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1. Introduction

Let Rm and Rn be the m and n dimensional Euclidean spaces, respectively, where m,n are given positive integers. Denote
by Rn+ = {x = (x1, . . . , xn)�: xi � 0, i = 1, . . . ,n}, where the symbol � denotes the transpose. A nonempty subset P of Rn

is said to be a cone with apex at the origin iff λP ⊆ P for all λ > 0. P is said to be a convex cone iff P is a cone and
P + P = P . P is called a pointed cone iff P is a cone and P ∩ (−P ) = {0}. The dual cone (or positive polar cone) of a convex
cone P is given by

P∗ = {
z ∈ Rn: 〈z, x〉 � 0, ∀x ∈ P

}
,

where 〈·,·〉 denotes the inner product.
Let C ⊆ Rn be a closed, convex and pointed cone with the nonempty interior, i.e., int C 
= ∅, and K be a nonempty convex

subset of Rm . Let F : K → 2Rn
be a set-valued function with nonempty value. In this paper, we consider the following set-

valued vector optimization problem:

min
C\{0} F (x), subject to x ∈ K , (1.1)

✩ This work was supported by the National Natural Science Foundation of China (10671135, 70831005, 60804065), the Specialized Research Fund for the
Doctoral Program of Higher Education (20060610005), and the Natural Science Foundation of Sichuan Province (07ZA123).

* Corresponding author.
E-mail addresses: iesmguu@saturn.yzu.edu.tw (S.-M. Guu), nanjinghuang@hotmail.com (N.-J. Huang), junli1026@163.com (J. Li).

1 The author was partially supported under the grant of NSC 95-2213-E-155-049.
0022-247X/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2009.03.040

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:iesmguu@saturn.yzu.edu.tw
mailto:nanjinghuang@hotmail.com
mailto:junli1026@163.com
http://dx.doi.org/10.1016/j.jmaa.2009.03.040


S.-M. Guu et al. / J. Math. Anal. Appl. 356 (2009) 564–576 565
where minC\{0} denotes vector minimum with respect to the cone C\{0}. A pair (x∗, y∗) with x∗ ∈ K and y∗ ∈ F (x∗) is
called a vector minimal solution of F on K iff

(
y∗ − F (K )

) ∩ (
C\{0}) = ∅,

where F (K ) = ⋃
x∈K F (x).

We also consider the set-valued weak vector optimization problem as follows:

min
int C

F (x), subject to x ∈ K , (1.2)

where minint C denotes vector minimum with respect to the cone int C . A pair (x∗, y∗) with x∗ ∈ K and y∗ ∈ F (x∗) is called
a weak vector minimal solution of F on K iff

(
y∗ − F (K )

) ∩ int C = ∅.

Denote by MinC\{0} F (K ) and Minint C F (K ) the set of all vector minimal solutions of F on K and the set of all weak
vector minimal solutions of F on K , respectively. It is clear that MinC\{0} F (K ) ⊆ Minint C F (K ).

If F : K → Rn is a single-valued function, then (1.1) and (1.2) reduce to generalized vector Pareto problem (for short,
GVPP) and generalized weak vector Pareto problem (for short, GWVPP), respectively (see, for example, [1,10,13] and the
references therein). Furthermore, if C = Rn+ , then (1.1) and (1.2) become the classic vector Pareto problem (for short, VPP)
and the classic weak vector Pareto problem (for short, WVPP), respectively.

Let Φ : K → 2Rn×m
be a set-valued function with matrix-values. We will consider the following set-valued vector varia-

tional inequalities: find x∗ ∈ K and T ∗ ∈ Φ(x∗) such that

T ∗(y − x∗) �C\{0} 0 ∀y ∈ K , (1.3)

where the inequality denotes T ∗(y − x∗) /∈ −C\{0}. (1.3) can be called Stampacchia set-valued vector variational inequalities.
A pair (x∗, T ∗) with x∗ ∈ K and T ∗ ∈ Φ(x∗) is called a solution of (1.3). It is clear that (1.3) can be rewritten as

(T ∗x∗ − T ∗K ) ∩ (
C\{0}) = ∅,

where T ∗K = {T ∗ y: y ∈ K }.
We also consider the following set-valued weak vector variational inequalities: find x∗ ∈ K and T ∗ ∈ Φ(x∗) such that

T ∗(y − x∗) �int C 0 ∀y ∈ K , (1.4)

where the inequality means T ∗(y − x∗) /∈ − int C . A pair (x∗, T ∗) with x∗ ∈ K and T ∗ ∈ Φ(x∗) is called a solution of (1.4).
Analogously, (1.4) can be rewritten as

(T ∗x∗ − T ∗K ) ∩ int C = ∅.

Denote by S S and SSW the set of all solutions of (1.3) and the set of all solutions of (1.4), respectively. Clearly, S S ⊆ SSW .
As it is well known, vector optimization problems (for short, VOP) are closely related to vector variational inequalities

(for short, VVI) (see, for example, [1–3] and the references therein). Among solution approaches for VOP and VVI, scalar-
ization is one of the most analyzed topics at least from the computational point of view (see, for example, [1,6–10,12,13]).
In [4], Giannessi, Mastroeni and Pellegrini presented some scalarization approaches for GVPP and GWVPP. They set up scalar
minimization problems for GVPP and GWVPP. Furthermore, they extended these methods to the study of VVI. Goh and
Yang [5] also established a scalar variational inequality (for short, VI) for a weak vector variational inequality (for short,
WVVI) and studied relationships between VI and WVVI. In [9], Konnov suggested a scalarized VI for (1.4) (in Banach spaces)
and presented the equivalence between them under the assumption of each component of set-valued function Φ having
convex and compact values.

Inspired by the work mentioned above, the purpose of this paper is to present some scalarization methods for (1.1)–(1.4).
For this, we establish some equivalence relationships among set-valued (scalar) optimization problems (for short, SOP) and
set-valued (scalar) quasi-optimization problems (for short, SQOP), (1.1) and (1.2) under convexity assumption of the objective
functions. We then give some examples to illustrate the scalarization techniques. Furthermore, we exploit similar approaches
to study (1.3) and (1.4). We also derive some equivalence relations among set-valued (scalar) variational inequalities (for
short, SVI), set-valued (scalar) quasi-variational inequalities (for short, SQVI), (1.3) and (1.4) under suitable conditions. The
scalarization approach for (1.4) presented in this paper is different from that of Konnov [9].

2. Preliminaries

In this section, we will recall some basic definitions and present several useful lemmas and propositions.
It is well known that the convexity plays an important role in the investigation of optimization problems and variational

inequality problems. We recall first the following concepts for set-valued functions.
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Definition 2.1. A set-valued function F : K → 2Rn
is said to be

(i) affine iff

αF (x) + (1 − α)F (y) ⊆ F
(
αx + (1 − α)y

) ∀x, y ∈ K , α ∈ [0,1];
(ii) C-multifunction iff

αF (x) + (1 − α)F (y) ⊆ F
(
αx + (1 − α)y

) + C ∀x, y ∈ K , α ∈ [0,1];
(iii) C-multifunctionlike iff F (K ) + C is convex.

Remark 2.1. In the case of (ii), if F is a single-valued function, then F is called C-function [2]. Furthermore, if n = 1 and
C = R+ (C = −R+), then C-multifunction shrinks to convex (concave) function.

Remark 2.2. When n = 1 and C = R+ (C = −R+), then (ii) of Definition 2.1 characterizes convex (concave) multifunctions.

Remark 2.3. Under the assumption that C is a closed, convex and pointed cone, it is easy to see that if F is affine, then it
is C-multifunction and has convex values. But the converse is not true in general.

Example 2.1. Let m = n = 2, C = R2+ , K = [0,1] × [0,1] and

F (x) = [
0,max{x1, x2}

] × [
0,max{x1, x2}

] ∀x = (x1, x2)
� ∈ K .

One can easily verify that F is C-multifunction with convex values. However, F is not affine. In fact, for x0 = (1,0)� ,
y0 = ( 1

4 , 1
2 )� ∈ K and α0 = 1

2 , one has

α0 F (x0) + (1 − α0)F (y0) = 1

2

{
[0,1] × [0,1] +

[
0,

1

2

]
×

[
0,

1

2

]}
=

[
0,

3

4

]
×

[
0,

3

4

]
,

F
(
α0x0 + (1 − α0)y0

) = F

((
5

8
,

1

4

)�)
=

[
0,

5

8

]
×

[
0,

5

8

]

and so

α0 F (x0) + (1 − α0)F (y0) ⊃ F
(
α0x0 + (1 − α0)y0

)
.

From the definition, it is easy to see the following lemma is true.

Lemma 2.1. The following assertions hold:

(i) If F is affine, then F (K ) is convex and so F is C-multifunctionlike;
(ii) If F is C-multifunction, then F is C-multifunctionlike.

The following result is useful for the study of (1.3) and (1.4) in Section 4.

Lemma 2.2. Let Υ : K → 2Rn×m
be a set-valued function with matrix-values and c� ∈ Rn be given. If Υ is affine, then Υc� and Υ �

c�
are affine, where Υc� and Υ �

c� are defined by Υc� (x) = c�� Υ (x) = {c�� T : T ∈ Υ (x)} and Υ �
c� (x) = (Υc� (x))� = (Υ (x))�c� = {T �c�:

T ∈ Υ (x)} for all x ∈ K , respectively.

Proof. Assume that Υ is affine. Let x, y ∈ K and α ∈ [0,1] be any given. For any u ∈ Υc� (x) and v ∈ Υc� (y), there exist
T1 ∈ Υ (x) and T2 ∈ Υ (y) such that u = c�� T1 and v = c�� T2. Note that the convexity of K implies that αx + (1 − α)y ∈ K .
Since Υ is affine, one has

αu + (1 − α)v = αc�� T1 + (1 − α)c�� T2

= c��
(
αT1 + (1 − α)T2

)
∈ c��

(
αΥ (x) + (1 − α)Υ (y)

)
⊆ c�� Υ

(
αx + (1 − α)y

)
= Υc�

(
αx + (1 − α)y

)
.

Since u ∈ Υc� (x) and v ∈ Υc� (y) are arbitrary, it follows that
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αΥc� (x) + (1 − α)Υc� (y) ⊆ Υc�
(
αx + (1 − α)y

)
,

which implies the affinity of Υc� .
The affinity of Υ �

c� follows directly from that of Υc� by means of a transposition. The proof is complete. �
In order to apply the scalarization technique for the study of (1.1)–(1.4), we also need the following lemma.

Lemma 2.3. The following arguments hold:

(i) If F is affine, then 〈c∗, F (·)〉 is affine, where c∗ ∈ Rn, 〈c∗, A〉 = {〈c∗,a〉: a ∈ A} and A ⊆ Rn;
(ii) Let c∗ ∈ C∗ . If F is C-multifunction, then 〈c∗, F (·)〉 is R+-multifunction.

Proof. Let c∗ ∈ Rn be any given. Set Σ(x) = 〈c∗, F (x)〉 for all x ∈ K .
(i) Suppose that F is affine. Then for any given x, y ∈ K and α ∈ [0,1], we have αx + (1 −α)y ∈ K since K is convex, and

αF (x) + (1 − α)F (y) ⊆ F
(
αx + (1 − α)y

)
.

For any fixed u ∈ Σ(x) and v ∈ Σ(y), there are a ∈ F (x) and b ∈ F (y) such that u = 〈c∗,a〉 and v = 〈c∗,b〉. Thus,

αu + (1 − α)v = α〈c∗,a〉 + (1 − α)〈c∗,b〉
= 〈

c∗,αa + (1 − α)b
〉

∈ 〈
c∗,αF (x) + (1 − α)F (y)

〉
⊆ 〈

c∗, F
(
αx + (1 − α)y

)〉
= Σ

(
αx + (1 − α)y

)
,

which implies that

αΣ(x) + (1 − α)Σ(y) ⊆ Σ
(
αx + (1 − α)y

)
.

(ii) Let c∗ ∈ C∗ . Assume that F is C-multifunction. Then for any given x, y ∈ K and α ∈ [0,1], we obtain αx+(1−α)y ∈ K
since K is convex, and

αF (x) + (1 − α)F (y) ⊆ F
(
αx + (1 − α)y

) + C .

For any u ∈ Σ(x) and v ∈ Σ(y), there are a ∈ F (x) and b ∈ F (y) such that u = 〈c∗,a〉 and v = 〈c∗,b〉, and thus

αu + (1 − α)v = α〈c∗,a〉 + (1 − α)〈c∗,b〉
= 〈

c∗,αa + (1 − α)b
〉

∈ 〈
c∗,αF (x) + (1 − α)F (y)

〉
⊆ 〈

c∗, F
(
αx + (1 − α)y + C

)〉
⊆ 〈

c∗, F
(
αx + (1 − α)y

)〉 + 〈
c∗, C

〉
⊆ Σ

(
αx + (1 − α)y

) + R+.

Consequently,

αΣ(x) + (1 − α)Σ(y) ⊆ Σ
(
αx + (1 − α)y

) + R+.

This completes the proof. �
As it is well known, monotonicity and C-operator are closely related to each other.

Definition 2.2. A set-valued function M : K → 2Rn×m
with matrix-values (i.e., for any x ∈ K and T ∈ M(x), T is a n × m-

matrix) is called a C-operator iff, for any x1, x2 ∈ K ,

(T1 − T2)(x1 − x2) ∈ C ∀T1 ∈ M(x1), T2 ∈ M(x2).

Definition 2.3. A set-valued function N : K → 2Rm
is said to be monotone iff, for any x1, x2 ∈ K ,

〈u1 − u2, x1 − x2〉 � 0 ∀u1 ∈ N(x1), u2 ∈ N(x2).
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We now present the following proposition.

Proposition 2.1. Let c� ∈ C∗ be given and Ψ : K → 2Rn×m
be a C-operator. Then Ψ �

c� (x) is monotone, where Ψ �
c� is given by Ψ �

c� (x) =
(c�� Ψ (x))� = (Ψ (x))�c� for all x ∈ K .

Proof. Let x1, x2 ∈ K . Since Ψ is a C-operator,

(T1 − T2)(x1 − x2) ∈ C ∀T1 ∈ Ψ (x1), T2 ∈ Ψ (x2).

Since c� ∈ C∗ , it follows that

〈
c�, (T1 − T2)(x1 − x2)

〉
� 0 ∀T1 ∈ Ψ (x1), T2 ∈ Ψ (x2)

and so

〈u1 − u2, x1 − x2〉 = 〈
(T1 − T2)

�c�, x1 − x2
〉 = 〈

c�, (T1 − T2)(x1 − x2)
〉
� 0 ∀u1 ∈ Ψ �

c� (x1), u2 ∈ Ψ �
c� (x2),

where u1 = T �
1 c� and u2 = T �

2 c� . The proof is complete. �
3. Scalarization approaches for (1.1) and (1.2)

In [4], Giannessi, Mastroeni and Pellegrini presented a scalarization method to investigate GVPP and GWVPP. They as-
sumed that the objective functions appeared in Propositions 7 and 13 are C-function and C-convexlike, respectively. In this
section, we extend the scalarization method of Giannessi, Mastroeni and Pellegrini to study (1.1) and (1.2). For this, we
define optimization problems that are scalarization of (1.1) and (1.2) and establish the equivalence between them under the
assumption that objective functions are C-multifunctionlike.

Define the set-valued functions S, H, Gc∗ : K → 2K , respectively, by

S(x) = {
y ∈ K : F (y) ⊆ F (x) − C

} ∀x ∈ K ,

H(x) = {
y ∈ K : F (y) ∩ (

F (x) − C
) 
= ∅} ∀x ∈ K ,

and

Gc∗ (x) = {
y ∈ K :

〈
c∗, F (y)

〉 ∩ (〈
c∗, F (x)

〉 − R+
) 
= ∅} ∀x ∈ K ,

where c∗ ∈ C∗ is a given point.

Remark 3.1. If F collapses to a single-valued function, then

S(x) = H(x) = {
y ∈ K : F (y) ∈ F (x) − C

} ∀x ∈ K

and

Gc∗ (x) = {
y ∈ K :

〈
c∗, F (y)

〉
�

〈
c∗, F (x)

〉} ∀x ∈ K ,

which were considered by Giannessi, Mastroeni and Pellegrini [4].

Now we investigate some properties of set-valued functions S, H and Gc∗ given above.

Proposition 3.1. For any given c∗ ∈ C∗ , the following inclusions hold:

x ∈ S(x) ⊆ H(x) ⊆ Gc∗ (x) ∀x ∈ K .

Proof. Clearly, x ∈ S(x) ⊆ H(x) for all x ∈ K . It suffices to show that H(x) ⊆ Gc∗ (x) for all x ∈ K . For any x ∈ K and z ∈ H(x),
we know that z ∈ K and

F (z) ∩ (
F (x) − C

) 
= ∅.

Consequently, there are u ∈ F (z), v ∈ F (x) and c ∈ C such that u = v − c. Since c∗ ∈ C∗ , we have

〈c∗, u〉 = 〈c∗, v − c〉 = 〈c∗, v〉 − 〈c∗, c〉 � 〈c∗, v〉,
or equivalently,
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〈
c∗, F (z)

〉 ∩ (〈
c∗, F (x)

〉 − R+
) 
= ∅,

which yields that

z ∈ {
y ∈ K :

〈
c∗, F (y)

〉 ∩ (〈
c∗, F (x)

〉 − R+
) 
= ∅} = Gc∗ (x).

The proof is complete. �
Proposition 3.2. Assume that x ∈ S(y) for some y ∈ K . For any given c∗ ∈ C∗ , the following inclusions hold:

(i) H(x) ⊆ H(y);
(ii) Gc∗ (x) ⊆ Gc∗ (y).

Proof. Let y ∈ K and x ∈ S(y). Then

F (x) ⊆ F (y) − C . (3.1)

(i) Assume that u ∈ H(x). Then,

F (u) ∩ (
F (x) − C

) 
= ∅. (3.2)

Since C is a convex cone, (3.1) and (3.2) imply that

∅ 
= F (u) ∩ (
F (x) − C

) ⊆ F (u) ∩ (
F (y) − C − C

) ⊆ F (u) ∩ (
F (y) − C

)
and so u ∈ H(y). This yields that H(x) ⊆ H(y).

(ii) Since c∗ ∈ C∗ , it follows from (3.1) that

〈
c∗, F (x)

〉 ⊆ 〈
c∗, F (y) − C

〉 ⊆ 〈
c∗, F (y)

〉 − 〈
c∗, C

〉 ⊆ 〈
c∗, F (y)

〉 − R+. (3.3)

Let v ∈ Gc∗ (x). Then

〈
c∗, F (v)

〉 ∩ (〈
c∗, F (x)

〉 − R+
) 
= ∅. (3.4)

From (3.3) and (3.4), we have

∅ 
= 〈
c∗, F (v)

〉 ∩ (〈
c∗, F (x)

〉 − R+
) ⊆ 〈

c∗, F (v)
〉 ∩ (〈

c∗, F (y)
〉 − R+ − R+

) ⊆ 〈
c∗, F (v)

〉 ∩ (〈
c∗, F (y)

〉 − R+
)

and so

〈
c∗, F (v)

〉 ∩ (〈
c∗, F (y)

〉 − R+
) 
= ∅.

By the definition of Gc∗ , we have v ∈ Gc∗ (y). Thus, Gc∗ (x) ⊆ Gc∗ (y) as v ∈ Gc∗ (x) is arbitrary. The proof is complete. �
The following proposition shows that the affinity of H and Gc∗ is related closely to that of F , where c∗ ∈ C∗ is given.

Proposition 3.3. If F is affine, then

(i) H is affine;
(ii) Gc∗ is affine for any c∗ ∈ Rn.

Proof. (i) We first prove that H is affine. For any x, y ∈ K and α ∈ [0,1], let u ∈ H(x) and v ∈ H(y). Then, there are u, v ∈ K
such that

F (u) ∩ (
F (x) − C

) 
= ∅
and

F (v) ∩ (
F (y) − C

) 
= ∅.

That is, there exist a ∈ F (u), b ∈ F (v), w ∈ F (x) and z ∈ F (y) such that

a ∈ w − C (3.5)

and

b ∈ z − C . (3.6)
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The convexity of K implies that αu + (1 − α)v,αx + (1 − α)y ∈ K . Since F is affine and C is a convex cone, it follows from
(3.5) and (3.6) that

αa + (1 − α)b ∈ {
αF (u) + (1 − α)F (v)

} ∩ {
αw + (1 − α)z − C

}
⊆ F

(
αu + (1 − α)v

) ∩ {
αF (x) + (1 − α)F (y) − C

}
⊆ F

(
αu + (1 − α)v

) ∩ {
F
(
αx + (1 − α)y

) − C
}
,

or equivalently,

F
(
αu + (1 − α)v

) ∩ {
F
(
αx + (1 − α)y

) − C
} 
= ∅.

This implies that

αu + (1 − α)v ∈ H
(
αx + (1 − α)y

)
. (3.7)

Since u ∈ H(x) and v ∈ H(y) are arbitrary, from (3.7), we have

αH(x) + (1 − α)H(y) ⊆ H
(
αx + (1 − α)y

)
,

that is, H is affine.
(ii) Since F is affine, from Lemma 2.3(i), 〈c∗, F (·)〉 is affine for any c∗ ∈ Rn . Similarly, we can show that Gc∗ is affine. The

proof is complete. �
Let c0 ∈ C∗ be given. Now, we consider the following set-valued (scalar) optimization problems:
Set-valued (scalar) optimization problem (for short, SOP):

min
R+\{0}

〈
c0, F (x)

〉
, subject to x ∈ K ,

where minR+\{0} denotes minimum with respect to the cone R+\{0};
Set-valued (scalar) quasi-optimization problem (for short, SQOP):

min
R+\{0}

〈
c0, F (x)

〉
, subject to x ∈ Ξ(y),

which depends on the parameter y ∈ K , and where Ξ = H, Gc0 .

Remark 3.2. We would like to point out that SOP is still a problem of type of (1.1). In fact, if n = 1 and C = R+ , then (1.1)
collapses to SOP.

A pair (x∗, 〈c0, y∗〉) with x∗ ∈ K and y∗ ∈ F (x∗) is called a minimal solution of 〈c0, F (·)〉 on K iff
(〈c0, y∗〉 − 〈

c0, F (K )
〉) ∩ (

R+\{0}) = ∅.

A pair (x∗, 〈c0, y∗〉) with x∗ ∈ Ξ(y) and y∗ ∈ F (x∗) is called a minimal solution of 〈c0, F (·)〉 on Ξ(y) iff
(〈c0, y∗〉 − 〈

c0, F
(
Ξ(y)

)〉) ∩ (
R+\{0}) = ∅.

Denote by MinR+\{0}〈c0, F (K )〉 and MinR+\{0}〈c0, F (Ξ(y))〉 the set of all minimal solutions of 〈c0, F (·)〉 on K and the set
of all minimal solutions of 〈c0, F (·)〉 on Ξ(y), respectively.

If F is affine, then from Lemma 2.3 and Proposition 3.3, we know that 〈c0, F (·)〉, H and Gc0 are affine. Thus, the following
result holds immediately.

Proposition 3.4. Suppose that F is affine. Then, the objective functions SOP and SQOP are affine and the feasible sets of SOP and SQOP
are convex.

If x∗ ∈ H(y), then it follows from Proposition 3.1 that H(y) ⊆ Gc0 (y) ⊆ K and so the following proposition is true.

Proposition 3.5. Let y ∈ K and x∗ ∈ H(y). Then,

(i) (x∗, 〈c0, y∗〉) ∈ MinR+\{0}〈c0, F (K )〉 implies (x∗, 〈c0, y∗〉) ∈ MinR+\{0}〈c0, F (Gc0 (y))〉;
(ii) (x∗, 〈c0, y∗〉) ∈ MinR+\{0}〈c0, F (Gc0 (y))〉 implies (x∗, 〈c0, y∗〉) ∈ MinR+\{0}〈c0, F (H(y))〉.

Proposition 3.6. Let y0 ∈ K and x0 ∈ S(y0) be given. If (x0, 〈c0, z0〉) ∈ MinR+\{0}〈c0, F (H(y0))〉, then (x0, 〈c0, z0〉) ∈
MinR+\{0}〈c0, F (H(x0))〉.
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Proof. By using Proposition 3.2(i), one can easily prove the conclusion. �
Under some suitable conditions, we prove the following equivalence among SOP, (1.1) and (1.2).

Theorem 3.1. The following conclusions hold:

(i) Let c0 ∈ int C∗ . If (x∗, 〈c0, y∗〉) ∈ MinR+\{0}〈c0, F (K )〉, then (x∗, y∗) ∈ MinC\{0} F (K ) and so (x∗, y∗) ∈ Minint C F (K );
(ii) Suppose that F is C-multifunctionlike. If (x∗, y∗) ∈ MinC\{0} F (K ), then there is c y∗ ∈ C∗\{0} such that (x∗, 〈c y∗ , y∗〉) ∈

MinR+\{0}〈c y∗ , F (K )〉;
(iii) Suppose that F is C-multifunctionlike. If (x∗, y∗) ∈ Minint C F (K ), then there is c y∗ ∈ C∗\{0} such that (x∗, 〈c y∗ , y∗〉) ∈

MinR+\{0}〈c y∗ , F (K )〉.

Proof. (i) Let (x∗, 〈c0, y∗〉) ∈ MinR+\{0}〈c0, F (K )〉. Then, there exist x∗ ∈ K and y∗ ∈ F (x∗) such that

{〈c0, y∗〉 − 〈
c0, F (K )

〉} ∩ (
R+\{0}) = ∅. (3.8)

Suppose to the contrary that (x∗, y∗) /∈ MinC\{0} F (K ), that is,

{
y∗ − F (K )

} ∩ (
C\{0}) 
= ∅.

Then, there are u ∈ K and z ∈ F (u) such that

y∗ − z ∈ C\{0}. (3.9)

Since c0 ∈ int C∗ , (3.9) implies that

〈c0, y∗〉 − 〈c0, z〉 = 〈c0, y∗ − z〉 > 0,

or equivalently,

{〈c0, y∗〉 − 〈
c0, F (K )

〉} ∩ (
R+\{0}) 
= ∅,

which is a contradiction with (3.8). Since MinC\{0} F (K ) ⊆ Minint C F (K ), one has (x∗, y∗) ∈ Minint C F (K ).
(ii) Since MinC\{0} F (K ) ⊆ Minint C F (K ), the conclusion follows from (iii).
(iii) Let (x∗, y∗) ∈ Minint C F (K ). Then, there exist x∗ ∈ K and y∗ ∈ F (x∗) such that

{
y∗ − F (K )

} ∩ (int C) = ∅. (3.10)

Since

{
y∗ − F (K )

} ∩ (int C) = {
y∗ − F (K )

} ∩ (C + int C) = {
y∗ − (

F (K ) + C
)} ∩ (int C), (3.11)

it follows from (3.10) and (3.11) that

{
y∗ − (

F (K ) + C
)} ∩ (int C) = ∅. (3.12)

Since F is C-multifunctionlike, we know that F (K )+C is convex, and so is y∗ − (F (K )+C). By using the separation theorem
(see, for example, [11]), it follows from (3.12) that there is c y∗ ∈ Rn\{0} such that

〈
c y∗ , y∗ − (u + c)

〉
� 0 � 〈c y∗ , x〉 ∀u ∈ F (K ), ∀c ∈ C, ∀x ∈ int C . (3.13)

Since int C + C = int C , from the second inequality in (3.13) one can easily check that c y∗ ∈ C∗\{0}. Setting c = 0 in (3.13),
one has

〈c y∗ , y∗ − u〉 � 0 ∀u ∈ F (K ),

or equivalently,

{〈c y∗ , y∗〉 − 〈
c y∗ , F (K )

〉} ∩ (
R+\{0}) = {〈

c y∗ , y∗ − F (K )
〉} ∩ (

R+\{0}) = ∅,

which yields (x∗, 〈c y∗ , y∗〉) ∈ MinR+\{0}〈c y∗ , F (K )〉. �
Now we give an example to illustrate the scalarization approaches.
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Example 3.1. Let m = n = 2, C = R2+ , K = [0,1] × [0,1] and F (x) = [0, x1] × [0, x2] for any x = (x1, x2)
� ∈ K . One can easily

verify that F is affine and so is C-multifunctionlike, C∗ = R2+ , F (K ) = K .
Let c∗ = ( 1

2 , 1
2 )� ∈ C∗ . Then

S(x) = {y ∈ K : y ∈ x − C} = [0, x1] × [0, x2] ∀x ∈ K ,

H(x) = K ∀x ∈ K ,

and

Gc∗ (x) = K ∀x ∈ K .

It is clear that Propositions 3.1–3.6 hold. We now check that all the conclusions (i)–(iii) of Theorem 3.1 hold.
(i) Let x∗ = ( 1

2 , 1
2 )� ∈ K , c0 = (1,1)� ∈ int C∗ and y∗ = (0,0)� ∈ [0, 1

2 ] × [0, 1
2 ] = F (x∗). Then, we have

〈c0, y∗〉 = 0

and

〈
c0, F (K )

〉 = 〈c0, K 〉 = {
x1 + x2: (x1, x2)

� ∈ K
} = [0,2].

Thus,

〈c0, y∗〉 − 〈
c0, F (K )

〉 = 0 − [0,2] = [−2,0]
and so

{〈c0, y∗〉 − 〈
c0, F (K )

〉} ∩ (
R+\{0}) = ∅,

that is, (x∗, 〈c0, y∗〉) ∈ MinR+\{0}〈c0, F (K )〉. One can easily verify that (x∗, y∗) ∈ MinC\{0} F (K ) and (x∗, y∗) ∈ Minint C F (K ).
In fact, since

y∗ − F (K ) = (0,0)� − K = [−1,0] × [−1,0],
we have

{
y∗ − F (K )

} ∩ (
C\{0}) = ∅,

and

{
y∗ − F (K )

} ∩ int C = ∅.

(ii) Let x∗ = ( 1
2 , 1

2 )� ∈ K and y∗ = (0,0)� ∈ [0, 1
2 ] × [0, 1

2 ] = F (x∗). Then,

y∗ − F (K ) = (0,0)� − K = [−1,0] × [−1,0]
and so

{
y∗ − F (K )

} ∩ (
C\{0}) = ∅,

that is, (x∗, y∗) ∈ MinC\{0} F (K ). For c y∗ = (1,0)� ∈ C∗\{0}, we have

〈c y∗ , y∗〉 = 0

and

〈
c y∗ , F (K )

〉 = 〈c y∗ , K 〉 = {
x1: (x1, x2)

� ∈ K
} = [0,1].

Consequently,

〈c y∗ , y∗〉 − 〈
c y∗ , F (K )

〉 = 0 − [0,1] = [−1,0]
and hence

{〈c y∗ , y∗〉 − 〈
c y∗ , F (K )

〉} ∩ (
R+\{0}) = ∅,

i.e., (x∗, 〈c y∗ , y∗〉) ∈ MinR+\{0}〈c y∗ , F (K )〉.
(iii) Let x∗ = ( 1

2 , 1
2 )� ∈ K , y∗ = (0,0)� ∈ [0, 1

2 ] × [0, 1
2 ] = F (x∗) and c y∗ = (1,1)� ∈ C∗\{0}. As shown in (i) and (ii), we

can obtain (x∗, y∗) ∈ Minint C F (K ) and
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{〈c y∗ , y∗〉 − 〈
c y∗ , F (K )

〉} ∩ (
R+\{0}) = {〈c y∗ , y∗〉 − 〈c y∗ , K 〉} ∩ (

R+\{0})
= {

0 − {
x1 + x2: (x1, x2)

� ∈ K
}} ∩ (

R+\{0})
= {

0 − [0,2]} ∩ (
R+\{0})

= [−2,0] ∩ (
R+\{0})

= ∅,

that is, (x∗, 〈c y∗ , y∗〉) ∈ MinR+\{0}〈c y∗ , F (K )〉.

Remark 3.3.

(a) If F is a single-valued function, then Propositions 3.1 and 3.2 reduce to Propositions 9 and 11 in [4], respectively.
(b) If F is a single-valued function, then (i) and (iii) of Theorem 3.1 reduce to (i) and (ii) of Proposition 13 in [4], respec-

tively.

4. Scalarization approaches for (1.3) and (1.4)

By exploiting the similar scalarization techniques presented in Section 3, we turn to the investigation of (1.3) and (1.4)
in this section.

Define set-valued functions �,Θ and Θc� : K → 2K , respectively, by

�(x) = {
y ∈ K : Φ(x)y ⊆ Φ(x)x − C

} ∀x ∈ K ,

Θ(x) = {
y ∈ K : Φ(x)y ∩ (

Φ(x)x − C
) 
= ∅} ∀x ∈ K ,

and

Θc� (x) = {
y ∈ K :

〈
Φc� (x), y

〉 ∩ (〈
Φc� (x), x

〉 − R+
) 
= ∅} ∀x ∈ K ,

where

Φc� (x) = (
Φ(x)

)�
c� = {

T �c� : T ∈ Φ(x)
}

and c� ∈ C∗ is a given point.

Remark 4.1. If Φ collapses to a single-valued function and K = Rm , then

�(x) = Θ(x) = {
y ∈ K : Φ(x)y ∈ Φ(x)x − C

} ∀x ∈ K ,

and

Θc� (x) = {
y ∈ K :

〈
Φc� (x), y

〉
�

〈
Φc� (x), x

〉} ∀x ∈ K ,

which were considered by Giannessi, Mastroeni and Pellegrini [4].

The following proposition gives some interesting relations among set-valued functions �, Θ and Θc� defined above.

Proposition 4.1. Let c� ∈ C∗ be given. Then, the following relations hold:

x ∈ �(x) ⊆ Θ(x) ⊆ Θc� (x) ∀x ∈ K .

Proof. It is clear that x ∈ �(x) ⊆ Θ(x) for all x ∈ K . It suffices to show that Θ(x) ⊆ Θc� (x) for all x ∈ K . Let x ∈ K and
y ∈ Θ(x). Then,

Φ(x)y ∩ (
Φ(x)x − C

) 
= ∅,

and so there are T1, T2 ∈ Φ(x) such that

T1 y − T2x ∈ −C .

Since c� ∈ C∗ ,

〈
(T1)

�c�, y
〉 − 〈

(T2)
�c�, x

〉 = 〈c�, T1 y − T2x〉 � 0
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and so

〈
Φc� (x), y

〉 ∩ (〈
Φc� (x), x

〉 − R+
) 
= ∅,

that is,

y ∈ Θc� (x).

This completes the proof. �
Under the affinity of Φ , one can prove that Θ and Θc� have convex values. However, the affinity of Θ and Θc� cannot

be derived.

Proposition 4.2. The following statements hold:

(i) If Φ has convex values, then � has convex values.
(ii) Let c� ∈ C∗ be given. If Φ is affine, then Θ and Θc� have convex values.

Proof. (i) Suppose that Φ has convex values. For any given x ∈ K , let y1, y2 ∈ �(x), α ∈ [0,1] and set y = αy1 + (1 − α)y2.
Then, Φ(x)y1 ⊆ Φ(x)x − C and Φ(x)y2 ⊆ Φ(x)x − C . Since Φ(x) is convex, one can easily see that Φ(x)x is convex and so is
Φ(x)x − C . As a consequence,

Φ(x)y = Φ(x)
(
αy1 + (1 − α)y2

)
⊆ αΦ(x)y1 + (1 − α)Φ(x)y2

⊆ α
(
Φ(x)x − C

) + (1 − α)
(
Φ(x)x − C

)
⊆ Φ(x)x − C,

which shows that �(x) is convex, that is, � has convex values.
(ii) Suppose that Φ is affine. From Lemma 2.2, we know that Φc� is affine. Now we prove that Θ has convex values. For

any given x ∈ K , let u, v ∈ Θ(x) and α ∈ [0,1]. Then, we know that u, v ∈ K ,

Φ(x)u ∩ (
Φ(x)x − C

) 
= ∅ (4.1)

and

Φ(x)v ∩ (
Φ(x)x − C

) 
= ∅. (4.2)

Since K is convex, αu + (1 − α)v ∈ K . From (4.1) and (4.2), there are Ti ∈ Φ(x) (i = 1,2,3,4) such that

T1u ∈ T2x − C

and

T3 v ∈ T4x − C .

Notice that C is a convex cone and Φ is affine. It follows that

αT1u + (1 − α)T3 v ∈ (
αΦ(x)u + (1 − α)Φ(x)v

) ∩ (
αT2x + (1 − α)T4x − C − C

)
⊆ (

Φ(x)
(
αu + (1 − α)v

)) ∩ ([
αΦ(x) + (1 − α)Φ(x)

]
x − C

)
⊆ (

Φ(x)
(
αu + (1 − α)v

)) ∩ (
Φ(x)x − C

)
,

or equivalently,

(
Φ(x)

(
αu + (1 − α)v

)) ∩ (
Φ(x)x − C

) 
= ∅
and so

αu + (1 − α)v ∈ {
y ∈ K : Φ(x)y ∩ (

Φ(x)x − C
) 
= ∅} = Θ(x),

which yields that Θ(x) is convex. Similarly, we can show that Θc� has convex values. This completes the proof. �
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Remark 4.2.

(a) If Φ is a single-valued function and K = Rm , then Proposition 4.1 collapses to Proposition 16 in [4].
(b) If Φ is a single-valued function and K = Rm , then Proposition 4.2(i) becomes Proposition 14 in [4].

We now consider the following set-valued (scalar) variational inequality (for short, SVI): find x� ∈ K and t� ∈ Φc� (x�) =
(Φ(x�))�c� such that

〈
t�, y − x�〉 � 0 ∀y ∈ K .

A pair (x�, t�) with x� ∈ K and t� ∈ Φc� (x�) = (Φ(x�))�c� is called a solution of SVI. We can rewrite SVI as

(〈
t�, x�〉 − 〈

t�, K
〉) ∩ (

R+\{0}) = ∅.

We also consider the set-valued (scalar) quasi-variational inequality (for short, SQVI): find x� ∈ Λ(x) and t� ∈ Φc� (x�) =
(Φ(x�))�c� such that

〈
t�, y − x�〉 � 0 ∀y ∈ Λ(x),

where c� ∈ C∗ , x ∈ K is a parameter and Λ = Θ,Θc� . A pair (x�, t�) with x� ∈ Λ(x) and t� ∈ Φc� (x�) = (Φ(x�))�c� is called
a solution of SQVI. It is clear that SQVI can be rewritten as

(〈
t�, x�〉 − 〈

t�,Λ(x)
〉) ∩ (

R+\{0}) = ∅.

Denote by SSVI and SΛ the set of all solutions of SVI and the set of all solutions of SQVI, respectively.
Let x∗ ∈ Θ(x). Since Θ(x) ⊆ Θc� (x) ⊆ K (by Proposition 4.1), by the definition of solutions, it is easy to see the following

conclusions hold.

Proposition 4.3. Let x ∈ K and x∗ ∈ Θ(x). Then,

(i) (x∗, t∗) ∈ SSVI implies (x∗, t∗) ∈ SΘc� ;
(ii) (x∗, t∗) ∈ SΘc� implies (x∗, t∗) ∈ SΘ .

The following conclusion is devoted to the equivalence among SVI, (1.3) and (1.4).

Theorem 4.1. The following conclusions hold:

(i) Let c� ∈ int C∗ be given. If (x�, t�) ∈ SSVI , then there is T ∗ ∈ Φ(x�) with t� = (T ∗)�c� such that (x�, T ∗) ∈ S S and so (x�, T ∗) ∈
SSW ;

(ii) If (x�, T ∗) ∈ S S , then there is c∗ ∈ C∗\{0} such that (x�, (T ∗)�c∗) ∈ SSVI;
(iii) If (x�, T ∗) ∈ SSW , then there is c∗ ∈ C∗\{0} such that (x�, (T ∗)�c∗) ∈ SSVI .

Proof. The proofs are similar to that of Theorem 3.1. For the completeness, we conclude them.
(i) Let (x�, t�) ∈ SSVI . Then, there are x� ∈ K and t� ∈ Φc� (x�) = (Φ(x�))�c� such that

(〈
t�, x�〉 − 〈

t�, K
〉) ∩ (

R+\{0}) = ∅. (4.3)

Thus, there exists T ∗ ∈ Φ(x�) with t� = (T ∗)�c� such that (4.3) holds. Suppose to the contrary that (x�, T ∗) does not solve
(1.3), that is,

(
T ∗x� − T ∗K

) ∩ (
C\{0}) 
= ∅.

Then, there is u ∈ K such that

T ∗x� − T ∗u ∈ C\{0}. (4.4)

Since c� ∈ int C∗ , (4.4) implies that

〈
c�, T ∗x�〉 − 〈c�, T ∗u〉 = 〈

c�, T ∗x� − T ∗u
〉
> 0,

or equivalently,

(〈
t�, x�〉 − 〈

t�, K
〉) ∩ (

R+\{0}) 
= ∅,

which is a contradiction with (4.3). Since every solution of (1.3) solves (1.4), we know that (x�, T ∗) ∈ SSW .
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(ii) Since S S ⊆ SSW , the conclusion follows immediately from (iii).
(iii) Assume that (x�, T ∗) solves (1.3). Then, there are x� ∈ K and T ∗ ∈ Φ(x�) such that

(
T ∗x� − T ∗K

) ∩ (int C) = ∅. (4.5)

Noticing

(
T ∗x� − T ∗K

) ∩ (int C) = (
T ∗x� − T ∗K

) ∩ (C + int C) = (
T ∗x� − (T ∗ K + C)

) ∩ (int C), (4.6)

it follows from (4.5) and (4.6) that

(
T ∗x� − (T ∗K + C)

) ∩ (int C) = ∅. (4.7)

Since K is convex and C is a convex cone, it is easy to see that T ∗ K is convex and so is T ∗K + C . As the arguments in the
proof of Theorem 3.1(iii), it follows from (4.7) that there is c∗ ∈ C∗\{0} such that

〈
c∗, T ∗x� − (T ∗ y + c)

〉
� 0 ∀y ∈ K , ∀c ∈ C . (4.8)

Setting c = 0 in (4.8), one has

〈
(T ∗)�c∗, x� − y

〉 = 〈
c∗, T ∗x� − T ∗ y

〉
� 0 ∀y ∈ K ,

or equivalently,

(〈
(T ∗)�c∗, x�〉 − 〈

(T ∗)�c∗, K
〉) ∩ (

R+\{0}) = (〈
(T ∗)�c∗, x� − K

〉) ∩ (
R+\{0}) = ∅,

which implies that (x�, (T ∗)�c∗) ∈ SSVI . This completes the proof. �
Remark 4.3. In [9], Konnov presented the scalarization approach for set-valued weak vector variational inequalities in Banach
space X . Clearly, the problem considered by Konnov [9] collapses to (1.4) when X = Rm . However, we would like to point
out the following differences between Theorem 4.1 and the results due to Konnov [9]:

(i) The scalar variational inequalities are given differently. In fact, the set-valued (scalar) variational inequalities for (1.4)
in Theorem 4.1 are defined by using c� ∈ C∗ . Nevertheless, in [9], Konnov defined the set-valued (scalar) variational
inequalities for (1.4) by utilizing the convex hull of n components of the set-valued function Φ = (Φ1, . . . ,Φn)� .

(ii) The assumption conditions are different. In fact, in the results of Konnov [9], each component of the set-valued function
Φ = (Φ1, . . . ,Φn)� was assumed to have convex and compact values. However, Theorem 4.1 does not require such
assumptions.
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