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We prove that if a unital Banach algebra A is the dual of a Banach space A� then the set
of normal states is weak∗ dense in the set of all states on A. Further, normal states linearly
span A�.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

An important tool in functional analysis is Goldstine’s theorem [5, 3.27], which says that for a dual Banach space A the
unit ball of its predual A� is weak∗ dense in the unit ball B A� of the dual A� of A. Given a norm one element x ∈ A, we
may consider the set of ‘states’ Sx(A) = {ρ ∈ B A� : ρ(x) = 1} and the subset of ‘normal states’ Sx

n(A) = Sx ∩ A� . In general
Sx

n(A) need not be weak∗ dense in Sx(A), for Sx
n(A) may even be empty if x does not achieve its norm as a functional on A� .

In this note we show that if A is a unital Banach algebra and x = 1 is the unit of A (with ‖1‖ = 1), then the set of normal
states Sn(A) := S1

n(A) is weak∗ dense in the set S(A) := S1(A) of all states. Using this, we also show that Sn(A) spans
the predual of A. Of course, all this is well known for von Neumann algebras. That S(A) spans A� for any unital Banach
algebra A was proved by Moore [7] ([1,10] contain simpler proofs).

Our method is based on a consideration of dissipative elements. Recall that an element a ∈ A is dissipative if its numerical
range W (a) := {ρ(a): ρ ∈ S(A)} is contained in the left half-plane Re z � 0. To show that the set D A of all such elements
is weak∗ closed, if A is a dual space, we will need a suitable metric characterization of dissipative elements (Lemma 2.1
below). A similar, but not the same, characterization was observed in [2] for C∗-algebras; however, the argument from [2]
does not apply to Banach algebras. For each a ∈ D A the element 1 − a is invertible since its numerical range (hence also its
spectrum) is contained in the half-plane Re z � 1. We will only need the estimate

∥∥(1 − a)−1
∥∥ � 1 (a ∈ D A), (1.1)

which is known from the Hille–Yosida theorem on generators of operator semigroups [6]. In our present context it can easily
be derived by applying the well-known estimate ‖eta‖ � 1, t � 0 (see [4, p. 55] or [11, A13(4)]) to the integral representation
(1 − a)−1 = ∫ ∞

0 e−t(1−a) dt , which in turn can be verified directly.
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2. Dissipative elements and normal states

Lemma 2.1. An element a of a unital Banach algebra A is dissipative if and only if

‖1 + ta‖ � 1 + t2‖a‖2 for all t � 0. (2.1)

In particular, if ‖a‖ � 1, then a ∈ D A if and only if ‖1 + ta‖ � 1 + t2 for all t � 0.

Proof. If a satisfies (2.1), then for every state ρ ∈ S(A) and t > 0 we have that |1 + tρ(a)|2 = |ρ(1 + ta)|2 � ‖1 + ta‖2 �
(1 + t2‖a‖2)2. This implies that 2 Reρ(a) � t(2‖a‖2 − |ρ(a)|2) + t3‖a‖4, hence (letting t → 0) Reρ(a) � 0.

For a proof of the reverse direction, note that by (1.1) each a ∈ D A satisfies

‖1 + a‖ = ∥∥(1 − a)−1(1 − a2)∥∥ �
∥∥1 − a2

∥∥ � 1 + ‖a‖2.

But, since ta is also dissipative if t � 0, we may replace a by ta in the last inequality, which yields (2.1). The last sentence
of the lemma follows now easily. �

In C∗-algebras the estimate (2.1) can be improved to ‖1 + ta‖2 � 1 + t2‖a‖2 (a ∈ D A , t � 0), a consequence of the C∗-
identity [2]. This sharper estimate holds also in some other natural examples of Banach algebras, but the author does not
know if it holds in general. Since this topic is not essential for our purposes here, we will postpone further discussion on it
to the end of the paper.

Theorem 2.2. If a unital Banach algebra A is a dual Banach space, then D A is a weak∗ closed subset of A. Moreover, Sn(A) is weak∗
dense in S(A).

Proof. The proof is the same as for operator spaces [2]. Since it is very short, we will sketch it here for completeness. Since
D A is convex and t D A ⊆ D A if t � 0, to prove that D A is weak∗ closed, it suffices to show that the intersection of D A with
the closed unit ball of A is weak∗ closed (see e.g. [5, 4.44]). But this follows immediately from Lemma 2.1.

Denote by A�+ the set of all nonnegative multiples of states on A and by (D A)◦ the set of all ρ ∈ A� such that Reρ(a) � 0
for all a ∈ D A . Clearly A�+ ⊆ (D A)◦ . To prove that A�+ = (D A)◦ , let ρ ∈ (D A)◦ . Since it1 ∈ D A for all t ∈ R and −1 ∈ D A , it
follows that ρ(1) � 0. Since a − ‖a‖1 ∈ D A for each a ∈ A, we have that Reρ(a) � ‖a‖ρ(1). Replacing in this inequality a
by zx for all z ∈ C with |z| = 1, it follows that |ρ(a)| � ‖a‖ρ(1), hence ρ ∈ A�+ .

Now put A+
� = A� ∩ A�+ and (D A)◦ = (D A)◦ ∩ A� . Then A+

� = (D A)◦ . Since D A is weak∗ closed, a bipolar type argument

shows that D A = ((D A)◦)◦ and that (D A)◦ is weak∗ dense in (D A)◦ . This means that A+
� is weak∗ dense in A�+ . Now it

follows easily that Sn(A) is weak∗ dense in S(A). �
Corollary 2.3. Let A be as in Theorem 2.2. For every closed convex subset C of C the set AC = {a ∈ A: W (a) ⊆ C} is weak∗ closed
in A.

Proof. Since C is the intersection of half-planes containing it, this follows from the fact that A{Re z�0} = D A is weak∗
closed. �
Theorem 2.4. If A is as in Theorem 2.2, then Sn(A) spans A� . Each ω ∈ A� with ‖ω‖ < (e

√
2)−1 (where log e = 1) can be written as

ω = t1ω1 − t2ω2 + i(t3ω3 − t4ω4), where ω j ∈ Sn(A) and t j ∈ [0,1].

Proof. Put S = S(A) and Sn = Sn(A). For a subset V of A define the polar V � by V � = {ρ ∈ A�: |Reρ(a)| � 1 ∀a ∈ V }.
In the same way define also polars of subsets of A� and ‘prepolars’ V� of subsets of A or A� . Let U = S� . Then U is
the set of all elements a ∈ A with the numerical range contained in the strip |Re z| � 1, hence U is weak∗ closed by
Corollary 2.3. Since Sn is weak∗ dense in Sn by Theorem 2.2 and U = S� , it follows that U = S�

n , hence by the bipolar
theorem U� = co(−Sn ∪ Sn). Let V = iU ∩ U . Then V� is equal to the norm closure of the convex hull of (iU )� ∪ U� ,
hence (since (iU )� = −iU� = −i co(−Sn ∪ Sn)) V� is the closure of the set S0 := co(Sn ∪ (−Sn) ∪ (i Sn) ∪ (−i Sn)). On the
other hand, by the definition of U , V is just the set of all a ∈ A with the numerical range W (a) contained in the square
[−1,1] × [−i, i]. Since for every a ∈ A the inequality ‖a‖ � ew(a) holds, where w(a) is the numerical radius of a (see [4] or
[8, 2.6.4]), it follows that V is contained in the closed ball (

√
2e)B A of A with the center 0 and radius

√
2e. Consequently

S0 = V� ⊇ (
√

2e)−1 B A� .
Let T = {tω: ω ∈ Sn, t ∈ [0,1]}. Since Sn is norm closed and bounded and the interval [0,1] is compact, it is not hard to

verify that T is norm closed. Further, since Sn ⊆ T is convex and tT ⊆ T for all t ∈ [0,1], it follows from the definition of S0
that S0 ⊆ T0 := T − T + iT − iT . Therefore we conclude from the previous paragraph that B A� ⊆ √

2eT0. Thus, given ω ∈ A�

and δ ∈ (0,1), there exists ω0 ∈ ‖ω‖√2eT0 such that ‖ω − ω0‖ < δ. Applying the same to ω − ω0, we find ω1 ∈ δ
√

2eT0
such that ‖ω − ω0 − ω1‖ � δ2. Continuing, we find a sequence of functionals ωn ∈ δn

√
2eT0 such that

‖ω − ω0 − · · · − ωn‖ � δn+1.
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Thus ω = ω0 + ∑∞
n=1 ωn is of the form

ω = √
2e

(
‖ω‖ρ0 +

∞∑
n=1

δnρn

)
, (2.2)

where ρn ∈ T0. By the definition of T0 we have that ρn = ρn,1 − ρn,2 + i(ρn,3 − ρn,4), where ρn, j ∈ T = co({0} ∪ Sn). Put
γ = ‖ω‖ + ∑∞

n=1 δn = ‖ω‖ + δ(1 − δ)−1. Since T is closed and convex, ψ j := γ −1(‖ω‖ρ0, j + ∑∞
n=1 δnρn, j) ∈ T for each j.

From (2.2) we have now

ω = (
√

2e)γ
(
ψ1 − ψ2 + i(ψ3 − ψ4)

)
, (2.3)

a linear combination of normal states. If ‖ω‖ < (e
√

2)−1, we may choose δ so small that γ � (e
√

2)−1, and we then
conclude from (2.3) that ω is of the form ω = ∑3

j=0 t j i jω j , where ω j ∈ Sn and t j ∈ [0,1]. �
The well-known characterizations of hermitian elements in a Banach algebra [4,8,12] do not seem to imply easily that

the real subspace Ah of all such elements is weak∗ closed, if A is a dual Banach space. For this reason we state here
another simple characterization. In the case of C∗-algebras this characterization has been observed earlier by others and
demonstrated to be useful [3].

Proposition 2.5. An element h in a unital Banach algebra A is hermitian if and only if

‖h + it1‖2 � ‖h‖2 + t2 for all t ∈ R. (2.4)

Thus, if A is a dual Banach space, then Ah is a weak∗ closed subset of A.

Proof. If (2.4) holds, then for each ρ ∈ S(A),

∣∣ρ(h) + it
∣∣2 = ∣∣ρ(h + it1)

∣∣2 � ‖h‖2 + t2 (t ∈ R), (2.5)

which implies (by letting t → ∞) that ρ(h) ∈ R, hence h is hermitian. Conversely, if h is hermitian then (2.5) holds. But,
by a result of Sinclair [9] the norm of an element of the form a = h + λ1, where h is hermitian and λ ∈ C, is equal to the
spectral radius r(a), hence also to the numerical radius w(a) (since in general r(a) � w(a) � ‖a‖). Thus, taking in (2.5) the
supremum over all states ρ ∈ S(A), we get (2.4). �

The estimate

‖1 + a‖2 � 1 + ‖a‖2, (2.6)

which holds for all dissipative elements in C∗-algebras, holds in general Banach algebras at least for dissipative elements of
a special form. For example, using the fact that for hermitian elements the norm is equal to the spectral radius, it can be
shown that (2.6) holds for dissipative hermitian elements.

Proposition 2.6. In any unital Banach algebra A each dissipative element of the form a = −tp, where p is an idempotent and t ∈
(0,∞), satisfies the estimate (2.6).

Proof. By the well-known criterion [4, p. 55] −p is dissipative if and only if ‖e−tp‖ � 1 for all t � 0. From the Taylor series
expansion of e−tp we compute that e−tp = (1 − s)q + s1, where q = 1 − p and s = e−t . So, −p is dissipative if and only if
‖(1 − s)q + s1‖ � 1 for all s ∈ [0,1], which is equivalent to ‖q‖ � 1. Since the norm of any nonzero idempotent is at least 1,
we conclude that −p (hence also −sp, if s > 0) is dissipative if and only if ‖q‖ = 1.

To prove (2.6), where a = −tp is assumed dissipative (thus ‖q‖ = 1), consider first the case when t ∈ (0,1]. Put s = 1 − t
and note that

‖1 − tp‖2 = ∥∥s1 + (1 − s)q
∥∥2 �

(
s + (1 − s)‖q‖)2 = 1 � 1 + t2‖p‖2.

On the other hand, if t > 1, then

‖1 − tp‖2 = ∥∥q + (1 − t)p
∥∥2 �

(
1 + (t − 1)‖p‖)2 = 1 + t2‖p‖2 − 2t‖p‖(‖p‖ − 1

) − ‖p‖(2 − ‖p‖) � 1 + t2‖p‖2,

since 1 � ‖p‖ = ‖1 − q‖ � 2. �
Question. Do all dissipative elements in each unital Banach algebra satisfy (2.6)?
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