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In this paper, we give a new accuracy criterion for approximate proximal point
algorithms. The criterion depends on the current iterate and is easy to verify.
Under the suggested enforceable accuracy restriction, the convergence analysis is
quite easy to follow. � 2001 Academic Press
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1. INTRODUCTION

A set T � Rn � Rn with the property

² :x , y , x�, y� � T � x � x�, y � y� � 0,Ž . Ž .
n ² :is called a monotone operator on R , where � ,� denotes the inner

n Ž .product on R . T is maximal if considered as a graph it is not strictly
contained in any other monotone operator on Rn. In this paper, we
consider the central problem associated with T : Find z � Rn, such that

Ž . Ž .0 � T z , i.e., to find one of the roots of T. Here T � is defined as
Ž . � Ž . 4T x � y � x, y � T .
The theory of maximal monotone operators provides a powerful general

framework for the study of convex programming and variational inequali-
	 
ties; see 2, 3, 15 , for example. A classical method to solve this problem is

the proximal point algorithm, which, starting with any vector x 0 � Rn,
iteratively updates x k�1 conforming to the following recursion

x k�1 � c T x k�1 � x k , 1Ž . Ž .k

1 The research was supported by NSFC Grant 19971040.
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� 4� 	 .where c � c, � , c � 0, is a sequence of scalars. However, as pointedk k�0
	 
out in 13 , the ideal form of the method is often impractical, since in many

Ž .cases, solving problem 1 exactly is either impossible or as difficult as
Ž .solving the original problem 0 � T z . On the other hand, there seems to

be little justification of the effort required to solve the problem accurately
	 
when the iterate is far from the solution point. In 20 , Rockafellar gave an

inexact variant of the method

x k�1 � c T x k�1 � x k � ek�1 , 2Ž . Ž .k

� k�14where e is regarded as an error sequence. This method is called an
inexact proximal point algorithm. It was shown that if ek � 0 quickly
enough such that

�
k� �e � ��,Ý

k�1

k n Ž .then x � z � R with 0 � T z .
Because of its relaxed accuracy requirement, the inexact proximal point

algorithm is more practical than the exact one. Thus, it has been studied
	 
widely and various forms of the method have been developed 3, 8, 10, 18 .

In most of these papers, the condition that the error term being summable
	 
is an essential condition for the convergence of the method. In 20 and

Ž 	 
.some sequel papers e.g., 5 , the accuracy criterion is
�

k�1 k�1 k� � � �e � � x � x with � � ��. 3Ž .Ýk k
k�0

	 
Recently, Eckstein 13 extended the method to Bregman-function-based
� k4inexact proximal methods and proved that the sequence x generated by

the algorithm converges to a root of T under the conditions
� �

k k k� � ² :e � �� and e , x exists and is finite 4Ž .Ý Ý
k�1 k�1

Ž Ž . Ž . 	 
. Ž .see Eqs. 18 and 19 in 13 . Condition 4 is an assumption on the
� k4 � k4whole generated sequence x and the error term sequence e , and thus

seems to be slightly stronger, but it can be checked and enforced in
practice more easily than those that existed earlier. On the other hand,

	 
more recently, He 14 gave another inexact criterion in the study of
monotone general variational inequalities, which involves a relation be-
tween the error term and the residual function.

	 
In this paper, similar to He 14 , we give the following accuracy criterion
�

k�1 k�1 k 2� � � �e � � x � x with � � ��, 5Ž .Ýk k
k�0
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Ž .to recursion 2 and study the resulting convergence properties. It is clear
Ž . 	 
 Ž Ž ..that the accuracy criterion 5 is weaker than the one in 20 see 3 .

	 
 	 
We note that da Silva e Silva et al. 9 and Solodov and Svaiter 21�23
recently proposed some new accuracy criteria for proximal point algo-

Ž .rithms. Their criteria, rather than requiring inequality 5 , require only
that sup � � 1. Thus, their results are in some sense stronger thank � 0 k

	 
ours. However, in 21�23 , this comes at the cost of adding an additional
projection or ‘‘extragradient’’ step to the algorithm, and the applicable

	 
portion of 9 applies only to convex minimization.
Throughout this paper, we assume that the roots set of T , denoted by Z,

is nonempty.

2. PRELIMINARIES

In this section, we summarize some basic properties and related defini-
tions of the monotone operator T. As is the custom, we regard T as the
graph of a point-to-set mapping. The domain of the mapping T is

n � n ndom T � x � R , � y � R , x , y � T � x � R � T x � � .� 4 � 4Ž . Ž .

We say T has full domain if dom T � Rn. The range or image of T is

n � 4im T � y � x � R , x , y � T .� 4

For all real numbers c, we let

cT � x , cy � x , y � T ,� 4Ž . Ž .

and for all operators A, B � Rn � Rn, we define A � B via

A � B � x , y � z � x , y � A , x , z � B .� 4Ž . Ž . Ž .

The inverse of T , denoted by T�1, is

T�1 � y , x � x , y � T .� 4Ž . Ž .

T is maximal monotone if and only if T�1 is maximal monotone. Given
Ž .�1any positive scalar c and operator T , J � I � cT is called a resolventc

of T , where I denotes the identity mapping on Rn. T is said to be firmly
nonexpansive if

� � 2 ² :y� � y � x� � x , y� � y , � x , y , x�, y� � T .Ž . Ž .

In the rest of this section, we quote some preliminaries for sequences
� k4 � k4 Ž .x and e conforming to recursion 2 . First, it is important to ask if the
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� k4� � k4�sequences x , e exist. Lemma 1 gives a positive answer to thisk�0 k�1
question.

LEMMA 1. Let c be any positi�e scalar. An operator T on Rn is monotone
Ž .�1if and only if its resol�ent J � I � cT is firmly nonexpansi�e. Further-c

more, T is maximal monotone if and only if J is firmly nonexpansi�e andc
dom J � Rn.c

	 
Proof. See 12, Theorem 2 , for example.

	 
From 2 , we know that if T is a maximal monotone operator, then it is a
closed set in Rn � Rn. Hence, for the problem under consideration, the

� k4� � k4� Ž .sequences x , e conforming to recursion 2 exist. In Lemma 2k�0 k�1
Ž .we will list a few inequalities associated with recursion 2 . The results are

Ž 	 
.special cases of known results Lemma 2 of 13 . For completeness, we
have included the proofs, which are short.

� k4 � k4 Ž .LEMMA 2. Let x and e be sequences that conform to recursion 2 .
Ž .Then for any x* � Z root of T and all k � 0 we ha�e

² k k�1 k�1 k�1 :x � x � e , x � x* � 0 6Ž .
and

� k�1 � 2 � k � 2 � k�1 k � 2 ² k�1 k�1 :x � x* � x � x* � x � x � 2 e , x � x* . 7Ž .

	 
 Ž .Proof. The proof is similar to that in Eckstein 13 . It follows from 2
that

1
k k�1 k�1 k�1x � x � e � T x .Ž . Ž .

ck

Ž .Since x* is a root of T , 0 � T x* , and T is monotone, we have

1
k k�1 k�1 k�1x � x � e � 0, x � x* � 0.Ž .¦ ;ck

The first assertion is obtained from the assumption that c is a positivek
� � 2 � � 2 � � 2 ² : Ž .scalar. Furthermore, using u � � � u � � � 2 � , u � � and 6

we get

� k�1 � 2 � k � 2 � k�1 k � 2 ² k�1 k k�1 :x � x* � x � x* � x � x � 2 x � x , x � x*

� k � 2 � k�1 k � 2 ² k�1 k�1 :� x � x* � x � x � 2 e , x � x*

² k k�1 k�1 k�1 :� 2 x � x � e , x � x*

� k � 2 � k�1 k � 2 ² k�1 k�1 :use 6 � x � x* � x � x � 2 e , x � x* .Ž .Ž .
This completes the proof.
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3. MAIN RESULTS

Ž .Now, we begin to investigate the convergence properties of recursion 2
under the accuracy criterion

�
k�1 k�1 k 2� � � �e � � x � x with � � ��.Ýk k

k�0

Ž . kNote that in the exact proximal point algorithm 1 , x is a root of T if and
only if x k�1 � x k. Hence, roughly speaking, we can see the distance
� k�1 k � kx � x as an ‘‘error bound,’’ which measures how much x fails to be

� k�1 k �in the roots set of T. If x � x is small enough, it follows from Eq.
Ž . k�11 that x is an acceptable approximate solution of the original prob-

Ž .lem. Hence, it is reasonable to give an accuracy criterion as in 5 that
� k�1 k �depends on the distance x � x . In the following we will prove that

� k4the sequence x is weakly contracti�e and the error bound will converge
to zero.

� k4 � k4THEOREM 1. Let x and e be sequences generated by the inexact
Ž . Ž .proximal point algorithm 2 under the proposed accuracy criterion 5 . Then

there exists an integer k � 0, such that for all k � k0 0

2� 2 1k2 2 2k�1 k k�1 k� � � � � �x � x* � 1 � x � x* � x � x . 8Ž .2ž / 21 � 2�k

� k4Furthermore, x is a bounded sequence and

� k�1 k �lim x � x � 0. 9Ž .
k��

Proof. Let x* be any root of T. For � � 0, using the Cauchy�Schwarzk
inequality we have

1 2 2k�1 k�1 k�1 2 k�1² : � � � �2 e , x � x* � e � 2� x � x* . 10Ž .k22�k

Since � � 0, there exists k � 0, such that for all k � k , 1 � 2� 2 � 0.k 0 0 k
Ž . Ž .Substituting 10 in 7 we obtain

2� 2 1k2 2 2k�1 k k�1 k� � � � � �x � x* � 1 � x � x* � x � x2 2ž /1 � 2� 2 1 � 2�Ž .k k

2� 2 1k 2 2k k�1 k� � � �� 1 � x � x* � x � x .2ž / 21 � 2�k
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The first part of the theorem is obtained and thus

2� 2
k2 2k�1 k� � � �x � x* � 1 � x � x* , �k � k . 11Ž .02ž /1 � 2�k

Since Ý� � 2 � ��, it follows thatk�0 k

� 22�k
C � � �� andÝS 21 � 2�kk�k0

� 22�k
C � 1 � � ��,ŁP 2ž /1 � 2�k�k k0

� k4 Ž .and thus x is bounded. Also from 8 we have
�1 2k�1 k� �x � xÝ2 k�k0

� � 22�k2 2 2k k�1 k� � � � � �� x � x* � x � x* � x � x*Ž .Ý Ý 21 � 2�kk�k k�k0 0

� 22�k2 2k k0� � � �� x � x* � sup x � x*Ý ž /k � k ��2 01 � 2�kk�k0

� k 0 � 2� 1 � C C x � x*Ž .S p

� ��.

It follows that

� k�1 k �lim x � x � 0
k���

and the proof is complete.

� k4 Ž .We can obtain the convergence of x from the weak contraction 8 .
n � k4THEOREM 2. Let T be a maximal monotone operator on R , and x

� k4 Ž .and e be sequences generated by the inexact proximal point algorithm 2
Ž . � k4 �under the proposed accuracy criterion 5 . Then x con�erges to some x

Ž �.with 0 � T x .

� k4Proof. From Theorem 1, x is bounded, so that it has at least a
� � k4 � k j4cluster point. Let x be a cluster point of x and the subsequence x

converges to x�. Define

1
k�1 k k�1 k�1y � x � x � e .Ž .

ck
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k j�1 Ž k j�1 . k j � � k�1 k �Then y � T x . Using x � x , lim x � x � 0, andk ��

ek � 0, we have

1
k �1 k k �1 k �1j j j jlim y � lim x � x � e � 0.Ž .

cj�� j�� k j

Because T is maximal, it is a closed set in Rn � Rn. Therefore

lim x k j , y k j � x� , 0 � T ,Ž .Ž .
j��

� Ž . Ž .and x is a root of T. Note that the inequality 8 in Theorem 1 is true
for all roots of T. Hence we have

2� 2
k2 2k�1 � k �� � � �x � x � 1 � x � x , �k � k . 12Ž .02ž /1 � 2�k

� k j4 � � Ž 2 Ž 2 ..Since x � x and Ł 1 � 2� � 1 � 2� � ��, for any givenk�k k k0

� � 0, there is an l � 0, such that

2�� 2�kk �l� �x � x � and 1 � � 2. 13Ž .Ł) 2ž /2 1 � 2�k�k kl

Ž . Ž .Therefore, for any k � k , it follows from 12 and 13 thatl

2k�1 2�tk � k �l� � � �x � x � 1 � x � x � �Ž .Ł) 2ž /1 � 2�t�k tl

k �� 4and the sequence x converges to x .

4. EXTENSION TO BREGMAN-FUNCTION-BASED
PROXIMAL ALGORITHMS

Much recent research has focused on nonlinear generalizations of
Ž . 	 
recursion 1 based on Bregman functions 13 . Suppose h is a strictly

convex function, continuously differentiable on some open set S. The
Bregman distance between x and y is defined via the ‘‘D-function’’

² :D x , y � h x � h y � 	h y , x � y , 14Ž . Ž . Ž . Ž . Ž .h

where x � S and y � S. From the strict convexity of h, one can prove that
1 2Ž . Ž . Ž . � �D x, y � 0, and D x, y � 0 if and only if x � y. If h x � x , thenh h 2

1 2Ž . � �D x, y � x � y . In the following, we will use a class of functions thath 2

are presented as

 2� �h x � h x � x ,Ž . Ž .0 2
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where h is a Bregman function and 
 � 0. It is easy to see that h0
Ž 	satisfies the conditions of the definition of a Bregman function see 13,


 .17 , for example , so h is also a Bregman function. Thus, for all x � S,
y � S, we have

² :D x , y � h x � h y � 	h y , x � yŽ . Ž . Ž . Ž .h


 2² : � �� h x � h y � 	h y , x � y � xŽ . Ž . Ž .0 0 0 2

 2� � ² :� y � 
 y , x � y
2


 2� �� D x , y � x � yŽ .h0 2

 2� �� x � y .
2

It follows therefore, for any fixed x* � Z, that there is a constant C � 0
such that

� � 2 k� 4x � x* � C � D x*, x , � x � x . 15Ž . Ž .h

Ž .An alternative to Eq. 1 is the recursion

	h x k�1 � c T x k�1 � 	h x k ; 1�Ž . Ž . Ž . Ž .k

	 
see 4, 7, 8 , for example. Because of the practical difficulty in computing
Ž .the exact solutions of Eq. 1� , Eckstein suggested a natural generalization

	by taking a simpler and more practically verifiable approach than 3, 4, 16,

24 , i.e.,

	h x k�1 � c T x k�1 � 	h x k � ek�1. 2�Ž . Ž . Ž . Ž .k

Ž .For this problem, instead of condition 5 , we can take

�
k�1 1�2 k�1 k 2� �e � � D x , x with � � �� 5�Ž . Ž .Ýk h k

k�0

Ž .as the approximate criterion corresponding to recursion 2� . Eckstein
Ž 	 
. � k4 � k4proved see Lemma 2 in 13 that the sequences x and e conforming

Ž .to 2� satisfy

k�1 k k�1 k ² k�1 k�1 :D x*, x � D x*, x � D x , x � e , x � x* . 7�Ž . Ž . Ž . Ž .h h h
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Ž .Note that this is a similar result to 7 in the last section. Using the
Ž . Ž .Cauchy�Schwarz inequality, 5� and 15 we get

1 2 2k�1 k�1 k�1 2 k�1² : � � � �e , x � x* � e � � x � x*k22�k

1
k�1 k 2 k�1� D x , x � C� D x*, x . 10�Ž . Ž . Ž .h k h2

Since � � 0, there exists k � 0, such that for all k � k , 1 � C� 2 � 0.k 0 0 k
Ž . Ž .Based on 7� and 10� , using the same technique as in last section, we can

prove the following theorem:

� k4 � k4THEOREM 3. Let x and e be sequences generated by the generalized
Ž . Ž .proximal point algorithm 2� under the proposed accuracy criterion 5� . Then

there exists an integer k � 0, such that for all k � k0 0

C� 2 1kk�1 k k�1 kD x*, x � 1 � D x*, x � D x , x , 8�Ž . Ž . Ž . Ž .h h h2ž / 21 � C�k

and

lim D x k�1 , x k � 0. 9�Ž . Ž .h
k��

Ž . Ž .Proof. It follows from 7� and 10� that

1
k�1 k k�1 k 2 k�1D x*, x � D x*, x � D x , x � C� D x*, x .Ž . Ž . Ž . Ž .h h h k h2

Since � � 0, there exists k � 0, such that for all k � k , 1 � C� 2 � 0.k 0 0 k
Therefore,

D x*, x k�1Ž .h

C� 2 1k k k�1 k� 1 � D x*, x � D x , xŽ . Ž .h h2 2ž /1 � C� 2 1 � C�Ž .k k

C� 2 1k k k�1 k� 1 � D x*, x � D x , x .Ž . Ž .h h2ž / 21 � C�k

Ž .Inequality 8� follows immediately and thus

C� 2
kk�1 kD x*, x � 1 � D x*, x , �k � k . 11�Ž . Ž . Ž .h h 02ž /1 � C�k
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Since Ý� � 2 � ��, it follows thatk�0 k

� 2C�k�C � � �� andÝS 21 � C�kk�k0

� 2C�k�C � 1 � � ��.ŁP 2ž /1 � C�k�k k0

Ž .From 11� , we have

D x*, x k�1 � C� D x*, x k 0 � ��,Ž . Ž .h P h

� k4 Ž .and thus x is bounded. Also from 8� we have

�1
k�1 kD x , xŽ .Ý h2 k�k0

� � 2C�kk k�1 k� D x*, x � D x*, x � D x*, xŽ . Ž . Ž .Ž .Ý Ýh h h21 � C�kk�k k�k0 0

� 2C�kk k0� D x*, x � sup D x*, xŽ . Ž .Ý Ž .h k � k �� h2 01 � C�kk�k0

� 1 � C� C� D x*, x k 0Ž .Ž .S p h

� ��.

It follows that

lim D x k�1 , x k � 0,Ž .h
k���

and the proof is complete.

Furthermore, since h is strictly convex, by using the same technique as
� k4 �in the last section, we can prove that x converges to x , a root of T.

5. CONCLUDING REMARKS

In this paper, we suggested a new accuracy criterion for approximate
proximal point algorithms. The accuracy condition is easy to verify and to
extend to Bregman-function-based proximal point algorithms. However,
we would like to point out that the convergence analysis is based on the
assumption that the roots set of T is nonempty. Note that T may have no
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root even if T is maximal monotone, that is, the roots set Z may be empty.
� k4 Ž . Ž Ž ..If Z is empty, the sequence x conforming to 2 resp. 2� is un-

	 
bounded; see 1, 6, 11, 20 , for example.
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