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In this paper, we will study the tracking control problem for nonlinear uncertain
dynamical systems. Two generalized feedback control inputs have been proposed
such that the feedback-controlled systems satisfy the complete tracking control
property with exponential asymptotic stability and the trajectories of the systems
are steered to the pre-specified observation map with an exponential convergence
rate. Moreover, an estimate of the tracking time of the trajectories attaining the
observation map has also been given. An example inspired from a guided missile
problem illustrates the use of our main results. ~ © 2001 Academic Press
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1. INTRODUCTION

In this paper, we will study the tracking control problem for a class of
nonlinear uncertain dynamical systems described by differential inclusions.
The tracking control problem for a class of uncertain dynamical systems
without the feedback-controlled observer under a single-valued differen-
tiable observation map has been studied by Chen et al. [5]. The authors [5]
designed a generalized feedback control such that the nonlinear uncertain
dynamical system satisfies the tracking property under a single-valued
observation map. Here, we will investigate the tracking control problem for
the nonlinear uncertain dynamical system with the feedback-controlled

369

0022-247X /01 $35.00
Copyright © 2001 by Academic Press
All rights of reproduction in any form reserved.



370 JIA-WEN CHEN

observer and tracker, and prove that the nonlinear uncertain dynamical
system satisfies the complete tracking control property with exponential
asymptotic stability. These results play important roles in the theory of
uncertain dynamical systems about tracking control missiles (see Example
5.1 in Section 5).

In most earlier work on tracking control for nonlinear dynamical sys-
tems, the dynamics of the systems are described by usual ordinary differen-
tial equations (see [4, 6, 10]). Note, however, that if control synthesis is an
objective, then discontinuous feedback is a natural candidate in many
problems of stabilization and optimization. These make the traditional
theory of ordinary differential equations unapplicable for both analysis
and synthesis purposes, i.e., the traditional Carathéodory concepts become
useless (see [8, Sect. 1]), and uncertainty may be an intrinsic feature (see
[7-9]. In this paper, the approach is in the spirit of [8, 9] but with a
fundamental distinction: in [8, 9], functional properties of the uncertain
systems are assumed that ensure, for any control and any admissible
realization of uncertainty, the classical (Carathéodory) concept of solution
of the differential equation is adequate. In the present paper, nonlinear
uncertain dynamical systems are more generally defined via differential
inclusions, the right-hand side of which takes the form of two set-valued
maps as

x(1) € F(x(1), y(2),u\(2))

(1) € G(x(1), y(1), us(1)), (1.1a)
F(x’yaul):Ef(x’y)+P(x’y)u1+Fa(xay)’ (1'1b)

G(x,y,uy) = g(x,y) + Q(x,9)uy + Q(x, ) [Fy(x,y) + F,(uy)],
(1.1c)

where ¢ € [0, ) is the time variable, u (1) € R? and u,(¢r) € R? are the
control inputs, and x(¢) € R", y(¢r) € R™ denote the states of the system.
The set-valued maps F,(x,y) € R", Fy(x,y) € R?, and F(u) CR?
model the system uncertainty. The functions: f: H" X R - R", g: R”
X R/ > R\ PR X R > R "X and Q: R" X R™ > R™*P are
single-valued continuous on " X R” with linear growth. With the state
feedback inputs u,(¢) = u(x(#), (1)) and wu,(t) = u,(x(2), y(¢)), two
(tracker-observer) feedback-controlled systems (1.1) become

(1) € F(x(2), y(1)) = F(x(2), y(1), u,(x(2), (1))

§(1) € G,(x(1), 9(1)) 1= G(x(1), (1), ua(x(1), 9(1))). 7
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When P(x,y) = {0} for all x € X" and y € N"™, observe that the
system (1.2) may be regarded as the model of the feedback-controlled
uncertain dynamical system (1.3) without feedback-controlled input
u,(x(2), y(¢)) described as

x(1) € F(x(1), (1))

§(1) € G(x(1), y(1), u(x(1), ¥(1))). (3

This implies that the system (1.3) is a special case of the feedback-
controlled system (1.1).

When F, (x,y) = FB(x,y) = Fy(uz) = {0} for all x € R", y € R™, and
u € NP, observe that the original system (1.1) may be regarded as the
model of the nominal system (1.3) without uncertainty described as

x(1) = f(x(2), y(2)) + P(x(1), y(1))u(1)

3(1) = g(x(1), y(1)) + Q(x(1), y(1))us(t). (1.4)

This implies that the nominal system (1.4) is a special case of the
feedback-controlled system (1.1) subject to uncertainty.

Throughout this paper, let H(-) be a single-valued continuously differ-
entiable observation map, where H: R" — R™ is Lipschitz of rank K;
that is, there exists a constant K, > 0 such that

1H(x) — H(y)ll < Kyllx = yll forall x,y € N".

We will consider the complete tracking control problem for nonlinear
uncertain dynamical systems with exponential asymptotic stability. The
goal is to find a pair of generalized feedback control inputs u; = u,(x, y)
and u, = u,(x, y) such that for any initial state (x,, y,) € Graph(H), all
solutions (x(-), y(-)) of the system (1.1), starting from (x,,y,), satisfy
y(t) = H(x(¢)) for all ¢t > 0 and [|[J(x())I| < ayexp(—B,-1) = 0as t - o,
where J: " — N9 is a single-valued continuously differentiable Lipschitz
function on M"; «,, B, are positive constants; and | -|| denotes the
Euclidean norm or the corresponding induced norm of a matrix. Further-
more, if (x,, y,) € Graph(H), namely y, is not traced by H(x,) at initial
state, to construct a pair of generalized feedback control inputs, there
exists a constant 7 > 0 such that the nonlinear uncertain dynamical
systems (1.2) enjoy the complete tracking control property with exponential
asymptotic stability along J(x(¢)) after a finite time 7. Moreover, an
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estimate of the tracking time 7 of all trajectories y(¢) attaining the
observation map H(x(t)) is given.

2. DEFINITIONS OF TRACKING CONTROL

For convenience, the norm [|F(x)|| of a set-valued map F: X —» Y is
defined by [[F(x)Il := sup, c p,llyll for all x € Dom(F), where (X, [}
and (Y,]| |D are normed linear spaces. Throughout the paper, let H:
NR" - R™ and J: R" = N? be single-valued continuously differentiable
Lipschitz functions. We define the nonlinear uncertain dynamical system
described by differential inclusions satisfying the complete tracking control
property with exponential asymptotic stability as follows.

DEFINITION 2.1. We say that the system (1.1) under H satisfies the
complete tracking control property with asymptotic stability along J(x(¢))
to 0 € MY if for any initial state (x,, y,) € Graph(H), there exists a pair
of feedback control inputs u, = u,(x,y) and u, = u,(x, y) such that all
solutions (x(-), y(-)) of the differential inclusions (1.1) starting at (x,, y,)
defined on [0, ) satisfy y(¢) = H(x(¢)) for all ¢ > 0 and [|J(x()|| = 0 as
t = . Moreover, if J(x(¢)) = Z(x(¢)) — z, € N, then we say that the
systems (1.1) under H satisfy the tracking control property with asymptotic
stability along Z(x(#)) to z, € N

DEFINITION 2.2. We say that the system (1.1) under H satisfies the
complete tracking control property with exponential asymptotic stability
along J(x(¢)) if for any initial state (x,, y,) € Graph(H), there exists a
pair of feedback control inputs u; = u,(x,y) and u, = u,(x, y) such that
all solutions (x(-), y(-)) of the differential inclusions (1.1) starting at
(x4, y,) defined on [0, ) satisfy y(¢#) = H(x(¢)) for all £ > 0 and [|J(x(2))|l
< ayexp(— B, - 1), where «, B, are positive constants.

DEFINITION 2.3. We say that the system (1.1) under H satisfies the
complete tracking control property with exponential asymptotic stability
along J(x(¢)) after a finite time if there exists a constant 7 > 0 such that
for any initial state (x,, y,) & Graph(H), all solutions (x(-), y(-)) of the
differential inclusions (1.1) starting at (x,,y,) defined on [0, ) satisfy
y(¢) = H(x(¢)) for all £ > T and [[J(x())I| < ayexp(— B, - 1).

Remark 2.1. Clearly, by Definition 2.2 and Definition 2.3, we obtain
that the complete tracking control property with exponential asymptotic
stability along J(x(¢)) implies the complete tracking control property with
asymptotic stability along J(x(¢)) to 0.
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3. ASSUMPTIONS AND DESIGNS OF CONTROL INPUTS
FOR UNCERTAIN DYNAMICAL SYSTEMS

In this paper, we consider the nonlinear uncertain dynamical system
(1.1) described by differential inclusions,

x(1) € F(x(1),y(2),uy(2))
¥(1) € G(x(1), y(1), ux(1)),

F(x,y,u) = f(x,y) + P(x,y)u; + F(x,y),
G(x,y,uy) = g(x,y) + Q(x,y)u, + Q(x,y) [Fy(x,y) + F,(us)].

satisfying the following conditions.

3.1. Assumptions

Throughout the paper, the following assumptions are made.

(A1) The single-valued functions f(x,y), g(x, y), P(x,y), and
Q(x, y) are continuous on f" X R with linear growth;

(A2) F,(x,y), Fz(x,y), and Fy(uz) are upper semicontinuous with
convex and compact values for all x € R", y € R"™, and u, € R?;

(A3) IF,Ce, Il < ko (x, ), I1FgCe, I < kg(x, y), and [|IF,(u)ll <
nllu,ll for all x € RN", y € R, u, € R?, where k,(x, y) and ky(x, y) are
nonnegative real-valued functions with linear growth, and n < 1;

(A4 1O(x, yIFE,(u)ll < r,llQ(x, y)u,ll for all x € K", y € K™, and
u, € NP, where r, is a known positive constant;

(AS)  |IP(x, y)uyll < r,llu [l and [|Q(x, y)u,ll < rsllu, |l for all x € R,
y eR™ u, € N4, and u, € R?, where r, and r; are known positive
constants;

(A6)  #L2P(x, y) is invertible for all x € R”, y € R™, and 0 < K,
= sup, c gir, y e orllIZ2P(x, Y)II7'} < 0, where J: R" — R is a single-
valued continuously differentiable Lipschitz function with the Lipschitz
constant K; > 0;

(A7) rank[Q(x,Y)l=m <p for all xeN", yeR™, and 0 <
IO 'Ol := sup, c gy e IOk, YIOT (x, Y1 O, P} < o0,

Remark 3.1. Note that the existence of solutions (x(+), y(-)) defined on
[0, ) for the closed-loop system (1.2), satisfying assumptions (A1)—(A6), is
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guaranteed. More precisely, the assumptions (A1)-(A6) imply that F.(-,-)
and G.(-,-) enjoy linear growth (see Theorem 3.1 in Section 3). The
assumption (A7) is used for the tracking property and the estimation of
tracking time (see Theorem 4.2 in Section 4).

Remark 3.2. For the nominal system (1.4), take k,(x,y) = kg(x,y) =
n =r; = 0 in Assumption 3.1. Then assumptions (A1)—(A4) always hold.
The existence of solutions (x(+), y(-)) defined on [0, ) for the system (1.4),
satisfying assumptions (A5)—(A6), is also guaranteed.

3.2. Design of Control Inputs for Uncertain Dynamical Systems

Now, we consider the nonlinear uncertain dynamical system (1.2) de-
scribed by differential inclusions with a pair of control inputs u, and u, as

P
o) = -2 P(x,y))_l ) pey)
- aPT(w)(%)TJ(x) o ”;xx)P(x,y))lf(xx
(3.2)
(6,) = k(%)W (ijx)P(x,y))_lux)\, (3)

O(x,y)uy,(x,y) =A(y —H(x)) —g(x,y)
dH(x)
ox

+ [f(x,9) + P(x.y)u],  (34)

Uy (x,9) = —ky(x,y) - W, [O7 (x,y)M(y — H(x))], (3.5

where o and p are positive constants; M is the positive definite symmetric
m X m matrix satisfying the following Lyapunov equation,

A™™ + MA = —L, (3.6)

L is an arbitrary positive definite symmetric m X m matrix and A4 is an
Hurwitz m X m matrix; k,(x, y) and k,(x, y) are any positive rear-valued
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continuous functions with linear growth satisfying

ki(x,y) > Kp-K; ko (x,y), ky(x,y) = ko(x,),

forall x € R", y € ", (3.7)

dH(x)
ax

ko(x,y)

ko(x,y)=(1-m)""" [HQ*(x,y)

+tkg(x,y) + nlluy,(x, y)Il + 6

b

K, is the Lipschitz constant of J(-), Q™ is the right inverse of Q, and § is
any positive constant; the extended sign multifunctions ¥;: R¢ — N7 and
P,: NP — NP are upper semicontinuous on N ¢ and N7, respectively,

E/NEN if £€+0

Y=\ gemalal <1} ife=o.

Remark 3.3. In (3.6), the design of Hurwitz matrix 4 and the positive
definite symmetric matrix M depends on the exponential asymptotic rate
of convergence about the trajectory y(¢) to the observation map H(x(¢))
(see Theorem 4.4 in Section 4).

Remark 3.4. For the nominal system (1.4), take k,(x,y) = kg(x,y) =
n =r, = 0. Then we can obtain the k,(x,y) = 0 and k,(x,y) = 8. This
implies that the control input u,.(x, y) = 0 in (3.1).

3.3. The Existence of a Solution for the Control System

For the existence of solutions of differential inclusions (1.2), in general,
F.(-,-) and G.(-,-) need to satisfy the assumption of upper semicontinuity.
More precisely, if F.(-,-) and G.(-,-) are upper semicontinuous with
convex and compact values, for any initial state (x, y,) € Graph(H), then
there exists a positive T and a solution (x(-), y(+)) defined on [0, T'] for the
system (1.2) such that either T = « or T < o and lim sup, _, ;- [I(x(2), y())|
= o (see [1, p. 98, Theorem 3; 2, p. 390, Theorem 10.1.3]). Further more
adequate information—a priori estimates on the growth of F.(-,-) and
G.(-,- )—allow exclusion of the case when limsup, , - [I(x(2), y())|| = .
This is the case for instance when both F.(-,-) and G.(-,-) are bounded. In
general, we can take T = o when F,(-,-) and G,(-,-) enjoy linear growth
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(see [3, p. 62]); that is, there exist positive constants c¢,, ¢, such that

IF,(x, y)Il < c;(lI(x, y)II + 1) and
IG.(x, y)Il < e, ([I(x, y)Il + 1) forall (x,y) € R" X R™.

We say that F is a Marchaud map if it is nontrivial, upper semicontinuous,
and has compact convex images and linear growth. Clearly, any single-
valued Lipschitz map is a Marchaud map.

For the existence of a solution x(-) defined on [0, «) for the closed-loop
system (1.2), we only show that F.(x, y) and G.(x, y) are Marchaud maps
as follows.

THEOREM 3.1. The feedback-controlled systems of (1.2) satisfy the as-
sumptions (A1)—(A6), subject to the controller (3.1) with (3.2)—(3.7). Then we
have that F(x,y) and G.(x,y) in (1.2) are Marchaud maps.

Proof. By (A1) and (A2), F.(x,y) and G.(x, y) are upper semicontinu-
ous with convex and compact values for all x € H", y € H"”. We only
check F.(x,y) and G.(x,y) are dominated by any linear growth maps,
which implies that F.(x, y) and G_(x, y) are Marchaud maps. By (A3), we
have

IF.(x,y)ll:=" sup |zl

z€F.(x,y)

< fCe, I+ 1P Cx, y) (g, + wg )+ 1TE, (s y)

< IfCe YT+ TPCx, y)ug, I+ 11P(x, y)ug Nl + ko (x, ¥)
forall x e ", y € R".

A

Note that by (3.2), (3.3), (A5), and (A6),

I1P(x, y)up,ll < Kp-K;-[lf(x, )1+ (o W) /Kp + p- Kp - 1T ()],
NP(x,y)u ll <ry-ky(x,y) forall x € ", y € R,

Hence for all x € R", y € R,

IF.(x, )l < (1 + Kp-K)If(x, )1+ (p-Kp + 0/Kp) - 1T ()l
+ryki(x,y) + ko (x,y).

This shows that F.(x, y) is dominated by a linear growth map. So F.(x, y)
has linear growth.
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By (A3)-(A6), we have

G (x, Y

= sup |zl
zeGJx,y)

< lg(x, I+ 1Q(x, y)usll +[|Q(x, y) [Fy(x,y) + F,(u)] |
<llg(x, VI +11Q(x, y)usll + 1Q(x, y) Fg (x, )l + 1Q(x, y) F, (u,)ll
<llgCx, »)II+1Q(x, y)u,ll + rskg(x,y) + rllQ(x, y)u,ll
<llg(x, y)Il+ (1 + r)IQ(x, y)u,ll + r3kg(x, ). (3.8)
Note that
10(x, y)u,ll
=[0(x, y) (uy, + uye) ||

A

H(x)

ox

Aly = H(x)] —g(x,y) + ’

Q% y)usl
< [[AlCIyI+ TH )N + g (x, )l
+ Ky (1 e, )+ P, y)ugll) + 750 ko (x, 9),
1P (%, y)uill
<P, y)ur,ll + 1P (x, y )yl
<Kp K, lIf(x, I+ (p-Kp + 0/Kp) - IT(x)l + 1y ky(x, ).
(3.9)

< [f(x’y)+P(x’y)ul]

Combine (3.8) and (3.9). Then we obtain

IG.(x, V)l < (2 + r)llg(x, )+ r3kg (x, )
+(1+ ) [Nyl + TH (1)
Ky (1+ Kp- K))IIf(x, p)l
Ky (pKp + 0/Kp) ()]
+Kyy oy ki(x, ) + rska(x, )],

where K;; > 0 is the Lipschitz constant of H. Hence G (x, y) is dominated
by a linear growth map. This shows that G.(x, y) has linear growth. ||
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4. COMPLETE TRACKING CONTROL PROPERTY WITH
EXPONENTIAL ASYMPTOTIC STABILITY

For convenience, denote A,, (W) and A, (W) as the minimum and the
maximum eigenvalues of the real symmetric matrix W, respectively. The
Euclidean inner product is denoted by -, ). We also define {{x, S)) to
be the subset {(x,s)|s € S} of N and define {{x,S)) <r to denote
{(x,s) <r forall s €S, where r € .

4.1. The Asymptotic Stability of the Observation Map H(-)

THEOREM 4.1. Let (x(¢),y(t)) be any trajectory of the feedback-
controlled system (1.2) satisfying (A1)—(A7), subject to the controller (3.1)
with (3.2)—(3.7). Then the trajectory y(t) of the system (1.2) is steered to the
pre-specified observation map H(-) with an exponential convergence rate.
Moreover, we have

M( (L)

Iy(1) — H(x(1)] < A(M 3(0) ~ H(x(0))] -~

forall t > 0.

Proof. Let e =y — H(x) be the deviation of the state y from the
observation map H(x). For simplicity in notation, we set

f(x,e):=f(x,e + H(x)), g(x,e):=g(x,e + H(x)),
F,(x,e):=F,(x,e+ H(x)), Fg(x,e):=F(x,e+ H(x)),

k(x,e):=k(x,e + H(x)), k,(x,e):=k,(x,e + H(x)),
kg(x,e)=kg(x,e + H(x)), ky(x,e)=ky(x,e+ H(x)),
P(x,e):=P(x,e + H(x)), Q(x,e):=0(x,e + H(x)),
O"(x,e)=0"(x,e + H(x)), QO (x,e):=0%(x,e+ H(x)).

In terms of state x and error e, the closed-loop system (1.2) becomes

(1) € f(x(1),e(0)) + P(x(1),e(t))u; + F,(x(1), (1)),
é(1) € Ae(t) + Q(x(1), e())uy (1) + Q(x(1), e(1)) F(x(1), e(1)),
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where
F(x(1),e(1)) = Fy(x(1),e(1)) + F,(uy(1))

JH(x)
= 0F (1), e(1) 5, (x(1), (1)),

Let V(e) = (1/2)e"Me for all e € R™. For all e € R™, we obtain

. 1
V(e) = E(éTMe + e"Mé)
= eTMé S <M€, Ae> + <<M€, Q(xae)u20>>

+ <<Me, Q(x,e) [Fﬁ(x, e) + F,(u,y, +uy.)

0" (x,0) D) F()m

ax

=e"MAe + Q" (x,e)Me,u,,))

+ <<QT(x,e)Me,FB(x,e) + F,(uy, + u,,)

0 0k ()

1
— EeTLe — ky(x,e)I07 (x,e) Mell

<
+ kB(x,e) + llu,, |l + nky(x, e)
JH(x)
Q7 (3, 0) — ko (x, ) [IIQ7 (x, €) Mel
1
= —EeTLe — (1 = n)k,(x,e)lIQ7(x,e) Mell
dH(x)
+1kg(x,e) + nlluy, Il +] Q" (x,e) " k,(x,e)
X 107 (x, e) Mell
= — leTLe — 807 (x, e) Mell < 0. (4.1)

2
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This shows that V(e(r)) is a decreasing function in ¢ and V(e) <
(—=1/2e"Le. Since V(e) < (1/2)A,(M)llell* and (1/2)A,(L)el* <
(1/2)e”Le, we obtain

. 1 A (L)
V(ie) < ——e'Le < — V(e).
2 Ay (M)
Hence for all £ > 0,
V(e(t)) < V(e(0))e miit, (42)

Since (1/2)A,,(M)llell> < V(e) < (1/2)A,,(M)lell®, by (4.2), we obtain

Ay (M)
An(M)

ly(e) = H(x(e)ll < Nly(0) — H(x(0))ll- e~ =60t

forall t > 0.

This shows that the trajectory y(¢) of the feedback-controlled system (1.2)
is steered to the observation map y(¢t) = H(x(¢)) with an exponential
convergence rate. I

Remark 4.1. In the preceding Theorem 4.1, we easily obtain that if for
any initial state (x,, y,) € Graph(H), all solutions (x(-), y(-)) of the system
(1.2), starting from (x,, y,), satisfy y(t) = H(x(¢)) for all ¢ > 0; that is,
Graph(H) is invariant for the controlled system (1.2).

For the nominal system (1.4), all trajectories y(-) are also steered to the
observation map H(-) with an exponential convergence rate as follows.

COROLLARY 4.1.  Let (x(¢), y(¢)) be any trajectory of the nominal system
(1.4) satisfying (A1) and (A5)—(A7), subject to the controller (3.1) with
(3.2)-(3.7), where u, (x,y):= 0, ky(x,y) = 8 (see Remark 3.2 and Remark
3.4). Then the trajectory y(t) of the system (1.4) is steered to the pre-specified
observation map H(-) with an exponential convergence rate.

4.2. An Estimate of the Tracking Time

THEOREM 4.2. Let (x(1),y(t)) be any trajectory of the feedback-
controlled system (1.2) satisfying (A1)—(A7), subject to the controller (3.1)
with (3.2)-(3.7). If for any initial state (x(0), y(0)) & Graph(H), then an
estimate of the tracking time T of all trajectories attaining H(+) is bounded by

I(00") " Oll. [ Xy (M)
S A, (M)

lle(0)Il,
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where |le(0)| = ||y(0) — H(x(0))|| denotes the distance from the initial state
y(0) to the observation map H(x(0)).

Proof.  Since (1/2)A,,(M)llell” < (1/2)e"Me = V(e), we have

1 1 _
V(e):= E(e,Me> = E(e,(QQT) 1QQTM6>

1 _
< 51(Q0") " Qll el Mel
2V (e) (4.3)

A (M)

1 B 3
< 5l(eQ") lQIIm( ) 107 Mel,

2A,(M)

I(eo™) " ol
By (4.1) and (4.3), we have

10" Mel| > ( ) (V(e)):.

2M,(M)

I(ee™) "ol

Without loss of generality, we assume that V(e(0)) # 0; otherwise the
trajectory y attains H(x) at t = 0. Let T be the smallest time of the
trajectory y attaining H(x), ie., V(e(T)) = 0 and V(e(¢)) # 0 for all
t €[0,T), where T > 0. First, we show that T is finite. Suppose that T is
infinite. Then V(e(¢)) # 0 for all ¢ > 0, and by (4.4), we have, for all ¢ > 0,

. 1 oA (M)
/V( Oy Hay < _/ta C2n(M) i,
V(e(0)) 0

V(e) < —8llQ"Mell < -5 ) (V(e))%. (4.4)

I(eo™) "ol
2 (V(e()))! = (V(e(0)))] < —6(%)3, (4.5)
I(QQ") Ol
2[(V(e(0) = (V(e(1)))'] = S(M)
I(eQ") Ol

Since V(e()) — 0 as t — o, by (4.5), we obtain
2(/(e)) = fim (2[((e@)) = (Ve ])

. ( 2, (M)
il I(eQ™) ol
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This contradicts the fact that 2(1(e(0)))* < «. Thus 7 is finite. Note that
by (4.4), we obtain

Ve, 1 T 20,(M) :
fV(e(O)) (V) "V < fo 5(|I(QQT)_1QIIi) a
This implies that
—2(V(e(0)))* = 2[(V(e(T)))* = (V(e(0)))]
2A, (M)
l(eo™) " ol

Since (1/2)A,,(M)lell* < V(e) < (1/2)A,,(M)|ell*, we obtain

2a,(M) ) 1
o 22D o I ony e
(MQQT)QM) 2 D 10)

. I(007) ' 0ll. [ A, (M)
= 5 A (M)

Hence

lle(O)II.

COROLLARY 4.2. In the preceding Theorem 4.2, we have proved that the
tracking time depends on both the distance from y(-) to the observation map
H(") at the initial state and the eigenvalues of the real symmetric matrix M.
More precisely, combine Theorem 4.1 and Theorem 4.2. Then we obtain

Ay (M)

11y (0) = H(x(0))]] - e~ ucint
3 (M) 1y(0) —H(x(0))ll-e

ly(2) = H(x()ll <

forallt € [0,T)
and

y(t) = H(x(t)) forallt > T.

For the nominal system (1.4), an estimate of the tracking time of all
trajectories y(-) attaining the observation map H(-) is given as follows.
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COROLLARY 4.3. Let (x(2), y(¢)) be any trajectory of the nominal system
(1.4) satisfying (A1) and (A5)—(A7), subject to the controller (3.1) with
(3.2)-(3.7), where u,(x,y):=0, k,(x,y):= 8. Then an estimate of the
tracking time T of the trajectory y(-) attaining H(-) is bounded by

I(Q07) 'Ol [ A, (M)
5 A, (M)

lle(0)Il.

4.3. The Asymptotic Stability of the Guidance Map J(+)

THEOREM 4.3. Let (x(¢),y(t)) be any trajectory of the feedback-
controlled system (1.2) satisfying (A1)—(A7), subject to the controller (3.1)
with (3.2)—(3.7). Then the trajectory x(t) of the systems (1.2) is asymptotically
stable along J(x(t)) to 0 with an exponential convergence rate.

Proof. Let W(x(1)) = 3(J(x(H))TJ(x(¢)). Without loss of generality, we
assume that J(x) # 0. Now we calculate the derivative of W(x) as follows.
For all J(x) # 0, we have

W(x(1)) = (J(x(1))) T (x(1))
J
S <<J(x), %[ﬂx,y) + P(x,y)(uy) + Fa<x,y>]>>

J(x J(x
=7 &&(x) , x i (9(x )P(X,Y)(”m +uy,)
<<J(x) T )F (X, y)>>
e ZET
J(x aJ(x
x[—(a&(x)P(x,y)) ()f( )’)]
J(x [ J(x)\"
+JT(x)§ (x)P(x,y) —aPT(x,y)(&ax)) J(x)\
J(x [ J(x -
270 L P | o ey J(x)]
aJ(x)
+JT(X) Jx P(xay)ulc(x’y)
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(o 220

aJ(x)

< —a| )| 2] g | = plaar
_ M;"()x’y)”“x)_”l k(5 ) I —Ma(x)”
X X
(S rean] i
J(x)\"
<0 PT(x,y)(&ﬁ(x)) I = o )P
- N(kl)(x’y)”](x_)ln k(x5 y) K1)l
X
P(x,y)| V()
ox
J(x)\"
< —olP ) 2] | - plrcor
_—kl(x’igl”(x)” k(%) K, - 170l
J(x)\"
<~ PG| 2 s - s

T

AN

X NT()IP = pllJ ()1
< (o A+ PP = =2+ (0 Ay + p) - W(x(1)),

where

A= xeiﬂ'{nfem’" {Am[( (92(5) P(x’y))T( &Ja(xX) P(x’y))”'

Hence 4G < —2.(g- A, + p) - W(x(2)).
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Thus we obtain that for all ¢ >

> 0, IGx@I? = Wx() <
W(x(0))e 2o 2o*P) This shows that

17(x(£))Il < {/J(x(0)) e~ (T H*P" — 0, ast — o,

that is, the trajectory x(¢) of the system (1.2) is asymptotically stable along
J(x(#)) to 0 with an exponential convergence rate. |

For the nominal system (1.4), all trajectories x(¢) of the system are also
asymptotically stable along J(x(¢)) to 0 with an exponential convergence
rate as follows.

COROLLARY 4.4. Let (x(2), y(¢)) be any trajectory of the nominal system
(1.4) satisfying (A1) and (A5)—(A7), subject to the controller (3.1) with
(3.2)-(3.7), where u, (x, y) = 0, k,(x, y) == 8. Then the trajectory x(t) of the
system (1.4) is asymptotically stable along J(x(¢)) to 0 with an exponential
convergence rate.

Combine Theorem 4.1, Theorem 4.2, and Theorem 4.3. We obtain the
main theorem as follows.

THEOREM 4.4. Let (x(2),y(t)) be any trajectory of the feedback-
controlled system (1.2) satisfying (AD—(A7). If for any initial state (x,, y,) &
Graph(H), then the controller (3.1) with (3.2)—(3.7) such that the system (1.2)
under H satisfies the complete tracking control property with exponential
asymptotic stability along J(x(t)) after a finite time, i.e.,

Ay (M)

ly(r) = H(x(0))ll < Ay (0) — H(x(0)) - e~ =it

forallt € [0,T),
y(t) = H(x(t)) forallt > T,

and
I7(x(2))Il < VJ(x(0)) e (ThtPl 5 ast — o,

where the tracking time T of all trajectories y(-) attaining H(-) is bounded by

I(007) ' Oll. [ Ay (M)
B A (M)

lle(0)l.
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5. AN ILLUSTRATIVE EXAMPLE

An example has been provided to illustrate the use of our main result
about the tracking control problem for the guided missile as follows.

In Example 5.1, the trajectory of the guided missile satisfying the
uncertain dynamical system (5.1) described by differential inclusions is
traced by an observation function H(-), where y is the state of the guided
missile and x is the state of the infrared laser beam transmitted by the
guided plane or satellite. Here, let the curve Z(x) = x be a guideline of x
in the infrared laser guidance system. Note if H(x) = x and Z(x) = H(x),
then the guided missile y and the laser guided beam x touch each other,
that is, the missile y can be guided to the guideline (see Fig. 1). The goal is
to find a pair of generalized feedback control inputs u,(x, y) and u,(x, y)
such that the missile y can be guided by the infrared laser beam x to the
guideline after a finite time 7, and the guided missile y is asymptotically
stable along the guideline y = Z(x) = x to the target z, = 3 of an attack,
and so take J(x) =x — 3. This implies that the nonlinear uncertain
dynamical systems (5.1) enjoy the complete tracking control property with
exponential asymptotic stability along J(x(¢)) after a finite time 7.

ExaMPLE 5.1. Consider the tracking control problem for the following
uncertain dynamical system described by differential inclusions,

{x(t) € F(x(1), y(t),uy (1))

y(1) € G(x(1), y(1),uy(1)),
F(x,y,u):=f(x,y) + P(x,y)u; + F,(x,y),

G(x,y,uy) = g(x,y) + Q(x,y)uy + Q(x,y) [ Fp(x,y) + F,(u,)],

(5.1)

FIG.1. The guided missile along the guideline to the target of an attack.
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where
f(x,y) =x +ycos(xy) + 2, g(x,y) =y +xsin(xy) + 2,
P(x,y) =1+ (sin x)* + (cos y)’,

Q(x,y) =1+ (sin(xy))” + (cos x)°,
F,(x,y) ={a(l +xcosy +ysinx) + aSIGN(xy) |a € [-1,1]},

-1, xy <0,
SIGN(xy) ={[—1,1], xy =0,
1, xy > 0,

Fy(x,y) = {blx —ylcos(x) +41be[-1,1]},
F,(u,) = {cuysin(u,) | ¢ € [-0.5,0.5]}.

From (A2)-(A3), we have
ky(x,y) =2+ x|+ |yl, kﬁ(x,y) =4+ |x| +|yl, n=0.5.

For example, for a = 1, b = 1, and ¢ = 0.5, by the modified Runge—Kutta
method, some typical phase trajectories of the uncontrolled system are
depicted in Fig. 2.

If we choose A = —1 and L = 2, then, by (3.6), we have M = 1.
Furthermore, let H(x) =x, J(x) =x—3, o=1, p=1, and §=0.5.
Then we can calculate the explicit form of the controllers u,(¢) and u,(¢)
given by (3.1) with (3.2)—(3.7). They are shown as

uy(1) =y, (x(2), y(2)) + uy (x(1), y(1)),
uy (1) =y, (x(1), y(1)) + use(x(1), y(1)),
u,(x,y)

f(xy) — [P )] (x - 3) — (2 -3)
P(x,y)

x+ycos(xy) +2+ (x—3)- [(1 + (sin x)” + (cos y)z)2 + 1]

>

1 + (sin )c)2 + (cos y)2
x—3
1 + (sin x)2 + (cos y)2 '

u (1) = -2+ Ixl+lyh¥(¢), =
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A(y — H(x)) —g(x,y) +f(x,y) + P(x,y)u,
O(x,y) ’
2(y —x) +xsin(xy) —ycos(xy) — P(x,y)u,
- 1+ (sin(xy))2 + (cos x)
Ur (1) = —ky(x,y)¥(£),
ky(x,y) = 2[(2 + x| + Iyl) + (4 + x| + 1yl) + 0.5u,,| + 0.5],

Uy, (%,y) =

>

€= (y +x)(1+ (sin())* + (cos x)?).

From the simulation results, all trajectories of the feedback-controlled
system reach the observation map H(x) in a finite time and remain on
H(x) thereafter. Moreover, all trajectories x(¢) of the system (1.2) satisfy
the tracking control property with asymptotic stability along the line
Z(x) = x to 3, that is, Theorem 4.4 holds. By the modified Runge—Kutta
method, some typical phase trajectories of the feedback-controlled system
are depicted in Fig. 3.

H(x)

=

Kl

3

n
-
5}
r
o
N
o

FIG. 2. Typical phase trajectories of the uncontrolled system.
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(3,3)

H(x)

15

FIG. 3. Typical phase trajectories of the feedback-controlled system.
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