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Abstract

Let {P,} be a sequence of polynomials orthogonal with respect a linear funciicmadi {0, } a
sequence of polynomials defined by

Pu(x) + 50 Pp_1(x) = On(x) + 10 Qpp—1(x).

We find necessary and sufficient conditions in ord€iQg} be a sequence of polynomials orthogonal
with respect to a linear functional. Furthermore we prove that the relation between these linear
functionals is(x — a)u = A(x — a)v. Even more, ifu andv are linked in this way we get thaP, }
and{Q,} satisfy a formula as above.
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1. Introduction

Letu be a linear functional defined in the linear sp&cef polynomials with complex
coefficients.

The linear functionad is said to be quasi-definite if the matrk = (u; 1 j);; _o associ-
ated with the moments, = (u, x"), n € NU {0}, of the linear functional is quasi-definite,
i.e., the principal submatricdg, = (u,'+.,')l'.”j:0, n € NU {0}, are nonsingular.

In such a situation, there exists a sequence of monic polynoffa)so such that

(i) degP, =n,
(”) (u, Py Py) = knan,m with &, #0.

The sequencégP,},>o is said to be a sequence of monic orthogonal polynomials
(SMOP) with respect to the linear functional

The sequencépP, },,>o satisfies a three-term recurrence relation of the fefp(x) =
Put1(x) + Bu Pu(x) + Yu Pu—1(x), n > 0, ¥, #0, P_1(x) =0, Po(x) = 1. Conversely, if
a sequence of monic polynomials satisfies a three-term recurrence relation as above, then
there exists a quasi-definite linear functiomasuch that{P,},>o is the corresponding
SMORP (see [1]).

For an SMOP{ P, }, >0 relative tou, let {P,ﬁl)}@o be the associated SMOP of the first
kind defined by

P () = (x = Bus) PP () — yap1 PP (), 020,
PP =0 PPw=1

Another important representation BtV (x) is (see [1, Chapter 3])
Prt1(y) — Put1(x)

y—x '
Also, let{P,(x, o)},>0 be the co-recursive SMOP defined by

1
PO (y) = u_o<”’

Popix, o) =(x — B) Pu(x, ) — yu Pu—1(x, ), n= 1,
Pi(x,a) = P1(x) — «, Po(x,a) =1
Itis known (see [1,5]) thaP, (x, @) = P, (x) — P2 (x).

For a linear functionak, a polynomialzr, and a complex number, let 7u and
(x —a)~tu be the linear functionals defined &by

(tru, P) ={(u,tP), PelP,

((x _ a)_lu, p> — <u, w
xX—a

>, P eP.

In the constructive theory of orthogonal polynomials the so-called inverse problem is
considered. An inverse problem for linear functionals can be stated as follows: Given two
sequences of monic polynomidls, },>0 and{Q,},>0, to find necessary and sufficient
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conditions in order to{Q,},>0 be an SMOP whefP,},>0 is an SMOP and they are
related by

F(Py,....,P,—_)=G(QOn, ..., Oni), (11)

where F andG are fixed functions. As a next step, to find the relation between the func-
tionals.

This kind of problems appear in several situations.

For instance, in [9], this problem is solved when (1.1) becomes

Pi(x)=0n(x)+a,Qn-1(x), ay,#0, n>1

Moreover, the relation between the linear functiomadsdv associated with the sequences
{Pu}n>0and{Qx},>0, respectively, i& = M (x —a)u with a andM complex numbers (see
Theorem 1 in [9]). This kind of transform for linear functionals is known in the literature as
Christoffel transform (see [10]) or Darboux transform without free parameter for the Jacobi
matrices associated with the corresponding SMOP (see [2]). In the same paper, Marcellan
and Petronilho solve the inverse problem in the particular case,

Pp(x) +anPr-1(x) = Qn(x), an#0, n>1

In such a case, the relation satisfied by the functionalsisgs, + M (x — a)~1u, where

a andM are complex numbers. This kind of transform is known in the literature as Geron-
imus transform (see [10]) or Darboux transform with a free parameter for tridiagonal
matrices in the same sense as in a previous sentence (see [2]).

In [3], the authors study when some linear combinations of two sequences of orthogonal
polynomials are again orthogonal polynomial sequences. In this context these sequences
are related by (1.1) witlr andG linear functions. More recently, in [4], similar questions
are analyzed in the framework of Sobolev inner products when one of the measures is a
classical one (Hermite, Laguerre, Jacobi, Bessel).

Finally, in the framework of orthogonal polynomials with respect to measures supported
on the unit circle, some inverse problems related to ARMA process have been solved in [8].

The aim of our contribution is the analysis of the following inverse problem: Given an
SMOP {P,.},>0, orthogonal with respect to a linear functionalto find necessary and
sufficient conditions in order to a sequence of monic polynonii@lg, >0, defined by

Py(x) 4+ spPro1(x) = 0n(x) +1,0p-1(x), n=0,

be an SMOP with respect to a quasi-definite linear functionals a next step, to find the
relation between the linear functional&ndv.

Another problem studied in the theory of orthogonal polynomials is the following:
Given two quasi-definite linear functionalsv such thatv = F(«), whereF is a func-
tion in ", the dual space dP, to find the explicit relations between the corresponding
SMOP.

In particular, it can be shown that (& — a)u = Av (a, » € C) then P, (x) = Q,(x) +
anQn-1(x), n > 0 with a, # 0 (see [1, Chapter 1]).

In this paper we study this problem when the linear functionals are related by the for-
mula (x — a)u = A(x — a)v (a,a, » € C), which appears in the analysis of our inverse
problem.
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2. Main results

Lemma 2.1. Let {P,},>0 and {Q.},>0 be sequences of monic polynomials orthogonal
with respect to quasi-definite linear functionalandv, normalized byu, 1) =1 = (v, 1),
respectively. Assume that there exist sequences of complex nysbgss, {#,},>1 such
that the relation

Py(x) + 5y Pr1(x) = Qn(x) + 1, On—1(x) (2-1)
holds for every: > 1. Thus

() If s1 =1, thens, =1, for everyn > 2;

(i) If s1 #11 andsp =0, thens, = 0+# 1, for everyn > 2,
(iii) If s1 #11 andr =0, thens,, = 0# s, for everyn > 2,
(iv) If s1 # 11 andsatr # 0, thens,t, # 0 for everyn > 2.

Proof. From (2.1) it follows that

(u, On) = —tu(u, Qn-1), n=2, (u, 01) =s1—11, (2.2)
and

(v, Py) = —s, (v, Py—1), n =2, (v, P1) =11 — s51. (2.3)

If s1 =11, either (2.2) or (2.3) yield®, = Q,, for everyn and taking into account (2.1),
s, =t, for everyn.

If s1# 11 ands2 = 0, then from (2.3) we deduce, P,) = 0, for everyn > 2, and
(v, P1) # 0. Hence, we getP,(x) = 0, (x) + a, Q,—1(x) with a, # 0 for everyn > 1
(see [7]).

Substituting this relation in (2.1) we get

(an +50)Qn-1(x) +5pap_10n—2(x) =1, Qp—1(x), n=1,

which yieldsa, + s, =1, for n > 1 ands,a,—1 = 0 forn > 2. Then (ii) holds.
Case (iii) can be proved in the same way.
Finally, let sy # t1 andsat; # 0 and assume,, = 0 for some nonnegative integer
n>3.Writeng=min{n e N; n >3, s,t, =0}.
If 5,, =0 (the case,, = 0 is analogous), then from (2.3) we dedueeP,) = 0 for
n>ngand(v, P,) # 0 for 1< n <ng— 1. HenceP, (x) = 0, (x) + Z;{oz—ll a0 (x)
(np—1)

holds for everyn > ng — 1, with a, # 0 (see [6,7]). In the same way as in (i), we
obtainsno,la,ﬁ’;"’l) =0, which is not possible. Se,t, # 0 forn > 3 and (iv) follows. O

Remark. The first situation is the trivial case, i.e?, = Q,, for everyn > 1. The second
and the third cases correspond to relations which had already been studied in [9]. For this
reason, from now on, we will only consider relations like (2.1) where all the parameters do
not vanish. Observe that, without lost of generality, we can supposethat 0.

In the seque|{ P, }, >0 denotes an SMOP which satisfies the three-term recurrence rela-
tion
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Pn+l(x)Z(X_ﬁn)Pn(x)_VnPnfl(x)v n=1,
Py(x) =1, Pi(x) =x — Bo, (2.4)
where{B,},>0 and{y,},>1 are sequences of complex numbers with# 0 forn > 1.

Now, we characterize the orthogonality of a sequef@g}, >0 of monic polynomials
defined by (2.1) from an SMOFP, },,>0.

Theorem 2.2. Let{ P, },>0 be a sequence of monic orthogonal polynomials with recurrence
coefficientss, andy,. We define recursively a sequenes, },, >0 of monic polynomials by
formula(2.1),i.e.,

Po(x) + snPr—1(x) = Qn(x) + 1, Qn-1(x), n =1,

wheres, andt, are complex numbers witky # n and s,t, = 0 for all n > 1. Then
{Qn}n>0 is an SMOP with recurrence coefficier({8,, y,} if and only if there exist two
complex numberg anda such that the following formulas hald

" #0, (2.5)
s2y1 — s1[y2 + s2(s3 — s2 — B2+ B1)]
=tp1 —t1[P2+ t2(ts — 2 — B2 + B)], (2.6)
Bn — Sn+1— M_a, w2, (2.7)
Sn
Bn—tn+1—f—”=a, n=2, (2.8)

n

where the coefficient$, and, are defined by

,3~n =tytl— It — (Sngl — Sn — ,Bn): n >0, (2-9)
Yn ="VYn+Sn Sng1—8n — Bu + Bu—1) —ta(tyy1 — ty — ,3~n + ,BNn—l)’
n>0, (2.10)

with so =10 =0=y0 = 70.

Proof. From the definition of0,, we get
Qn+1(x) = Pn+1(x) + Sn41 Py (x) — tn+1Qn(x)a n=0. (2-11)
Inserting formula (2.4) in (2.11) and applying (2.1)&, (x), we get that
Ont1(x) =x0p(x) + (Spg1 —Sp — B) Pu(x) + 1,2 Op—1(x) — 14100 (x)
- (Sn,anl + Vn)Pnfl(x) - SnJ/nfan72(x)s n=>1,

follows, provided we substitute theveP,_1(x), using again (2.4). Now, formula (2.1)
applied toP, (x) and the definition o8, (see (2.9)), yield
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Qn+1(x) = (¥ = Ba) Qn (%) + ta (11 — 1w — Bn) Qn-1(x)
— [snCsna1 = sn = Bu + Bu1) + V| Pa—1(x) — Sn¥n—1Pr—2(x)
— 1y Qn(x) —xQp-1(x)]
for n > 0. So {Q,},>0 is an SMOP if and only if there exists a sequence of complex
numberg(y,)7° with y, # 0 forn > 1, such that
tn (tn41 = tn = Bp) Qn—1(X) = [0 (sn+1 = 5n = Bn + Bu—1) + V] Pa—1(x)
= S0 Vn-1Pa—2(x) = 1a[ Qn(x) = x Qp-1(x)] = =P Qn-1(x). (2.12)

Moreover,3, andy, are the three-term recurrence coefficients@qr
Next, we are going to see the®,},>0 is an SMOP if and only if, for every > 1, the
relation
[J7n + (1 — 1y — Bn + anl)] On-1(x) + taVn-10n—2(x)
= [Vn + sn(Sn+1— Sn — Bn + ,Bn—l)]Pn—l(x) + Sp¥Yn—1Pn—2(x) (2.13)
holds, wherey, is given by (2.10).

Suppose thatQ,},>0 is an SMOP. Then, it is enough to substitute the expression
On(x) — xQy—1(x) from the three-term recurrence relation in formula (2.12) to obtain
(2.13).

Conversely, if (2.13) is satisfied then we show that the sequefgs,>o satisfies a
three-term recurrence relation, that{i@,}, > 0 is an SMOP.

Indeed, applying (2.4) in (2.13), and the definitiongaf for n > 1 we get

In (,Banlanl(x) + J7nlen72(x))
=VYnPn—1(x) + (fpy1 — tn — Bn)[sn Pp_1(x) — Qn—l(x)]
+ sn [xpn—l(x) - P (x)] — Yn Qn-1(x).
Substituting (2.1) ins, P,_1(x) — #, Qn—1(x) and, using again the definition ¢,, for
n > 1 we have
In (,én—lQn—l(x) + ?n—lQn—Z(x))
=Y Pro1(x) + (tpy1 — 1y — ,BNn)Qn(x) — (Sn+1 — Bu) Pu(x)
+ $px Py—1(x) — 7711 On-1(x).
Applying (2.1) ins, P,—1(x) as well as the recurrence relation {@,},>0, we get
In (,Banlanl(x) + J7nlen72(x))
=1n [)C On-1(x) — Qn(x)] = Pria(x)
+ 101100 (X) = S0P (X) = Bu Qn(X) + ¥ Qn(X) = 2 Qn-1(x), n>1.
Using again (2.1),
tn[Qn(x) = (x = Br-1) Qn-1(xX) + Pn-10n—2(x)]
= —0n41(0) + (¢ = B) Qn(X) = 7 Qu-1(x), n>1,
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ie.,

Qn1(x) = (& = B) Qn(x) = 72 Qu-1(x), n>0. (2.14)
Now, we will show that (2.12) is equivalent to formulas (2.6)—(2.8) in the statement of the
theorem.
From (2.1) it follows that formula (2.13) is equivalent to
{th;nfl - tnfl[J;n + (1 — 1y — ,gn + ,gnfl)]} On—2(x)
= {snynfl - snfl[Vn + Sn(Sn+1 — Sn — Bn + ,anl)]}PrHZ(x)
for everyn > 2.
Forn =2, we obtain (2.6) and when> 3, both coefficients in the last formula vanish.
Thus
Sn¥Vn-1= snfl[Vn + Sn(Snt+1 — Sn — Bn + 137171)]1 (2.15)
tnfnfl = tnfl[J;n +tn(tnt1 —th — Bn + anl)] (2-16)

hold. As a consequence, singg, = 0 for everyn > 1, (2.7) and (2.8) follow.
Conversely, it is easy to verify that from (2.6)—(2.8) we deduce (2.18).

Remarks. (1) Notice that, from (2.10), (2.15), and (2.16), we have

sl . S
":l Pu = ,;+1 Y. foreveryn > 2. (2.17)
n n

Thus,y, # 0 for everyn > 2.

(2) We want to point out that there are four initial conditioms:z1, s2, t2 connected
among them by the conditiofy £ 0. From the definition ofy» and formula (2.6) we
getss, which allows us to deducg, and from (2.17)z3. Finally, from (2.7) and (2.8) the
values ofs,, andr,, with n > 4, can be obtained.

Proposition 2.3. Let {P,},>0 be an SMOP ands,},>1. {f.},>1 Sequences of complex
numbers such thad; # 1 and s,t, # 0 for n > 1. If {Q,},>0 is & sequence of monic
polynomials defined b§2.1), then the orthogonality ofQ,},>0 depends at most of the
choice of the parameters, 1, s2, 2. More precisely{ Q,},>0 is an SMOP if and only if
the following conditions hold

(i) The parametef, defined by2.10) is different from zemp
(i) Formula(2.6)in Theoren®.2is true

—Su(a)
Sn—1(a) '
wherea = 82 — s3 — y2/s2 and S, is the generalized co-recursive polynomial of
order 1 with parameteru of the co-recursive polynomial af, (x, «), beingu =

$2 — P14+ y1/s1+a ando = s1+a — fo;

—Tu(a)
Ty-1(@)’

(iii) S.(a)#0 and s, =

2]

(iv) T,(@)#0 and t,=
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wherei = Bo—t3— 72/t andT,, is the generalized co-recursive polynomial of order
with parameterii of the co-recursive polynomial @, (x, @), beingi =12 — 1+
71/t1+aanda@ =1 +a — fo.

Proof. According to Theorem 2.2 it is enough to show that the conditions (iii) and (iv) are
equivalent to formulas (2.7) and (2.8).

In order to do this, we define a sequetigg}, >0 by yo = 1 andy, = —s, y,—1 for every
n>1.

Thusy, # 0 forn > 0 and, taking into account (2.7) in Theorem 2.2,

Ynr1i=1(a— B)yn — VuYn-1, n= 2,
y2=(a—pB1—mwy1—n, yi=a—fo—a

hold, withe andu defined as above. These formulas imply that S, (a), n > 0 (see [5]),
and therefore (iii) is true.

In a similar way, using (2.8), we conclude (iv).

Straightforward calculations allow us to deduce the converse.

Next, we characterize when two sequences of monic orthogonal polyndmidland
{0,} are related by formula (2.1), whenever all the coefficients are nonzero, in terms of
their functionals.

Theorem 2.4. Letu andv be quasi-definite linear functionals, normalized(byl) = 1=
(v, 1) and{P,},>0 and{Q,},>0 their corresponding SMOP with recurrence coefficients
{Bn, v»} and{B.. 7.}, respectively. Then, the following conditions are equivalent

(i) There exist complex sequendgs},>1, {t:},>1 With s1 # t1 ands,t, # 0 for n > 1,
such that{ P, },>0 and{Q,},>0 are related by(2.1), i.e.,

Py(x) + 8y Ppo1(x) = 0n(x) + 1, Op—1(x), n=1
(iiy Foreveryn > 1, P, # Q, and there exist complex numbers, a such that

(x —a)u=A(x —a)v. (2.18)
Moreover, for every: > 2, a = B, — Sp+1 — Vu/Sn anda = B — tys1 — Vn/tn.

Proof. (i) = (ii) From (2.3) we havev, P,) = (—=1)"*1s, .. .s2(11 — s1) and (v, P1) =
t1 — s1. This implies(v, P,) # 0 for alln > 1 and thenP, # Q,, for everyn > 1.

Because of formula (2.1) and the orthogonality 85 },,>0 with respect tas, for every
A € C, by straightforward calculations, we get

((x 4+ A)u, Q2) = (s2 — 12)y1 — t2(s1 — 1) (Bo + A). (2.19)
If we choose
_nls2—r) fo.

t2(s1—11)
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then we have((x + A)u, Q2) = 0. From this, using again (2.1), by induction we ob-
tain that ((x + A)u, Q,) =0 for n > 2. So, if we expandx + A)u in the dual basis
{Qjv/(v, Q?)} i>o (see[7]), it follows that

+ Au = 2.20
(x + Ayu = Zu, o Q2> (2.20)
where
o= (Bo+ A) = ri2—n) 1= [y1+ 61— (Bo+A)] = sz
f2(s1—11) 1)
In other words,
yi(s2 —12) V152 ~  yi(s2—12)
g+ 2T 2, N2 g 2T 2, 2.21
[x Po+ t2(s1—11) }u Y1tz [x Po+ s2(s1—11) ]U ( )

From (2.9) and (2.10), written for = 1, it follows that

71=y1+ (51— 11)(s2 — 51 — B1) + 5160 — 1o = y1+ (s1 — 11)(s2 — 1+ Bo),

where we have used that— B = 11 — fo.
Hence, we get

yils2 —12) _ y1s2— a2

sa(s1—11)  s2(s1—11)

On the other hand, using (2.10) and (2.7) writtenifet 2, and (2.6), we obtain

+ 52— B1+ Po. (2.22)

152 — Y1tz 2
M2 22 sy Bot+ Pr=—s2+BL—a. (2.23)
s2(s1—11) 2

So, (2.22) and (2.23) lead to
~ y —t
—fo+ yi(s2 —12) N

s2(s1—11)

In a similar way, it can be proved that

52—t .
—,30—1—7/1( 2 2):_0.

t2(s1—11)

Therefore relation (2.18) for the linear functionalandv follows from (2.21).

(il) = (i) Suppose that the linear functionalsv satisfy (2.18). Consider the Fourier ex-
pansion ofP, in terms of the polynomialg,,, that is, P, (x) = O, (x) + Z;;é)»nj 0;(x),
wherer,; = (v, P,Q;)/(v

Since

1 ) o a—1
_x(l—i-(a—a)(x—a) )u-l——)\ Sa;

we get, for0< j <n —1,
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(v, PaQj) = = . a<u’ Pa(x)Q;(x) = Pa(@)Q;(a)
X —a

_ a—&|:<u 0;(x) — 0@
— |{«-

A—1
>+ Y Pp(a)Qj(a)
P,y (x) — Py(a)
)

—da

Py (X)> + 0, (a)<u,

X —a
r—1 1 - )
+——Ph@Q;@= ij(a)[(k —DPya)+ (a—a)P, > (a)],

where{P,fl)}@o denotes the sequence of associated polynomials of first kind for the
SMOP{P,}n>0. Then

1 ~ p(D)
Py(x) = Qn(x) + x[(k —DPy(a)+@—a)P,” (a)|Ky-1(x,a; v),
n>1, (2.24)
and

(v, P) = %[()\ ~DP@)+@—-dPP @], n>1, (2.25)

whereK, _1(x, a; v) denotes the usual reproducing kernel associatedwvith
In a similar way, we get

0n(x) = Po() + [ = 1) 0 (@) + 1@ — ) 0" (@] Kn-1(x, a3 u), n>1,
and

(1, On) = [1 = 2)0u(@ + 1@ —a) Q1 @)].

whereK,_1(x, a; u) and{Qf,l)},,>0 denote the reproducing kernel associated witnd
the sequence of associated polynomials of first kind for the SM@RB,, >0, respectively.
Observe that from the conditioR, = Q,, n > 1, we get(v, P,) # 0 and{u, Q,) #0
for all n > 1. Then, writing formula (2.24) for andn — 1, easy computations yield
(v, Py) (v, Py) (v, Py)Qn—-1(a)

P, ——P, =0n(x)— - n—
0 (v, Pn—1) 100 =0n) |:(U’ Py—1) (v, Q%_l) 1|Q H®)

for everyn > 2. Now, applying the linear functional we get
(u, On) [ (v, Py) (v, Pn)Qn—l(a)j|
< 9

(W, On-1) L. Pi1)  (v.02 )
that is,
(v, Pu) N _ (u, On)
Py(x) — mpn—l(x) = 0n(x) 7@47 On1) On-1(x), n=2,

and therefore (i) holds with, = —(v, P,)/(v, P,—1) # 0 andt, = —(u, Q) /{u, QOn—1)
# 0 for everyn > 2.

SinceP1 #£ Q1 we can writeP1(x) + s1 = Q1(x) + 11 with s1 # 1 ands1t1 # 0.

Finally, from (2.25) we have thav, P,), up to a constant factor, is the evaluatioriin
of some orthogonal polynomial (eithé, or Pn(f)l or the co-recursive polynomial @t,).
Thus,(v, Py41) = (a — Bu) (v, Py) — yu{v, P,—1) forn > 2 and therefore = 8, — 5,11 —
vn/sn fOr n > 2. In a similar way, taking into account the explicit expressiouofQ,,) for
alln > 1, we obtaimi = B, — tyq1 — Ju/ta forn >2. 0O
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Remarks. (1) In the second part of the proof (that is @# (i), the conditionP, # Q,
for eachn is necessary. Indeed, if (i) is true aid = Q,, for somen > 2, thens,, =, and
Py—1=Qy_1; thus(v, P,) = 0= (v, P,—1) which is not possible sinc@, P,) = cR,(a),
wherec # 0 and{R, (x)},>0 iS a sequence of orthogonal polynomials.

(2) In general (2.18) does not impKy, # Q,, for eachn. Itis enoughto take =0=a
andv the Hermite linear functional. In such a case it can be shownfhat = Q2,1 for
everyn > 1.

On the other hand, under the conditions of Theorem 2.4 we have seen that there exists a
complex numbeut such that we hav®, (x) — 0, (x) = (v, P,)K,—1(x,a; v),n > 1, and
therefore

On-1(a)
(v, 05 ;)
Since(v, P,) #0,n > 1, it follows that for everyn > 1,

On-1(@)#0 &ty #sp.
Analogously, for every: > 1,

Pi—1(@#0 &ty #sy.

That is, both linear functionals — a)v and(x — a)u are quasi-definite if and only if for
everyn > 1,t, # sy,.

We can obtain a more simple expression for the parameteaadz, when the linear
functional (x — a)u is quasi-definite. Actually, lefW,, },,>0 be the SMOP with respect to
the quasi-definite linear functional = (x —a)u = A(x —a)v. By Theorem 1 in [9] we get

In — sp = (v, Py)

Py(x) =W, (x) —ap-1Wp-1(x), n>=1, (2-26)
On(x) =Wy(x) —byp—1Wp-1(x), n=>1, (2.27)
with
_ Py,_1(a) o~ On-1(a)
n—1="Vn P.(@) #0 and by_1=ypn 0, @) #0, n>1

Observe thaP1(x) — bo = Q1(x) — aop.

Now, suppose > 2. From (2.26) and (2.27) written farandn — 1 we deduce that
1-a,1 O P, (x)
0 1 —ay—2 Pp-1(x)
1-b,1 0 On(x)
0 1 —by—2 On-1(x)

and soPy (x) + sy Py—1(x) = Qn(x) + 1, Qp—1(x), n > 2, with

=0

ap-1—by 1 an-1—bp_1
sp=—b,_»——= and t, =—a,_o———.
an—2—by_2 an—2—by_2

Notice that, sinceP, # Q,, for everyn > 1, we havei,—1 # b,—1,n > 1.

(2.28)
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Moreover, it also follows that

Wi (x) = (bp—1 — an-1) " H(Pa(x) = Qu(x)) = (ta — 5p) " H(Pu(x) = Qu ().

In order to illustrate the results of Theorem 2.4 we show an example providing a relation
for Jacobi polynomials which, as far as we know, is new.

Assumex, 8 > 0. Letu andv be the Jacobi linear functionals with parameters 1, g
anda, 8 — 1, respectively, normalized by, 1) = 1 = (v, 1). Denote byP,f“’l’ﬁ) and
P,f“”s_l) the corresponding sequences of monic orthogonal polynomials.

Since(1 — x)u = af~1(1 + x)v and the linear functionall — x)u is quasi-definite,
from (2.26) and (2.27) we have

B-1
y(allﬁ)Pig L9 1) and b, — (af 1)P(aﬁ )(—1)
n+ ( 1,8 Vot ( iy

PP A Cei)

Using the properties of monic Jacobi polynomials (see [1]) and formula (2.28) we can
obtain

_ Zn(n +oa— 1) 1
(a—1,8) (a .B)
B Ot G et p—2@tarpo1 -t @
= PP V() — e+ f— D PP (). (2.29)

@n+a+B-2)2n+a+p-1) "~

For Jacobi polynomialp,(,“’ﬁ) with the classical normalizatiop,(,“’ﬁ)(l) (”*“) we have
the more simple relation

n+a-—1 (ot 1,8)

ntat+p—1m1
Vl+,3—1 1
—— P ).
n+a+p—-1

PP @) + (x)

_pnaﬂ l)( )

Relation (2.29) can be also obtained via the Darboux transformation without free pa-
rameter. Indeed, the sequen({:@é“’l’ﬂ)}@o and{P,f“’ﬂ’l)}@o are both (different) Dar-
boux transforms of the sequen{a@,f“’l’ﬁ’l)}@o. Explicitly, see [1, Exercise 7.8, p. 39],

(x + PP (x)
_ 24 Ppmtatp-1) g1
Cnt+a+B)2n+a+p—1"
(x = )PP D(x)
Ao tatB-1) eo1p-
@ tat+p@tatp-1"

—-1,8-1
@)+ PP ),

@)+ PP ). (2.30)

On the other hand, Theorem 2.4 assures that the polynom4s-? and p{*#~
satisfy a formula of the form (2.1). Plugging the relations (2.30) into the formula (2.1) we
can get (2.29).
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