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Abstract

Let {Pn} be a sequence of polynomials orthogonal with respect a linear functionalu and{Qn} a
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Pn(x)+ snPn−1(x)=Qn(x)+ tnQn−1(x).

We find necessary and sufficient conditions in order to{Qn} be a sequence of polynomials orthogon
with respect to a linear functionalv. Furthermore we prove that the relation between these li
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1. Introduction

Let u be a linear functional defined in the linear spaceP of polynomials with complex
coefficients.

The linear functionalu is said to be quasi-definite if the matrixH = (ui+j )∞i,j=0 associ-
ated with the momentsun = 〈u,xn〉, n ∈ N ∪ {0}, of the linear functional is quasi-definit
i.e., the principal submatricesHn = (ui+j )ni,j=0, n ∈ N ∪ {0}, are nonsingular.

In such a situation, there exists a sequence of monic polynomials{Pn}n�0 such that

(i) degPn = n,

(ii) 〈u,PnPm〉 = knδn,m with kn 
= 0.

The sequence{Pn}n�0 is said to be a sequence of monic orthogonal polynom
(SMOP) with respect to the linear functionalu.

The sequence{Pn}n�0 satisfies a three-term recurrence relation of the formxPn(x)=
Pn+1(x)+ βnPn(x)+ γnPn−1(x), n � 0, γn 
= 0, P−1(x)= 0, P0(x)= 1. Conversely, if
a sequence of monic polynomials satisfies a three-term recurrence relation as abo
there exists a quasi-definite linear functionalu such that{Pn}n�0 is the correspondin
SMOP (see [1]).

For an SMOP{Pn}n�0 relative tou, let {P (1)n }n�0 be the associated SMOP of the fi
kind defined by

P
(1)
n+1(x)= (x − βn+1)P

(1)
n (x)− γn+1P

(1)
n−1(x), n� 0,

P
(1)
−1 (x)= 0, P

(1)
0 (x)= 1.

Another important representation ofP (1)n (x) is (see [1, Chapter 3])

P (1)n (y)= 1

u0

〈
u,
Pn+1(y)− Pn+1(x)

y − x

〉
.

Also, let {Pn(x,α)}n�0 be the co-recursive SMOP defined by

Pn+1(x,α)= (x − βn)Pn(x,α)− γnPn−1(x,α), n� 1,

P1(x,α)= P1(x)− α, P0(x,α)= 1.

It is known (see [1,5]) thatPn(x,α)= Pn(x)− αP
(1)
n−1(x).

For a linear functionalu, a polynomialπ , and a complex numbera, let πu and
(x − a)−1u be the linear functionals defined onP by

〈πu,P 〉 = 〈u,πP 〉, P ∈ P,

〈
(x − a)−1u,P

〉 =
〈
u,
P (x)− P(a)

x − a

〉
, P ∈ P.

In the constructive theory of orthogonal polynomials the so-called inverse probl
considered. An inverse problem for linear functionals can be stated as follows: Give
sequences of monic polynomials{Pn}n�0 and{Qn}n�0, to find necessary and sufficie
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conditions in order to{Qn}n�0 be an SMOP when{Pn}n�0 is an SMOP and they ar
related by

F(Pn, . . . ,Pn−l )=G(Qn, . . . ,Qn−k), (1.1)

whereF andG are fixed functions. As a next step, to find the relation between the
tionals.

This kind of problems appear in several situations.
For instance, in [9], this problem is solved when (1.1) becomes

Pn(x)=Qn(x)+ anQn−1(x), an 
= 0, n� 1.

Moreover, the relation between the linear functionalsu andv associated with the sequenc
{Pn}n�0 and{Qn}n�0, respectively, isv =M(x−a)uwith a andM complex numbers (se
Theorem 1 in [9]). This kind of transform for linear functionals is known in the literatur
Christoffel transform (see [10]) or Darboux transform without free parameter for the J
matrices associated with the corresponding SMOP (see [2]). In the same paper, Ma
and Petronilho solve the inverse problem in the particular case,

Pn(x)+ anPn−1(x)=Qn(x), an 
= 0, n� 1.

In such a case, the relation satisfied by the functionals isv = v0δa +M(x − a)−1u, where
a andM are complex numbers. This kind of transform is known in the literature as G
imus transform (see [10]) or Darboux transform with a free parameter for tridiag
matrices in the same sense as in a previous sentence (see [2]).

In [3], the authors study when some linear combinations of two sequences of ortho
polynomials are again orthogonal polynomial sequences. In this context these seq
are related by (1.1) withF andG linear functions. More recently, in [4], similar questio
are analyzed in the framework of Sobolev inner products when one of the measur
classical one (Hermite, Laguerre, Jacobi, Bessel).

Finally, in the framework of orthogonal polynomials with respect to measures supp
on the unit circle, some inverse problems related to ARMA process have been solved

The aim of our contribution is the analysis of the following inverse problem: Give
SMOP {Pn}n�0, orthogonal with respect to a linear functionalu, to find necessary an
sufficient conditions in order to a sequence of monic polynomials{Qn}n�0, defined by

Pn(x)+ snPn−1(x)=Qn(x)+ tnQn−1(x), n� 0,

be an SMOP with respect to a quasi-definite linear functionalv. As a next step, to find th
relation between the linear functionalsu andv.

Another problem studied in the theory of orthogonal polynomials is the follow
Given two quasi-definite linear functionalsu,v such thatv = F(u), whereF is a func-
tion in P′, the dual space ofP, to find the explicit relations between the correspond
SMOP.

In particular, it can be shown that if(x − a)u= λv (a,λ ∈ C) thenPn(x)=Qn(x)+
anQn−1(x), n� 0 with an 
= 0 (see [1, Chapter 1]).

In this paper we study this problem when the linear functionals are related by th
mula (x − ã)u = λ(x − a)v (a, ã, λ ∈ C), which appears in the analysis of our inve
problem.
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2. Main results

Lemma 2.1. Let {Pn}n�0 and {Qn}n�0 be sequences of monic polynomials orthogo
with respect to quasi-definite linear functionalsu andv, normalized by〈u,1〉 = 1 = 〈v,1〉,
respectively. Assume that there exist sequences of complex numbers{sn}n�1, {tn}n�1 such
that the relation

Pn(x)+ snPn−1(x)=Qn(x)+ tnQn−1(x) (2.1)

holds for everyn� 1. Thus

(i) If s1 = t1, thensn = tn for everyn� 2;
(ii) If s1 
= t1 ands2 = 0, thensn = 0 
= tn for everyn� 2;
(iii) If s1 
= t1 andt2 = 0, thentn = 0 
= sn for everyn� 2;
(iv) If s1 
= t1 ands2t2 
= 0, thensntn 
= 0 for everyn� 2.

Proof. From (2.1) it follows that

〈u,Qn〉 = −tn〈u,Qn−1〉, n� 2, 〈u,Q1〉 = s1 − t1, (2.2)

and

〈v,Pn〉 = −sn〈v,Pn−1〉, n� 2, 〈v,P1〉 = t1 − s1. (2.3)

If s1 = t1, either (2.2) or (2.3) yieldsPn =Qn for everyn and taking into account (2.1
sn = tn for everyn.

If s1 
= t1 and s2 = 0, then from (2.3) we deduce〈v,Pn〉 = 0, for everyn � 2, and
〈v,P1〉 
= 0. Hence, we getPn(x) = Qn(x) + anQn−1(x) with an 
= 0 for everyn � 1
(see [7]).

Substituting this relation in (2.1) we get

(an + sn)Qn−1(x)+ snan−1Qn−2(x)= tnQn−1(x), n� 1,

which yieldsan + sn = tn for n� 1 andsnan−1 = 0 for n� 2. Then (ii) holds.
Case (iii) can be proved in the same way.
Finally, let s1 
= t1 and s2t2 
= 0 and assumesntn = 0 for some nonnegative integ

n� 3. Writen0 = min{n ∈ N; n� 3, sntn = 0}.
If sn0 = 0 (the casetn0 = 0 is analogous), then from (2.3) we deduce〈v,Pn〉 = 0 for

n� n0 and〈v,Pn〉 
= 0 for 1� n� n0 − 1. HencePn(x)=Qn(x)+ ∑n0−1
j=1 a

(j)
n Qn−j (x)

holds for everyn � n0 − 1, with a(n0−1)
n 
= 0 (see [6,7]). In the same way as in (ii), w

obtainsn0−1a
(n0−1)
n0 = 0, which is not possible. So,sntn 
= 0 for n� 3 and (iv) follows. ✷

Remark. The first situation is the trivial case, i.e.,Pn =Qn for everyn � 1. The second
and the third cases correspond to relations which had already been studied in [9]. F
reason, from now on, we will only consider relations like (2.1) where all the paramete
not vanish. Observe that, without lost of generality, we can suppose thats1t1 
= 0.

In the sequel{Pn}n�0 denotes an SMOP which satisfies the three-term recurrence
tion
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Pn+1(x)= (x − βn)Pn(x)− γnPn−1(x), n� 1,

P0(x)= 1, P1(x)= x − β0, (2.4)

where{βn}n�0 and{γn}n�1 are sequences of complex numbers withγn 
= 0 for n� 1.

Now, we characterize the orthogonality of a sequence{Qn}n�0 of monic polynomials
defined by (2.1) from an SMOP{Pn}n�0.

Theorem 2.2. Let{Pn}n�0 be a sequence of monic orthogonal polynomials with recurre
coefficientsβn andγn. We define recursively a sequence{Qn}n�0 of monic polynomials by
formula(2.1), i.e.,

Pn(x)+ snPn−1(x)=Qn(x)+ tnQn−1(x), n� 1,

where sn and tn are complex numbers withs1 
= t1 and sntn 
= 0 for all n � 1. Then
{Qn}n�0 is an SMOP with recurrence coefficients{β̃n, γ̃n} if and only if there exist two
complex numbersa and ã such that the following formulas hold:

γ̃1 
= 0, (2.5)

s2γ1 − s1
[
γ2 + s2(s3 − s2 − β2 + β1)

]
= t2γ̃1 − t1

[
γ̃2 + t2(t3 − t2 − β̃2 + β̃1)

]
, (2.6)

βn − sn+1 − γn

sn
= a, n� 2, (2.7)

β̃n − tn+1 − γ̃n

tn
= ã, n� 2, (2.8)

where the coefficients̃βn and γ̃n are defined by

β̃n = tn+1 − tn − (sn+1 − sn − βn), n� 0, (2.9)

γ̃n = γn + sn(sn+1 − sn − βn + βn−1)− tn(tn+1 − tn − β̃n + β̃n−1),

n� 0, (2.10)

with s0 = t0 = 0 = γ0 = γ̃0.

Proof. From the definition ofQn we get

Qn+1(x)= Pn+1(x)+ sn+1Pn(x)− tn+1Qn(x), n� 0. (2.11)

Inserting formula (2.4) in (2.11) and applying (2.1) toxPn(x), we get that

Qn+1(x)= xQn(x)+ (sn+1 − sn − βn)Pn(x)+ tnxQn−1(x)− tn+1Qn(x)

− (snβn−1 + γn)Pn−1(x)− snγn−1Pn−2(x), n� 1,

follows, provided we substitute therexPn−1(x), using again (2.4). Now, formula (2.1
applied toPn(x) and the definition of̃βn (see (2.9)), yield
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Qn+1(x)= (x − β̃n)Qn(x)+ tn(tn+1 − tn − β̃n)Qn−1(x)

− [
sn(sn+1 − sn − βn + βn−1)+ γn

]
Pn−1(x)− snγn−1Pn−2(x)

− tn
[
Qn(x)− xQn−1(x)

]
for n � 0. So {Qn}n�0 is an SMOP if and only if there exists a sequence of com
numbers(γ̃n)∞1 with γ̃n 
= 0 for n� 1, such that

tn(tn+1 − tn − β̃n)Qn−1(x)−
[
sn(sn+1 − sn − βn + βn−1)+ γn

]
Pn−1(x)

− snγn−1Pn−2(x)− tn
[
Qn(x)− xQn−1(x)

] = −γ̃nQn−1(x). (2.12)

Moreover,β̃n andγ̃n are the three-term recurrence coefficients forQn.

Next, we are going to see that{Qn}n�0 is an SMOP if and only if, for everyn� 1, the
relation[

γ̃n + tn(tn+1 − tn − β̃n + β̃n−1)
]
Qn−1(x)+ tnγ̃n−1Qn−2(x)

= [
γn + sn(sn+1 − sn − βn + βn−1)

]
Pn−1(x)+ snγn−1Pn−2(x) (2.13)

holds, whereγ̃n is given by (2.10).
Suppose that{Qn}n�0 is an SMOP. Then, it is enough to substitute the expres

Qn(x) − xQn−1(x) from the three-term recurrence relation in formula (2.12) to ob
(2.13).

Conversely, if (2.13) is satisfied then we show that the sequence{Qn}n�0 satisfies a
three-term recurrence relation, that is,{Qn}n � 0 is an SMOP.

Indeed, applying (2.4) in (2.13), and the definition ofβ̃n, for n� 1 we get

tn
(
β̃n−1Qn−1(x)+ γ̃n−1Qn−2(x)

)
= γnPn−1(x)+ (tn+1 − tn − β̃n)

[
snPn−1(x)− tnQn−1(x)

]
+ sn

[
xPn−1(x)−Pn(x)

] − γ̃nQn−1(x).

Substituting (2.1) insnPn−1(x) − tnQn−1(x) and, using again the definition of̃βn, for
n� 1 we have

tn
(
β̃n−1Qn−1(x)+ γ̃n−1Qn−2(x)

)
= γnPn−1(x)+ (tn+1 − tn − β̃n)Qn(x)− (sn+1 − βn)Pn(x)

+ snxPn−1(x)− γ̃nQn−1(x).

Applying (2.1) insnPn−1(x) as well as the recurrence relation for{Pn}n�0, we get

tn
(
β̃n−1Qn−1(x)+ γ̃n−1Qn−2(x)

)
= tn

[
xQn−1(x)−Qn(x)

] − Pn+1(x)

+ tn+1Qn(x)− sn+1Pn(x)− β̃nQn(x)+ xQn(x)− γ̃nQn−1(x), n� 1.

Using again (2.1),

tn
[
Qn(x)− (x − β̃n−1)Qn−1(x)+ γ̃n−1Qn−2(x)

]
= −Qn+1(x)+ (x − β̃n)Qn(x)− γ̃nQn−1(x), n� 1,
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Qn+1(x)= (x − β̃n)Qn(x)− γ̃nQn−1(x), n� 0. (2.14)

Now, we will show that (2.12) is equivalent to formulas (2.6)–(2.8) in the statement o
theorem.

From (2.1) it follows that formula (2.13) is equivalent to
{
tnγ̃n−1 − tn−1

[
γ̃n + tn(tn+1 − tn − β̃n + β̃n−1)

]}
Qn−2(x)

= {
snγn−1 − sn−1

[
γn + sn(sn+1 − sn − βn + βn−1)

]}
Pn−2(x)

for everyn� 2.
Forn= 2, we obtain (2.6) and whenn� 3, both coefficients in the last formula vanis

Thus

snγn−1 = sn−1
[
γn + sn(sn+1 − sn − βn + βn−1)

]
, (2.15)

tnγ̃n−1 = tn−1
[
γ̃n + tn(tn+1 − tn − β̃n + β̃n−1)

]
(2.16)

hold. As a consequence, sincesntn 
= 0 for everyn� 1, (2.7) and (2.8) follow.
Conversely, it is easy to verify that from (2.6)–(2.8) we deduce (2.13).✷

Remarks. (1) Notice that, from (2.10), (2.15), and (2.16), we have

tn+1

tn
γ̃n = sn+1

sn
γn for everyn� 2. (2.17)

Thus,γ̃n 
= 0 for everyn� 2.
(2) We want to point out that there are four initial conditions:s1, t1, s2, t2 connected

among them by the conditioñγ1 
= 0. From the definition ofγ̃2 and formula (2.6) we
gets3, which allows us to deducẽγ2, and from (2.17),t3. Finally, from (2.7) and (2.8) the
values ofsn andtn, with n� 4, can be obtained.

Proposition 2.3. Let {Pn}n�0 be an SMOP and{sn}n�1, {tn}n�1 sequences of comple
numbers such thats1 
= t1 and sntn 
= 0 for n � 1. If {Qn}n�0 is a sequence of mon
polynomials defined by(2.1), then the orthogonality of{Qn}n�0 depends at most of th
choice of the parameterss1, t1, s2, t2. More precisely,{Qn}n�0 is an SMOP if and only i
the following conditions hold:

(i) The parameter̃γ1, defined by(2.10), is different from zero;
(ii) Formula(2.6) in Theorem2.2 is true;

(iii) Sn(a) 
= 0 and sn = −Sn(a)
Sn−1(a)

, n� 1,

wherea = β2 − s3 − γ2/s2 and Sn is the generalized co-recursive polynomial
order 1 with parameterµ of the co-recursive polynomial ofPn(x,α), beingµ =
s2 − β1 + γ1/s1 + a andα = s1 + a − β0;

(iv) Tn(ã) 
= 0 and tn = −Tn(ã)
, n� 1,
Tn−1(ã)
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whereã = β̃2− t3− γ̃2/t2 andTn is the generalized co-recursive polynomial of orde1
with parameterµ̃ of the co-recursive polynomial ofQn(x, α̃), beingµ̃ = t2 − β̃1 +
γ̃1/t1 + ã andα̃ = t1 + ã − β̃0.

Proof. According to Theorem 2.2 it is enough to show that the conditions (iii) and (iv
equivalent to formulas (2.7) and (2.8).

In order to do this, we define a sequence{yn}n�0 by y0 = 1 andyn = −snyn−1 for every
n� 1.

Thusyn 
= 0 for n� 0 and, taking into account (2.7) in Theorem 2.2,

yn+1 = (a − βn)yn − γnyn−1, n� 2,

y2 = (a − β1 −µ)y1 − γ1, y1 = a − β0 − α

hold, withα andµ defined as above. These formulas imply thatyn = Sn(a), n� 0 (see [5]),
and therefore (iii) is true.

In a similar way, using (2.8), we conclude (iv).
Straightforward calculations allow us to deduce the converse.✷
Next, we characterize when two sequences of monic orthogonal polynomials{Pn} and

{Qn} are related by formula (2.1), whenever all the coefficients are nonzero, in ter
their functionals.

Theorem 2.4. Letu andv be quasi-definite linear functionals, normalized by〈u,1〉 = 1 =
〈v,1〉 and {Pn}n�0 and {Qn}n�0 their corresponding SMOP with recurrence coefficie
{βn, γn} and{β̃n, γ̃n}, respectively. Then, the following conditions are equivalent:

(i) There exist complex sequences{sn}n�1, {tn}n�1 with s1 
= t1 and sntn 
= 0 for n � 1,
such that{Pn}n�0 and{Qn}n�0 are related by(2.1), i.e.,

Pn(x)+ snPn−1(x)=Qn(x)+ tnQn−1(x), n� 1;
(ii) For everyn� 1, Pn 
=Qn and there exist complex numbersλ,a, ã such that

(x − ã)u= λ(x − a)v. (2.18)

Moreover, for everyn� 2, a = βn − sn+1 − γn/sn and ã = β̃n − tn+1 − γ̃n/tn.

Proof. (i) ⇒ (ii) From (2.3) we have〈v,Pn〉 = (−1)n+1sn . . . s2(t1 − s1) and 〈v,P1〉 =
t1 − s1. This implies〈v,Pn〉 
= 0 for all n� 1 and thenPn 
=Qn for everyn� 1.

Because of formula (2.1) and the orthogonality of{Pn}n�0 with respect tou, for every
A ∈ C, by straightforward calculations, we get〈

(x +A)u,Q2
〉 = (s2 − t2)γ1 − t2(s1 − t1)(β0 +A). (2.19)

If we choose

A= γ1(s2 − t2) − β0,

t2(s1 − t1)
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then we have〈(x + A)u,Q2〉 = 0. From this, using again (2.1), by induction we o
tain that 〈(x + A)u,Qn〉 = 0 for n � 2. So, if we expand(x + A)u in the dual basis
{Qjv/〈v,Q2

j 〉}j�0 (see [7]), it follows that

(x +A)u=
1∑
j=0

µj
Qjv

〈v,Q2
j 〉
, (2.20)

where

µ0 = (β0 +A)= γ1(s2 − t2)

t2(s1 − t1)
and µ1 = [

γ1 + (s1 − t1)(β0 +A)
] = γ1s2

t2
.

In other words,[
x − β0 + γ1(s2 − t2)

t2(s1 − t1)

]
u= γ1s2

γ̃1t2

[
x − β̃0 + γ̃1(s2 − t2)

s2(s1 − t1)

]
v. (2.21)

From (2.9) and (2.10), written forn= 1, it follows that

γ̃1 = γ1 + (s1 − t1)(s2 − s1 − β1)+ s1β0 − t1β̃0 = γ1 + (s1 − t1)(s2 − β1 + β̃0),

where we have used thats1 − β0 = t1 − β̃0.
Hence, we get

γ̃1(s2 − t2)

s2(s1 − t1)
= γ1s2 − γ̃1t2

s2(s1 − t1)
+ s2 − β1 + β̃0. (2.22)

On the other hand, using (2.10) and (2.7) written forn= 2, and (2.6), we obtain

γ1s2 − γ̃1t2

s2(s1 − t1)
= γ2

s2
+ s3 − s2 − β2 + β1 = −s2 + β1 − a. (2.23)

So, (2.22) and (2.23) lead to

−β̃0 + γ̃1(s2 − t2)

s2(s1 − t1)
= −a.

In a similar way, it can be proved that

−β0 + γ1(s2 − t2)

t2(s1 − t1)
= −ã.

Therefore relation (2.18) for the linear functionalsu andv follows from (2.21).
(ii) ⇒ (i) Suppose that the linear functionalsu,v satisfy (2.18). Consider the Fourier e

pansion ofPn in terms of the polynomialsQn, that is,Pn(x)=Qn(x)+ ∑n−1
j=0λnjQj (x),

whereλnj = 〈v,PnQj 〉/〈v,Q2
j 〉.

Since

v = 1

λ

(
1+ (a − ã)(x − a)−1)u+ λ− 1

λ
δa,

we get, for 0� j � n− 1,
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r the
〈v,PnQj 〉 = a − ã

λ

〈
u,
Pn(x)Qj (x)− Pn(a)Qj (a)

x − a

〉
+ λ− 1

λ
Pn(a)Qj(a)

= a − ã

λ

[〈
u,
Qj (x)−Qj(a)

x − a
Pn(x)

〉
+Qj(a)

〈
u,
Pn(x)− Pn(a)

x − a

〉]

+ λ− 1

λ
Pn(a)Qj(a)= 1

λ
Qj (a)

[
(λ− 1)Pn(a)+ (a − ã)P

(1)
n−1(a)

]
,

where {P (1)n }n�0 denotes the sequence of associated polynomials of first kind fo
SMOP{Pn}n�0. Then

Pn(x)=Qn(x)+ 1

λ

[
(λ− 1)Pn(a)+ (a − ã)P

(1)
n−1(a)

]
Kn−1(x, a; v),

n� 1, (2.24)

and

〈v,Pn〉 = 1

λ

[
(λ− 1)Pn(a)+ (a − ã)P

(1)
n−1(a)

]
, n� 1, (2.25)

whereKn−1(x, a; v) denotes the usual reproducing kernel associated withv.
In a similar way, we get

Qn(x)= Pn(x)+
[
(1− λ)Qn(ã)+ λ(ã − a)Q

(1)
n−1(ã)

]
Kn−1(x, ã;u), n� 1,

and

〈u,Qn〉 = [
(1− λ)Qn(ã)+ λ(ã − a)Q

(1)
n−1(ã)

]
,

whereKn−1(x, ã;u) and{Q(1)
n }n�0 denote the reproducing kernel associated withu and

the sequence of associated polynomials of first kind for the SMOP{Qn}n�0, respectively.
Observe that from the conditionPn 
=Qn, n � 1, we get〈v,Pn〉 
= 0 and〈u,Qn〉 
= 0

for all n� 1. Then, writing formula (2.24) forn andn− 1, easy computations yield

Pn(x)− 〈v,Pn〉
〈v,Pn−1〉Pn−1(x)=Qn(x)−

[ 〈v,Pn〉
〈v,Pn−1〉 − 〈v,Pn〉Qn−1(a)

〈v,Q2
n−1〉

]
Qn−1(x)

for everyn� 2. Now, applying the linear functionalu we get

〈u,Qn〉
〈u,Qn−1〉 =

[ 〈v,Pn〉
〈v,Pn−1〉 − 〈v,Pn〉Qn−1(a)

〈v,Q2
n−1〉

]
,

that is,

Pn(x)− 〈v,Pn〉
〈v,Pn−1〉Pn−1(x)=Qn(x)− 〈u,Qn〉

〈u,Qn−1〉Qn−1(x), n� 2,

and therefore (i) holds withsn = −〈v,Pn〉/〈v,Pn−1〉 
= 0 andtn = −〈u,Qn〉/〈u,Qn−1〉

= 0 for everyn� 2.

SinceP1 
=Q1 we can writeP1(x)+ s1 =Q1(x)+ t1 with s1 
= t1 ands1t1 
= 0.
Finally, from (2.25) we have that〈v,Pn〉, up to a constant factor, is the evaluation ina

of some orthogonal polynomial (eitherPn or P (1)n−1 or the co-recursive polynomial ofPn).
Thus,〈v,Pn+1〉 = (a− βn)〈v,Pn〉− γn〈v,Pn−1〉 for n� 2 and thereforea = βn− sn+1 −
γn/sn for n� 2. In a similar way, taking into account the explicit expression of〈u,Qn〉 for
all n� 1, we obtainã = β̃n − tn+1 − γ̃n/tn for n� 2. ✷
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Remarks. (1) In the second part of the proof (that is (ii)⇒ (i)), the conditionPn 
=Qn

for eachn is necessary. Indeed, if (i) is true andPn =Qn for somen� 2, thensn = tn and
Pn−1 =Qn−1; thus〈v,Pn〉 = 0 = 〈v,Pn−1〉 which is not possible since〈v,Pn〉 = cRn(a),
wherec 
= 0 and{Rn(x)}n�0 is a sequence of orthogonal polynomials.

(2) In general (2.18) does not implyPn 
=Qn for eachn. It is enough to takea = 0= ã

andv the Hermite linear functional. In such a case it can be shown thatP2n−1 =Q2n−1 for
everyn� 1.

On the other hand, under the conditions of Theorem 2.4 we have seen that there
complex numbera such that we havePn(x)−Qn(x)= 〈v,Pn〉Kn−1(x, a; v), n� 1, and
therefore

tn − sn = 〈v,Pn〉 Qn−1(a)

〈v,Q2
n−1〉 , n� 1.

Since〈v,Pn〉 
= 0, n� 1, it follows that for everyn� 1,

Qn−1(a) 
= 0 ⇔ tn 
= sn.

Analogously, for everyn� 1,

Pn−1(ã) 
= 0 ⇔ tn 
= sn.

That is, both linear functionals(x − a)v and(x − ã)u are quasi-definite if and only if fo
everyn� 1, tn 
= sn.

We can obtain a more simple expression for the parameterssn and tn when the linear
functional(x − ã)u is quasi-definite. Actually, let{Wn}n�0 be the SMOP with respect t
the quasi-definite linear functionalw = (x− ã)u= λ(x−a)v. By Theorem 1 in [9] we ge

Pn(x)=Wn(x)− an−1Wn−1(x), n� 1, (2.26)

Qn(x)=Wn(x)− bn−1Wn−1(x), n� 1, (2.27)

with

an−1 = γn
Pn−1(ã)

Pn(ã)

= 0 and bn−1 = γ̃n

Qn−1(a)

Qn(a)

= 0, n� 1.

Observe thatP1(x)− b0 =Q1(x)− a0.

Now, supposen� 2. From (2.26) and (2.27) written forn andn− 1 we deduce that∣∣∣∣∣∣∣∣

1 −an−1 0 Pn(x)

0 1 −an−2 Pn−1(x)

1 −bn−1 0 Qn(x)

0 1 −bn−2 Qn−1(x)

∣∣∣∣∣∣∣∣
= 0

and soPn(x)+ snPn−1(x)=Qn(x)+ tnQn−1(x), n� 2, with

sn = −bn−2
an−1 − bn−1

an−2 − bn−2
and tn = −an−2

an−1 − bn−1

an−2 − bn−2
. (2.28)

Notice that, sincePn 
=Qn for everyn� 1, we havean−1 
= bn−1, n� 1.
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e pa-
-

],

) we
Moreover, it also follows that

Wn(x)= (bn−1 − an−1)
−1(Pn(x)−Qn(x)

) = (tn − sn)
−1(Pn(x)−Qn(x)

)
.

In order to illustrate the results of Theorem 2.4 we show an example providing a re
for Jacobi polynomials which, as far as we know, is new.

Assumeα,β > 0. Let u andv be the Jacobi linear functionals with parametersα− 1, β
andα,β − 1, respectively, normalized by〈u,1〉 = 1 = 〈v,1〉. Denote byP (α−1,β)

n and
P
(α,β−1)
n the corresponding sequences of monic orthogonal polynomials.

Since(1 − x)u = αβ−1(1 + x)v and the linear functional(1 − x)u is quasi-definite
from (2.26) and (2.27) we have

an = γ
(α−1,β)
n+1

P
(α−1,β)
n (1)

P
(α−1,β)
n+1 (1)

and bn = γ
(α,β−1)
n+1

P
(α,β−1)
n (−1)

P
(α,β−1)
n+1 (−1)

.

Using the properties of monic Jacobi polynomials (see [1]) and formula (2.28) w
obtain

P (α−1,β)
n (x)+ 2n(n+ α − 1)

(2n+ α + β − 2)(2n+ α + β − 1)
P
(α−1,β)
n−1 (x)

= P (α,β−1)
n (x)− 2n(n+ β − 1)

(2n+ α + β − 2)(2n+ α + β − 1)
P
(α,β−1)
n−1 (x). (2.29)

For Jacobi polynomialsp(α,β)n with the classical normalizationp(α,β)n (1)= (
n+α
n

)
, we have

the more simple relation

p(α−1,β)
n (x)+ n+ α − 1

n+ α + β − 1
p
(α−1,β)
n−1 (x)

= p(α,β−1)
n (x)− n+ β − 1

n+ α+ β − 1
p
(α,β−1)
n−1 (x).

Relation (2.29) can be also obtained via the Darboux transformation without fre
rameter. Indeed, the sequences{P (α−1,β)

n }n�0 and{P (α,β−1)
n }n�0 are both (different) Dar

boux transforms of the sequence{P (α−1,β−1)
n }n�0. Explicitly, see [1, Exercise 7.8, p. 39

(x + 1)P (α−1,β)
n (x)

= 2n(n+ β)(n+ α + β − 1)

(2n+ α + β)(2n+ α + β − 1)
P (α−1,β−1)
n (x)+ P

(α−1,β−1)
n+1 (x),

(x − 1)P (α,β−1)
n (x)

= − 2n(n+ α)(n+ α + β − 1)

(2n+ α + β)(2n+ α + β − 1)
P (α−1,β−1)
n (x)+ P

(α−1,β−1)
n+1 (x). (2.30)

On the other hand, Theorem 2.4 assures that the polynomialsP
(α−1,β)
n andP (α,β−1)

n

satisfy a formula of the form (2.1). Plugging the relations (2.30) into the formula (2.1
can get (2.29).
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