Then{
dv(t) + νA(u(t) − zα(t))dt + B(u(t))dt + C(u− zα(t))dt− αzα(t)dt = fdt,

v(0) = v0.

The problem becomes{
dv(t) + νAv(t)dt + B(v(t) + zα(t))dt + Cv(t)dt− αzα(t)dt = fdt,

v(0) = v0.

Converting into the standard form,{
d+

dt v(t) + (νA + C)v(t) = f −B(v(t) + zα(t)) + αzα(t),
v(0) = v0,

(3.19)

where d
+v
dt is the right-hand derivative of v(t) at t. The solution to equation (3.19) will be understood in 

the mild sense, that is as a solution to the integral equation

v(t) = S(t)v(0) +
t∫

0

S(t− s)(f −B(v(s) + zα(s)) + αzα(s))ds, (3.20)

with v0 = u0 − zα(0).
For brevity, we write zα as z. Let us now explain what is meant by a solution of (3.2). Finally all these 

enter into the definition of (3.17).
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Definition 3.9. Suppose that z ∈ L4
loc([0, T ); L4(S2) ∩H), v0 ∈ H, f ∈ V ′.

Let T > 0. A weak solution to (3.19) is a function v ∈ C([0, T ); H) ∩ L2
loc([0, T ); V ) such that for any 

φ ∈ V

∂t(v, φ) = (v0, φ) − ν(v,Aφ) − b(v + z, v + z, φ) − (Cv, φ) + (αz + f, φ). (3.21)

Equivalently, (3.19) holds as an equality in V ′ for a.e. t ∈ [0, T ].

It is easy to check that if the assumptions of this definition hold, and v is a mild solution then it is also 
a weak solution.

Now if f ∈ H, and the following regularity is satisfied,

v ∈ L∞(0, T ;V ) ∩ L2(0, T ;D(A)), (3.22)

then the solution becomes strong. More precisely,

Definition 3.10 (Strong solution). Suppose that z ∈ L4
loc([0, T ); L4(S2) ∩H), v0 ∈ V , f ∈ H. We say that v

is a strong solution of the stochastic Navier-Stokes equations (3.19) on the time interval [0, T ] if u is a weak 
solution of (3.19) and in addition

v ∈ L∞(0, T ;V ) ∩ L2(0, T ;D(A)). (3.23)

Given this definition to (3.2) it is enough to prove the existence and uniqueness of equation (3.19).
Before stating the main theorem of this paper, we recall, for the reader’s convenience, the standing 

assumptions of this work that have been made earlier.

Assumptions

• G : H → H is γ-radonifying and so GL defines a Lévy process taking values in H. Moreover, the 
condition (3.6) satisfies, namely,

Gel = σlel, l = 1, 2, · · · .

• Assumption 1 holds.
• L(t) is a subordinated Wiener process as defined.

All three assumptions above go into (3.15) and (3.16). From that, one obtains (3.19) and (3.20) that goes 
into Definition 3.9.

The main theorems proved in this paper are the following.

Theorem 3.11. Assume that α ≥ 0, z ∈ L4
loc([0, ∞); L4(S2) ∩H), f ∈ H and v0 ∈ H. Then, there exists a 

unique solution of (3.20) in the space C(0, T ; H) ∩L2(0, T ; V ) which belongs to C(h, T ; V ) ∩L2
loc(h, T ; D(A))

for all h > 0 and T > 0. Moreover, if v0 ∈ V , then v ∈ C(0, T ; V ) ∩ L2
loc(0, T ; D(A)) for all T > 0. In 

particular, v(T, zn)u0
n → v(T, zn)u0 in H. Moreover, if

∞∑
l=1

|σl|βλβ/2
l < ∞ ,

then the theorem holds.
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Theorem 3.12. Assume that α ≥ 0, z ∈ L4
loc([0, ∞); L4(S2) ∩ H), f ∈ H and v0 ∈ H. Then, there ex-

ists a P -a.s. unique solution of (3.2) in the space D(0, T ; H) ∩ L2(0, T ; V ), which belongs to D(ε, T ; V ) ∩
L2

loc(ε, T ; D(A)) for all ε > 0, and T > 0. Moreover, if v0 ∈ V , then u ∈ D(0, T ; V ) ∩ L2
loc(0, T ; D(A)) for 

all T > 0, ω ∈ Ω. Moreover, if

∞∑
l=1

|σl|βλβ/2
l < ∞ ,

then the theorem holds.

4. Proof of Theorem 3.11: strong solutions

Suppose now f ∈ H. In what proceeds we will show that if u0 ∈ V then we obtain a more regular 
solution, and deduce that if v0 ∈ H then v(t) ∈ V for every t > 0. In this paper, we will construct a unique 
global strong solution (in the sense of Definition 3.10).

The proof of Theorem 3.11 follows closely to Theorem 3.1 in [5]. However in the proof in [5] there is no 
Coriolis force and additive noise, whereas here there are. In particular, our constants in the proof now depend 
on |F (t)|, |z(t)| and |z(t)|V , but not on the Coriolis term due to the antisymmetric condition (Cv, Av) = 0.

Remark. One can alternatively prove Theorem 3.11 via the usual Galerkin approximation.

4.1. Existence and uniqueness of a strong solution with v0 ∈ V

The following function spaces are introduced for convenience.

Definition 4.1. The spaces

XT := C(0, T ;H) ∩ L2(0, T ;V ), (4.1)
YT = C(0, T ;V ) ∩ L2(0, T ;D(A)) (4.2)

are endowed with the norms

| · |XT
:= | · |C(0,T ;H) + | · |L2(0,T ;V ),

| · |YT
:= | · |C(0,T ;V ) + | · |L2(0,T ;D(A)).

Or explicitly,

|f |2XT
= sup

0≤t≤T
|f(t)|2 +

T∫
0

|f(s)|2V ds,

|f |2YT
= sup

0≤t≤T
|f(t)|2V +

T∫
0

|Af(s)|2ds.

Let K be the map in YT defined by

K(u)(t) =
t∫

0

S(t− s)B(u(s))ds, t ∈ [0, T ], u ∈ YT . (4.3)
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The following is a crucial lemma for the proof of existence and uniqueness.

Lemma 4.2. There exists c > 0 such that for every u, v ∈ YT ,

|K(u)|2YT
≤ c|u|2YT

√
T , (4.4)

|K(u) −K(v)|2YT
≤ c|u− v|2YT

(|u|2YT
+ |v|2YT

)
√
T . (4.5)

Proof. To prove this Lemma, we apply the arguments from [3]. Let K be defined as in (4.3). By the maximum 
regularity we have,

T∫
0

∣∣∣∣dKdt
∣∣∣∣2
H

dt +
T∫

0

|AK(t)|2H dt ≤ C

T∫
0

|B(u(t))|2H dt

By the trace theorem, see for instance [33], one has

sup
t≤T

|K(t)|2V ≤
T∫

0

∣∣∣∣dKdt
∣∣∣∣2
H

dt +
T∫

0

|AK(t)|2H dt

Then we have

sup
0≤t≤T

|K(u)(t)|V ≤ C

T∫
0

|B(u(t))|2H dt

≤ C

T∫
0

|u|2V |u|V |Au|dt by (2.55)

≤ C sup
0≤t≤T

|u(t)|2V
T∫

0

|u(t)|V |Au(t)|dt

≤ C sup
0≤t≤T

|u(t)|3
√
T

⎛⎝ T∫
0

|Au(t)|2 dt

⎞⎠1/2

Now if x, y ≥ 0 and 1
p + 1

q = 1, p, q > 0, then

xy ≤ xp

p
+ yq

q
Young’s inequality

Now take

x = sup
0≤t≤T

|u(t)|3, y =

⎛⎝ T∫
0

|Au(t)|2 dt

⎞⎠1/2

p = 4/3, q = 4

We have
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sup
0≤t≤T

|K(u)(t)|V ≤ C

T∫
0

|B(u(t))|2H dt

≤ C sup
0≤t≤T

|u(t)|3
√
T

⎛⎝ T∫
0

|Au(t)|2 dt

⎞⎠1/2

≤ C
√
T

⎧⎪⎨⎪⎩3
4 sup

0≤t≤T
|u(t)|4 + 1

4

⎛⎝ T∫
0

|Au(t)|2
⎞⎠2⎫⎪⎬⎪⎭

≤ C
√
T

{
3
4 |u|

4
YT

+ 1
4 |u|

4
YT

}
≤ C

√
T |u|4YT

Similarly, to prove (4.5), we have

H(t) := K(u)(t) −K(v)(t) =
t∫

0

S(t− s)(B(u(s)) −B(v(s))) ds

and therefore by the maximum regularity we have

T∫
0

∣∣∣∣dHdt
∣∣∣∣2
H

dt +
T∫

0

|AH(t)|2H dt ≤ C

T∫
0

|B(u(t)) −B(v(t))|2H dt

By the same argument

T∫
0

|A(K(u)(t) −K(v)(t))|2H dt ≤ C

T∫
0

|B(u(t)) −B(v(t))|2H dt

Finally we get

|K(u) −K(v)|2YT
≤ 2C

T∫
0

|B(u(t)) −B(v(t))|2H dt

Now note that

|K(u) −K(v)|2YT
≤ C1

T∫
0

|B(u) −B(v)|2H dt

≤ C1

T∫
0

|B(u(t) − v(t), u(t)) + B(v(t), u(t) − v(t))|2H dt

≤ C1

T∫
0

C2|u(t) − v(t)|2V |u(t)|V |Au(t)| + C3|u(t) − v(t)|2V |v(t)|V |Av(t)| dt
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We focus on the two terms under the integral. Using similar arguments from the proof of (4.4), we have

T∫
0

|u(t) − v(t)|2V |u(t)|V |Au(t)| dt

≤ sup
0≤t≤T

|u(t) − v(t)|2V
T∫

0

|u(t)|V |Au(t)| dt

≤ sup
0≤t≤T

|u(t) − v(t)|2V
√
T

⎛⎝ T∫
0

|u(t)|2V |Au(t)|2 dt

⎞⎠1/2

≤ sup
0≤t≤T

|u(t) − v(t)|2V
√
T sup

0≤t≤T
|u(t)|V

⎛⎝ T∫
0

|Au(t)|2 dt

⎞⎠1/2

≤ 1
2 sup

0≤t≤T
|u− v|2V

√
T

⎧⎨⎩ sup
0≤t≤T

|u(t)|2V +
T∫

0

|Au(t)|2 dt

⎫⎬⎭
≤ 1

2 |u− v|2YT

√
T |u|2YT

≤ 1
2
√
T |u− v|2YT

|u|2YT

Similarly, we can show

T∫
0

|u(t) − v(t)|2V |v(t)|V |Av(t)| dt

≤ sup
0≤t≤T

|u(t) − v(t)|2V
T∫

0

|v(t)|V |Av(t)| dt

≤ sup
0≤t≤T

|u(t) − v(t)|2V
√
T

⎛⎝ T∫
0

|v(t)|2V |Av(t)|2 dt

⎞⎠1/2

dt

· · ·
≤

√
T |u(t) − v(t)|2YT

|v|2YT

Combine the above, the claim in (4.5) follows. �
Lemma 4.3. Assume that α ≥ 0, z ∈ L4

loc([0, ∞); L4(S2) ∩ H), f ∈ H and v0 ∈ V . Then, there exists a 
unique solution of (3.16) in the space C(0, T ; V ) ∩ L2(0, T ; D(A)) for all T > 0.

Proof. First let us prove local existence and uniqueness. Let Yτ = C(0, τ ; V ) ∩ L2(0, τ ; D(A)) be equipped 
with the norm

|f |2Yτ
= sup

t≤τ
|f(t)|2 +

τ∫
0

|Af(s)|2 ds,
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and let Γ be a nonlinear mapping in Yτ as

(Γv)(t) = S(t)v0 +
t∫

0

S(t− s)(f −B(v(s) + z(s)) + αz(s))ds.

Now recall the following classical result due to Lions, see [5] or [20]:⎧⎪⎪⎨⎪⎪⎩
A1 S(·)v0 ∈ Yτ , ∀ v0 ∈ H, τ > 0;
A2 The map t �→ x(t) =

∫ t

0 S(t− s)f(s)ds belongs to Yτ for all L2(0, τ ;H);
A3 The mapping f �→ x is continuous from L2(0, τ ;H) to Yτ .

Note, our assumption z(t) ∈ L4([0, ∞); L4(S2) ∩H) implies that z(t) ∈ Yτ as z(t) is square integrable and 
V can be continuously embedded into L4(S2).

The first step is to show Γ is well defined. Using assumptions A1 and A2 and the assumption for z(t), 
together with Young’s inequality, one can show that

|Γ|2Yτ
≤ c |S(t)v0|2Yτ

+ c

∣∣∣∣∣∣
t∫

0

S(t− s)B(v(s) + z(s))ds

∣∣∣∣∣∣
2

Yτ

+ c

∣∣∣∣∣∣
t∫

0

S(t− s)fds

∣∣∣∣∣∣
2

Yτ

+ cα

∣∣∣∣∣∣
t∫

0

S(t− s)z(s)

∣∣∣∣∣∣
2

Yτ

,

for some different constant c. Now due to A1 and A2, the first and third terms are finite. Due to A2 and 
the trilinear inequality (2.52) the second term is finite. The last term is also finite due to the assumption 
on z(t) that

|Γ|2Yτ
≤ c1 + c2|v|4Yτ

+ c3 + c4. (4.6)

Whence the map Γv is well defined in Yτ , and Γ maps Yτ into itself.
Now we have

|Γ(v1) − Γ(v2)|2Yτ

≤ |
τ∫

0

S(t− s)(B(v1(s) + z(s)) −B(v2(s) + z))ds|2Yτ

≤ c6|v1 − v2|2Yτ
(|v1 + z|2Yτ

+ |v2 + z|2Yτ
)
√
τ ,

for all v1, v2 and z in Yτ . Therefore, for sufficiently small τ > 0, Γ is a contraction in a closed ball of Yτ , 
yielding existence and uniqueness of a local solution of (3.20) in Yτ . That is, the solutions are bounded in 
V on some short time interval [0, τ).

Remark. If the following map

(Γu)(t) = S(t)u0 −
t∫

0

S(t− s)B(u(s))ds +
t∫

0

S(t− s)fds +
t∫

0

S(t− s)GdL(s)

is used to prove contraction, then one would have to assume

T∫
|Az(t)|2dt < ∞.
0
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The local existence and uniqueness results indicate that the solution can be extended up to the maximal 
lifetime Tf,z and then is well defined on the right-open interval [0, Tf,z). Next, we will prove the local solution 
may be continued to the global solution which is valid for all t > 0, in the class of weak solutions satisfying 
a certain energy inequality. This is consistent with the results for the 2D NSEs that, a strong solution exists 
globally in time and is unique. See for instance Theorem 7.4 of Foias and Temam [12].

It suffices to find a uniform a priori estimate for the solution v in the space YT0 such that for any 
T0 ∈ [0, Tf,z):

|v|2YT0
≤ C for all T0 ∈ [0, Tf,z), (4.7)

where C is independent of T0. This uniform a priori estimate, along with the local existence-uniqueness 
proved earlier, yields the unique global solution u in YT,z. Moreover, this solution exists globally in time. 
Hence one can deduce that the solution is well defined up to the time t = Tf,z. At this point in time the 
iterated process could be repeated and the solution can be found on [Tf,z, 2Tf,z] and so forth. Hence the 
solution could be found in C(0, ∞; V ) ∩ L2

loc(0, ∞; D(A)). To prove (4.7), we first need to show

|v|XT0
≤ c0.

Toward that end, we work with a modified version of (3.19)

{
∂tv + νAv = −B(v) −B(v, z) −B(z, v) − Cv + F,

v(0) = v0,
(4.8)

where F = −B(z) + αz + f is an element of H, since the H norm of all of its three terms is bounded. Now 
multiplying both sides by v, and integrating over S2, one obtains

∂t|v|2 + ν|v|2V = −b(v, v, v) − b(v, z, v) − b(z, v, v) − (Cv, v) + 〈F, v〉

= b(v, v, z) + (F, v).

Now by (2.50), one has

|b(v, v, z)| ≤ c|v||v|V |z|.

Then applying Young’s inequality with a =
√

ε
2 |v|V and b = |v|

√
2
ε |z|V , it follows that

≤ ε|v|2V
4 + 1

ε
|v|2|z|2V .

On the other hand,

(F (t), v(t)) = |F (t)||v(t)| ≤ 1
ε
|F (t)|2 + ε

4 |v|
2.

So that

∂t|v(t)|2 + (2ν − ε

2)|v(t)|2V ≤ 2
ε
|v|2|z|2V + 2

ε
|F (t)|2 + ε

2 |v|
2 (4.9)

for all ε > 0.
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By integrating in t from 0 to T , after simplifying, one obtains

T∫
0

|v(t)|2V dt ≤ 1
2ν − ε

2

⎛⎝|v(0)|2 + 2
ε

T∫
0

|v(t)|2|z(t)|2V dt + 2
ε

T∫
0

|F (t)|2dt + ε

2

T∫
0

|v(t)|2dt

⎞⎠ ≤ K1. (4.10)

Since v(0) = u0,

K1 = K1(u0, F, ν, T, z).

On the other hand, by integrating (4.9) in t from 0 to s, 0 < s < T , we obtain

|v(s)|2 ≤ |u0|2 + 2
ε

s∫
0

|v(t)|2|z(t)|2V dt + 2
ε

s∫
0

|F (t)|2dt + ε

2

s∫
0

|v(t)|2dt,

sup
s∈[0,Tf,z ]

|v(s)|2 ≤ K2,

K2 = K2(u0, F, ν, T, z) = (2ν − ε

2)K1.

Hence, for any ε such that ε2 < 2ν, applying the Gronwall lemma to

∂t|v|2 ≤
(

2
ε
|z|2V + ε

2

)
|v|2 + 2

ε
|F (t)|2,

one obtains

|v(t)|2 ≤ |v(0)|2 exp

⎛⎝ t∫
0

2
ε
|z(τ)|2V + ε

2dτ

⎞⎠ |v|2 +
t∫

0

2
ε
|F (s)|2 exp(

t∫
s

(
2
ε
|z(τ)|2V + ε

2

)
dτ)ds.

And so

sup
t∈[0,Tf,z ]

|v(t)|2 ≤ |v(0)|2 exp

⎛⎜⎝ Tf,z∫
0

2
ε
|z(τ)|2V + ε

2dτ

⎞⎟⎠ +
Tf,z∫
0

2
ε
|F (s)|2 exp(

Tf,z∫
s

(
2
ε
|z(τ)|2V + ε

2

)
dτ)ds.

To avoid clumsiness, we write momentarily Tf,z = T . Let

ψT (z) = exp

⎛⎝ T∫
0

2
ε
|z(τ)|2V + ε

2dτ

⎞⎠ < ∞, cF =
T∫

0

2
ε
|F (s)|2 exp

⎛⎝ T∫
s

(
2
ε
|z(τ)|2V + ε

2

)
dτ

⎞⎠ ds. (4.11)

So

sup
0≤t≤T

|v(t)|2 ≤ |v(0)|2ψT (z) + cF , (4.12)

which implies

v ∈ L∞([0, T ];H). (4.13)

Now integrating
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∂t|v|2 + ν|v|2V ≤
(

2
ε
|z|2V + ε

2

)
|v|2 + 2

ε
|F (t)|2, (4.14)

from 0 to T , one gets

|v(T )|2 + ν

T∫
0

|v(t)|2V dt ≤
(
ψT (z)|v(0)|2 + cF

) T∫
0

(
2
ε
|z(t)|2 + ε

2

)
dt + 2

ε

T∫
0

|F (t)|2dt + |v(0)|2, (4.15)

which implies

v ∈ L2([0, T ];V ), (4.16)

and v is indeed a weak solution. To show that v ∈ C([0, T ]; H), note that A : V → V ′ is bounded and 
Av ∈ L2([0, T ]; V ′). Then F ∈ L2([0, T ]; V ′) since z ∈ L4([0, T ]; L4(S2) ∩ H) which can be continuously 
embedded into V ′, and the terms B(z), B(v, z), B(z, v) are all in L2([0, T ]; V ′). Combining these facts along 
with (4.16) and invoking Lemma 4.1 of [6], we conclude that v ∈ C([0, T ]; H).

The uniform a priori estimate (4.15) implies that the solution is well defined up to time t = Tf,z. The 
iterative process may be repeated starting from t = Tf,z with the initial condition z(t). The solution is 
uniquely extended to [0, 2Tf,z] and so on to an arbitrarily large time.

Now, multiplying both sides of (4.8) with Av, and noting again the classical fact that 1
2∂t|v(t)|2 =

(∂tv(t), v(t)) and (Cv, Av) = 0, integrating over S2, one obtains:

(∂tv,Av) + ν(Av,Av) = −b(v, v, Av) − b(v, z, Av) − b(z, v, Av) + 〈F (t), Av(t)〉

=⇒ 1
2
d+

dt
|v|2 + ν|Av|2 = −b(v(t), v(t), Av(t)) − b(v(t), z(t), Av(t)) − b(z(t), v(t), Av(t)) + 〈F (t), Av(t)〉.

(4.17)

Now,

|b(v, v, Av)| ≤ C|v| 12 |v|V |Av| 32 ∀ v ∈ V, v ∈ D(A),

|b(v, z, Av)| ≤ C|v| 12 |v|
1
2
V |z|

1
2
V |Av| 32 ∀ v ∈ V, v ∈ D(A),

|b(z, v, Av)| ≤ C|z| 12 |z| 12 |v|
1
2
V |Av| 32 ∀ z ∈ V, v ∈ D(A).

Also,

(F (t), Av(t)) ≤ ε

4 |Av(t)|2 + 1
ε
|F (t)|2.

Furthermore, using Young’s inequality with the choice p = 4
3 and ab = (εp)

1
p |Av|3/2εp)− 1

p |v|1/2|v|V , the 
above estimates of the three bilinear terms become:

|b(v, v, Av)| ≤ C|v| 12 |v|V |Av| 32

≤ ε|Av|2 + C(ε)|v|2|v|4V ,

|b(v, z, Av)| ≤ C|v| 12 |v|
1
2
V |z|

1
2
V |Av| 32

≤ ε|Av|2 + C(ε)|v|2|v|2V |z|2V ,
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|b(z, v, Av)| ≤ C|z| 12 |z|
1
2
V |v|

1
2
V |Av| 32

≤ ε|Av|2 + C(ε)|z|2|z|2V |v|2V .

Therefore,

d+

dt
|v|2V + (2ν − 3ε− ε

4)|Av|2 ≤ C(ε)(|v|2|v|4V + |v|2|v|2V |z|2V + |z|2|z|2V |v|2V ) + 1
ε
|F (t)|2. (4.18)

Momentarily dropping the term |Av(t)|2, we have the differential inequality

y′ ≤ a + θy,

y(t) = |v|2V , a(t) = 1
ν
|F (t)|2, θ(t) = C(ε)(|v|2|v|2V + |v|2|z|2V + |z|2|z|2V ).

Then for any ε such that ε < 8
13ν, using the Gronwall lemma, one has

d+

dt

⎛⎝y(t) exp

⎧⎨⎩−
t∫

0

θ(τ)dτ

⎫⎬⎭
⎞⎠ ≤ a(t) exp

⎧⎨⎩−
t∫

0

θ(τ)dτ

⎫⎬⎭ ds

|v(t)|2V ≤ |v(0)|2V exp

⎛⎝ t∫
0

C(ε)(|v(τ)|2|v(τ)|2V + |v(τ)|2|z(τ)|2V + |z(τ)|2|z(τ)|2V )dτ

⎞⎠
+ 1

ν

t∫
0

|F (s)|2 exp

⎛⎝ t∫
s

C(ε)(|v(τ)|2|v(τ)|2V + |v(τ)|2|z(τ)|2V + |z(τ)|2|z(τ)|2V )dτ

⎞⎠ ds

sup
t∈[0,T ]

|v(t)|2V ≤ K3, (4.19)

K3 = K3(u0, F, ν, T, z) =

⎛⎝|v(0)|2V + 1
ν

T∫
0

|F (s)|2ds

⎞⎠ exp(C(ε)K2K1),

which implies

v ∈ L∞(0, T ;V ). (4.20)

Let us now come back to (4.18), which we integrate from 0 to T . After simplifying, we have

T∫
0

|Av(t)|2dt ≤ K4,

and

K4 = K4(u0, F, ν, z, T )

= 1
2ν − 3ε− ε

4
(|u0|2 + C(ε) sup

t∈[0,T ]
|v(t)|2|v(t)|4V + C(ε) sup

t∈[0,T ]
|v(t)|2|v(t)|2V |z(t)|2V

+ C(ε) sup
t∈[0,T ]

|z(t)|2|z(t)|2V |v(t)|2V + 1
ε

T∫
0

|F (t)|2)dt.
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As

sup
t∈[0,T ]

|v(t)|2 ≤ K2,

sup
t∈[0,T ]

|v(t)|4V ≤ K2
3 ,

|z(t)|2V ≤ C1,

sup
t∈[0,T ]

|z(t)|2 ≤ C2.

So,

K4 = 1
2ν − 3ε− ε

4
(|u0|2 + C(ε)K2K

2
3 + C(ε)K2K3C1 + C(ε)C2C1K3 + 1

ε

T∫
0

|F (t)|2)dt.

This implies

v ∈ L2(0, Tf,z;D(A)). (4.21)

It remains to show that v ∈ C([0, T ]; V ). Note, the fact that the solution with v0 ∈ V is in L2([0, T ]; V )
implies that a.e. on [0, T ], v(t) ∈ V . Moreover, since v(t) ∈ C([0, T ]; H) as previously deduced, and is unique 
as proved in step 1, it follows that u ∈ C([0, T ]; V ).

Together with the uniform a priori estimate, the local existence-uniqueness shown in step 1, allows us to 
conclude that there exists a unique u ∈ C(0, ∞; H) ∩ L2(0, ∞; V ) ⊂ C(0, ∞; V ) ∩ L2(0, ∞; D(A)), for any 
given u0 ∈ V , f ∈ H, z(t) ∈ L4

loc([0, ∞); L4(S2) ∩H). Moreover, our promising a priori bound (4.19) yields 
T = ∞. �
4.2. Existence and uniqueness of a strong solution with v0 ∈ H

Corollary. If f ∈ H, v0 ∈ H, z(t) ∈ L4
loc([0, ∞); L4(S2) ∩H), then v(t) ∈ V for all t > 0.

We follow the proof in [5]. The idea stems from the standard approximation method commonly used 
in PDE theory. In view of the a priori estimate (4.18) one takes an approximated solution to (3.16) in 
YT . Then one shows the approximates converge. Finally one shows that the limit function indeed satisfies 
(3.16).

Let (v0,n) ⊂ V be a sequence converging to v0 in H. For all n ∈ N, let vn be a solution of equation (3.16)
in YT corresponding to the initial data v0,n. Similar to the case when v0 ∈ V , one can find a constant such 
that |vn|XT

≤ c, ∀ n ∈ N. Following the same lines as in the proofs of (4.13) and (4.16), vn can be proved 
to be a weak solution.

Moreover, for n, m ∈ N, take vn,m = vn − vm with v0
n,m = v0

n − v0
m. Then vn,m is the solution of

{
∂tvn,m + νAvn,m = −B(vn,m, z) −B(z, vn,m) −B(vn,m, vn) −B(vm, vn,m) − Cvn,m,

vn,m(0) = v0
n − v0

m.
(4.22)

Multiplying both sides of (4.22) by vn,m and integrating against vn,m, using Lemma 2.5 and (2.48) and 
noting (2.40), one obtains

∂t|vn,m|2 + 2ν|vn,m|2V = −2b(vn,m, z, vn,m) − 2b(vn,m, vn, vn,m).
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Since |b(w, w, z)| ≤ C|w||w|V |z|V and |b(w, w, v)| ≤ C|w||w|V |v|V

≤ C|vn,m||vn,m|V (|z|V + |vn|V )

Then using the Young’s inequality with a = ε|vn,m|V and b = C√
ε
|vn,m|(|z|V + |vn|V ),

≤ ε|vn,m|V
2 + C

2ε |vn,m|2(|z|2V + |vn|2V ). (4.23)

Therefore, for any ε > 0 such that ε2 < 2ν, one applies the Gronwall lemma to obtain

∂t|vn,m|2 ≤ C

2ε (|z|
2
V + |vn|2V )|vn,m|2.

Combining this with v0
n,m = v0

n − v0
m, it is easy to show that

|vn,m(t)|2 ≤ |vn,m(0)|2 exp

⎛⎝C

2ε (
T∫

0

|z(t)|2V + |vn(t)|2V )|vn,m(t)|2dt

⎞⎠ < ∞,

as 
∫ T

0 |z(t)|2V + |vn(t)|2V < ∞. Hence vn,m converges in T , and is therefore Cauchy in T . That is, for any 
ε > 0, ∃ N ∈ N such that |vn − vm| < ε whenever n, m ≥ N .

Let the limit of vn be v. It remains to show v indeed satisfies (3.16).
Let vn be the solution to

vn(t) = S(t)v0,n −
t∫

0

S(t− s)(B(un(s)))ds + α

t∫
0

zn(s)ds, (4.24)

where zn(t) =
∫ t

0 S(t − s)GdLn(t). We would like to show that

lim
n→∞

un(t) = S(t)u0 −
t∫

0

S(t− s)(B(u(s)))ds +
t∫

0

S(t− s)fds + α

t∫
0

z(s)ds. (4.25)

Assume fn → f in L2(0, T ; H), zn =
∫ t

0 S(t − s)GdLn(t) → z in L4([0, T ]; L4(S2) ∩ H), we would like to 
check if

lim
n→∞

B(un) = B(u) in H. (4.26)

For this, note first that∣∣|un|2V − |u|2V
∣∣ = |(un, un) − (u, u)|
= |(un, un)V − (u, un)V + (u, un)V − (u, u)V |
= |(un, un)V − (u, un)V | + |(u, un)V − (u, u)V |
≤ |un − u|V |un|V + |u|V |un − u|V .

Now |un|V is Cauchy and is therefore bounded. So un converges to u in V as n → ∞. Then using (2.50)
one deduces that
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|B(un) −B(u)|
= |B(un, un) −B(un, u) + B(un, u) −B(u, u)| ≤ C(|un|2V + |un|2V |u| + |u|2V ) → C|u|2V .

Now analogous to the earlier proof of contraction we have,

|B(un(s)) −B(u(s))|2YT

≤

∣∣∣∣∣∣
t∫

0

S(t− s)(B(un(s)) −B(u(s)))ds

∣∣∣∣∣∣
2

YT

≤ c

T∫
0

|B(un(s)) −B(u(s))|2ds

≤ c|u|2T
√
T .

Therefore, B(un) −B(u) is in L2(0, T ; H). Now by the continuity argument again, one has

lim
n→∞

T∫
0

S(t− s)B(un(s))ds =
T∫

0

S(t− s)B(u(s))ds,

and

lim
n→∞

T∫
0

S(t− s)fn(s)ds =
T∫

0

S(t− s)f(s)ds.

Combining the above with the assumptions that

lim
n→∞

S(t)u0,n = S(t)u0,

lim
n→∞

zn(t) = z(t),

one deduces that

lim
n→∞

vn(t) = v(t),

and there exists a solution to (3.16). However, the solution constructed as the limits of un leaves open the 
possibility that there is more than one limit. So we will now prove u is unique. The idea is analogous to 
proving (4.23). Nevertheless we detail as follows. Suppose v1, v2 are two solutions of (3.19) with the same 
initial condition. Let w = v1 − v2, then w satisfies{

∂tw + νAw = −B(w, z) −B(z, w) −B(w, v1) −B(v2, w),
w(0) = 0.

(4.27)

Multiplying (4.27) on both sides with w and integrating against w, using the identities ∂t|v(t)|2 =
2〈∂tv(t), v(t)〉 again in Temam and (2.48), one gets

∂t|w|2 + 2ν|w|2V = −2b(w, z, w) − 2b(w, v1, w).
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Since |b(w, w, z)| ≤ C|w||w|V |z|V and |b(w, w, v)| ≤ C|w||w|V |v|V

≤ C|w||w|V (|z|V + |v1|V ).

Then via usual Young’s inequality with a =
√
ε|w|V and b = C√

ε
|w|(|z|V + |vn|V )

≤ ε|w|V
2 + C

2ε |w|
2(|z|2V + |v1|2V ). (4.28)

Therefore, for any ε > 0 such that ε2 < 2ν, one applies the Gronwall lemma to

∂t|w|2 ≤ C

2ε (|z|
2
V + |v1|2V )|w|2,

and combining with w0 = v1,0 − v2,0 = 0, it follows from the Gronwall lemma that

|w(t)|2 ≤ |w(0)|2 exp

⎛⎝C

2ε(
T∫

0

|z(t)|2V + |v1(t)|2V )|w(t)|2dt

⎞⎠ < ∞

as 
∫ T

0 |z(t)|2V + |v1(t)|2dt < ∞. Now, since w(0) = 0, necessarily w(t) must be 0.
It remains to show v ∈ C((0, T ; V ), as observed from the above energy inequality (4.23). The solution 

starts with an initial condition v0 ∈ H belonging to L2(0, T ; V ). This implies that almost everywhere in 
(0, T ], there must exist a time point ε (ε < T ) such that u(ε) ∈ V . Then one may repeat step two onto 
another interval [ε, 2ε], [2ε, 3ε], and soon over the whole [ε, ∞]. Finally we obtain that u ∈ C([ε, T ]; V ) ∩
L2([ε, T ]; D(A)) for all ε > 0. Note that T = ∞ as implied from the a priori estimate.

In summary, in this section, we have proved:

Lemma 4.4. Assuming that α ≥ 0, z ∈ L4
loc([0, ∞); L4(S2) ∩H), f ∈ H and v0 ∈ H. Then, there exists a 

unique solution of (3.20) in the space C(0, T ; H) ∩L2(0, T ; V ), which belongs to C(ε, T ; V ) ∩L2
loc(ε, T ; D(A))

for all ε > 0 and T > 0.

Combining Lemma 4.4 with 4.3, we have proved Theorem 3.11.

Remark. Continuous dependence on v0, z and f is implied from the point where local existence and unique-
ness is attained and hence holds also for global solutions.

Remark. The proof of Theorem 3.11 shows that the solution v, starting from v0 ∈ H, belongs to V for a.e. 
t ≥ t0. If we take any t̄ ≥ t0 such that v(t̄) ∈ V , the solution is extended over the interval [t0, t0 + ε] and is 
found to be in D(A) as well. One may repeat this step over another interval [t0+ε, t0+2ε], [t0+2ε, t0+3ε] · · · . 
Thus, we obtain that v ∈ C([t0 + ε, ∞); V ) ∩ L2

loc(t0 + ε, D(A)).

Furthermore, provided the noise does not degenerate, based on the condition given in the following, we 
obtained the existence and uniqueness results for the solution to the original equation (3.2).

If ∑
l

λ
β
2 |σl|β < ∞, (4.29)

then by Lemma 3.5 the process z has a version which has left limits and is right continuous in V . Recall 
that ut := vt + zt and for each T > 0, define



36 L. Dong / J. Math. Anal. Appl. 489 (2020) 124182
ZT (ω) := sup
0≤t≤T

|zt(ω)|V , ω ∈ Ω. (4.30)

If (4.29) holds then by Lemma 3.3 we have

EZT < ∞.

Hence there exists a measurable set Ω0 ⊂ Ω such that P (Ω0) = 1 and

ZT (ω) < ∞, ω ∈ Ω0 .

Finally, let us study (3.2) for ω ∈ Ω0. Since z(·, ω) ∈ D([0, ∞); V ), it is of course z(·, ω) ∈ D([0, ∞); H). 
Therefore, by Theorem 3.11, u(·, ω) = v(·, ω) +z ·(ω) is the unique cádlág solution to (3.2). So, we extend the 
existence theorem of a strong solution for u. Moreover, for ω ∈ Ω0 we find that u(·, ω) = v(·, ω) +z(·, ω) is the 
unique solution to (3.2) in D([0, ∞); H) ∩D([0, ∞); V ) which belongs to D([h, ∞); V ) ∩ L2

loc(h, ∞); D(A))
for all h > 0. If u0 ∈ V , then u ∈ D([h, ∞); V ) ∩ L2

loc([h, ∞); D(A)) for all h > 0, T > 0.
This completes the proof of Theorem 3.12.
Since the solution is constructed using the Banach Fixed Point Theorem, the continuous dependence on 

initial data is implied from the existence-uniqueness proof of a strong solution in the above line. Moreover, 
our existence-uniqueness results work naturally when the initial time t0 ∈ R other than 0.
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