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1. Introduction

Let E = {¢(x) € L'(R") N L®R"): f]R" ¢(x)dx#0 and Vx e R", ¢(x) e R} and let E. = {¢ € E; ¢ has compact support}.
For t > 0, we denote ¢;(x) =t "¢ (xt~1). For f(x) € L1(R"), define

fr® = Sup t}f * P (¥)]. (11)
x—y|<

We study in this paper the Hardy space

Hy(R") = {f(x) e L'(R"): frx) eL'(R")}.

In 1972, Fefferman and Stein [2] proved that (1) Hé(R“) = HY(R™) for any smooth ¢ which decays quickly at infinity;
and (2) H' ¢ H; for non-smooth ¢ associated with additional regular conditions. In 1979, Weiss [5] asked whether there
was an H; that was neither {0} nor H'. In 1983, Uchiyama and Wilson [4] proved that there exists ¢(x) € E such that
Hé(R) # H'(R) and h(x) € H;’(]R) where h(x) is Haar function. For r > 0, we say that f(x) is an r-logarithm regular function,
if |f(x)— f(y)| <Cllog|x—y||~" and denote f(x) € log"; we say that f(x) € Log{,(B), if f(x) € log" and supp f C B. Let B?’l
be the corresponding non-homogeneous space to homogeneous Besov space B?’l. It is easy to see that

B c L', Logh(l—1,1)€L™® and BY'NLlogh((—1,1]) CE.

We will consider some more delicate results for non-smooth ¢.
Throughout this paper, we denote by v (x) the regular Daubechies wavelets with v (x) € C%([—ZM ,2M]) where M € N

and M > 3; and denote by " the reflection operator that maps f(x) to ]‘(x) = f(—x).
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For end point Triebel-Lizorkin space F?’q (1 < g < 00) (which are atomic spaces), it is known that
50,1 _ 0,1 — 30, 0,2
BY'=F)'C (1 <q<2) S F)*=H"

We are interested in the relations between H(},(R") and the end point Triebel-Lizorkin space I'-"?“’(R”). More precisely, we
will study the following three items:

1. If ¢ satisfies a slightly weaker condition than Fefferman and Stein’s, then H! C H(}).

2. For arbitrary approximate identity ¢ even lacking regularity, if H;&(IR{) # {0}, then B?'l R) C H(}&(R).

3. There is a function ¢ € B?’l NLogy([—1,11) and a function b € ﬂq>1 F?’q such that regular Daubechies wavelet function
¥ e H; but b ¢ Hdlj. This result is more delicate than Uchiyama and Stein’s.

2. A weaker sufficient condition for Hardy space

We first prove a simple lemma.
Lemma 2.1. For any j € R and k € R", we have

Hzfnf(zjx—k) ”H;) = ||f||H;)

Proof. It can be verified that

127 F @) g = 1F 1y and [ Fx =Ry =11 Fllgy (2.2)

Fefferman and Stein [2] have proved that H' H(}) under the condition

> () <o (2.3)

izl

where T(j) = supy_y<2-i [¢(X) — ()|, VjeN.
V¢ € E., let A be the smallest positive real number such that supp¢(x) is contained in the ball B(0, A), and denote
B =2 +[logy(A + 1)]. We define

w(j)= sup 2" / lp(x—t7'2) — (0| dz. (2.4)
xz2 jzi<1

It is easy to see that w(j) < Ct(j — B), Vj > B+ 1. Now we introduce a slightly weaker condition:
> () < oo. (2.5)
j>1

The following Theorem 1 establishes Fefferman and Stein’s result under a slightly weaker condition (2.5), where we also
give an example to show such a condition cannot be improved in some sense. Note the proof here is more concise. O

Theorem 1.

(i) If ¢ € E, satisfying the condition (2.5), then H! C H;.
(ii) There exists ¢ € E. such that T(j) ~ j~, w(j) ~ j~! and H;a ={0}.

Proof. (i) The Hardy space H! can be characterized by its L atom (cf. [1,6]):

H'= {f(x) = stas(x): where As € I! and as(x) are L™ atoms}.

s

Applying the above atom property of Hardy space, it is sufficient to prove that all L atoms a(x) belong to pr. By
Lemma 2.1, it is sufficient to consider the L°° atoms a(x) in unit ball.

It follows from ax¢¢(y) = [at2)p(yt~' —2)dz=t" [a(2)¢(£2)dz that |a* ¢ (y)| < C. If [x] < 8A+8, then a}j(x) < C.
On the other hand, suppa* ¢(y) C B(0, At + 1), which yields that supj,_ ¢ [a* ¢:(y)] =0 when |x| > (A + 1)t + 1.
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If 20 <|x] <2/t and x| <A+ Dt +1, wehavet>2A;}>21 B and

a*¢t(y)=t_”/a(z)¢< >dz—t—"/a(z)[¢<yt—z> _qﬁ(%)}dz,

which results that

n y—z y
laxe(y)| <C sup ¢~ / ¢ -9 7

2}
t> 5= 1zI<1

dz.

If j >B+1 and 2/ < |x| <2/*1, then aj(x) < C2 " w(j — B). Henceforth a;(x) € Lt
(ii) Define

pr= > jy(¥Yx—k).

j>1,2i-1<k<2i
then ¢ (x) € L>°([B(0,2M)]) and vy (0 ¢ L. We may choose ¢o(x) € C3°(R") such that ¢(x) = ¢1(x) + ¢o(x) > 0 on
B([0,2MY), thus we see that ¢(x) € F and ¥ (x) is not in H(}). Applying Theorem 2 in the following Section 3, we know
that H(}) ={0}. O

3. Meyer’s wavelets and 3(1),1

In this section, we will prove the following Theorem 2 for one dimension case. However, we don’t know whether it is
true for higher dimension cases.

Theorem 2. If H} (R) # {0}, then B (R) C H} (R).
To prove this theorem, we need a lemma belonging to Wiener (cf. [4,6]).

Lemma 3.1. Let f;(x), fo(x) € L'(R). Ifthere exist an € > 0 and an interval I C R for which |f1 (&)l > €, & €1, and supp fz C I, then
there exists an h(x) € L' (R) such that f2 &)= h(é)ﬁ &).

We also need an estimation for convolution function:
Lemma3.2.If f e Hjand g € L', then

IIf*gIIHé < ”f”H;)”g”U-
Proof. In fact, we have

sup /Ig(Z)IIf*dn(y—Z)IdZ</|g(Z)!f$(x—Z)dz. m

[x—yl<t

Proof of Theorem 2. If f 0 and f € Hl, we may assume that f is real-valued. Since that f” is continuous, then there

exists a neighborhood Vy, and € > 0 such that ]‘(E) > €, VE € Vy,. Since that f is real-valued, then we have also f(s) > €,
V& € V_y,. Considering the dilation x — xox, we may assume that there exists r > 1 such that

]]‘(5)] >e, Vee[-r.—r 'u[rr]

Let ¥ (x) € S(R) be a real-valued even function such that

supp¥ C [-r,—r'Ju[r~',r] and Z P(kg)=1 forany& #0.
k
According to Wiener's Lemma 3.1, there exists hi(x) € L1(R) such that ¥ (£) = iy (&) f (£). If we define A(&) = h1 (€) +h1 (—&),
then lf/(é) =h(¢)f(¢). By Lemma 3.2, we have

19 gy < RN -
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Thus when @M is a Meyer’s wavelet, we may write

V() =dME) Y D (rFe)= Y oMb (s).
k k|<C
Observing each term in the right-hand side, we see &M W (r*x) € H!, which leads to @M ¢ H;’. Applying Lemma 2.1, we
have 2ioM2ix —k) € Hl}).
Now for any f(x) € B?’], we may write f(x) = Zj,k aijchDM(ij—k) in which ijk lajkl <oo.Let Tj, = 2ipM2ix—k),
then f * ¢¢(x) = ijk a;j k(Tj k) * P (x), which yields

F30 < 1ajal(Tip) (0.

jk
Thus we see f e Hj. O

4. End point Triebel-Lizorkin spaces

In 1983, Uchiyama and Wilson [4] proved that there exists ¢ (x) € [E such that H;,,(R) # H'(R) and h(x) € H(})(R) where

h(x) is Haar function. Noting that ﬂq>1 F?’q is close to B?’l, we can construct a group of more delicate examples in this
section. In fact, we have:

1 .
Theorem 3. There exist a group of function ¢ (x) € B?’l NLogg ([—1, 1]) and a group of functions b(x) € ﬂq>1 F?‘q ﬂ0<p<1 HP such
that Daubechies wavelet function v (x) € H; but b(x) ¢ H;.

Next, we construct two functions 7(x) and b(x), whose properties are required in the proof of Theorem 3. For j € N, let
7j € N be a monotonically increasing function with j such that

2

i<ti<Ci? and Tjj1 > 41, (4.6)

N |~

then we denote V; -/ (X) = Y pjcypi+1 Q¥ (2ITTx — k) and bj(X) = Y gy _pi bjk¥ (27X — k), where 0 < Cy <aj.bj i < Ca.
Finally we define

N =Y j'log?jvjg),
j=z2M
and
bx)= Y j~'logjb;0.
jz2M

Using these two functions we can prove the following results.

Lemma 4.1. Let the functions n(x) and b(x) be defined as above, we have

1
(i) n(x) € LogZ ([0, 31).
(i) b®x) € Mgy FY" Mpug HP.
(i) b} (%) ¢ Lt
(iv) ¥ €Ll

Proof. (i) It is easy to verify that supp n(x) C [0, %] and

”n(X)HBO‘l =10 ”B‘“ S Z i Mog™2 j27" < 4o0.
1 ' iz

2

For j, j/ > 2M and j # j/, we have supp Vjr;(x) N supp Vit (x) = ¥. Combine these properties with 7; < Cj* (according

t0 (46)), we have () < Logd (10, 1.
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(ii) Using the wavelet characterization theory of Triebel-Lizorkin spaces in [7], V1 < q < oo, we have

11
. q q
10| z0a = (/( Z j‘q(logj)qx(zfx—k)> dx) < 0.
! i>2m
0<<k<2J

Furthermore, using the wavelet characterization of Hardy spaces in [3], YO < p < co, we have

p

, b
]‘b(x)|]Hp:<f( Z j’z(logj)zx(fo—k)) dx) < 00.

j>2M
0<k<2!

(iii) We begin with computing b * 1¢(x).

b*nf(x)z%/( > s7llogs Y bS’]CI//(ZSy—k)>

s>2M 0<k<28
x ( Z s 1log™?2s Z ag ey (25T Ty — 25Ty — k)) dy.
s>2M 0<k<2s
Note that
—X
Supp Vs, 7, (—) C [x+276Fm) (25 —2M)g x 276 (25T 4 2M —_1)¢],
and

suppbs(y) c [-2M75,2M=5 — 275 11].

For 1<i< % we consider the case where t = 2i*t% and x = —2!. When s # j we have

Supp Vs.z, (%x> Nsuppb() = 9.
Hence we see
b 1t (—Zi) =j 'logj -bx (V7)) 5+ (_2:‘)
= og2j.¢! fb(y) Z aj.k+2j1p(2jfiy —k)dy.

0<k<2J
Applying the orthogonality of wavelets basis, we have
b e (—27) = 7 log 2 j27 W (= )" Mog(G — D2 Y bj_ia) i
0<k<2)-1
~ ].72 log’l j2*(i+‘rj)_

But |x + 2i| < 217, thus we see
by = sup [bxne(y)| > |bxnir (=2")| = ¢ log™" j2= 0T,
[x—y|<t
To estimate the L'-norm of b},(x), we need define the sets E; j = {2/~ 1*% < x < 2/*% — 2/} and we have the estimate
/ b} (x)dx > Cj~log™" j.
El,}

Note that if 1 <i<i' < % then E; jNEy;j=0. Let Uj={x: 2% <x < 2%“1'}, then U1<i<% E; j c Uj. Summing up on

1<i<%,weget

/b;; x>y f b dx>Cj 'log™" j.
i Eij

Uj
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Since Tj4q > % + 7j, hence for j #s, we have U; N U; =. These lead to

0l > ¥ [Bpe0dxz 3 g j=oc,
jz2M U; j=2M

(iv) It is easy to see that 1//,’7‘()() cannot be maximized by a monotone function in L'. Let Fie@) =9 * (vjg)ex) =
¢! [vx— Vi (yt~1)dy, and take the transformation y — —y, we get

Fiex)=t" / Y(x+Y)Vjg(—yt™")dy
:t—lfw(ery) Z‘ ajxy (t1277 Ny — k) dy.
2i k<21
It is easy to see that
supp Fj¢(x) C Q¢ j = [-2M +¢(27% —2M=77%) 2M 4 ¢ (2177 4 2M=I=7 — 271 7T)].
According to the regularity of v (x), we have the following points.
1 If £ > 2/7%, then |Fj¢(x)| < Ct—3220+%),

2. If 2% <t <2917, then IFje(0)] < Cta-20+T)
3.1f 0 <t < 2%, then [Fj(x)| < Ct227273%,

Let Gj(x) = supjx_y ¢ [Fj.e(¥)|, we have:

1. If |x| > 2777, then Gj(x) < Clx|73220+%),
2. If 25 < |x] < 2017, then IFjc(x)] < Clx|2-20+T),
3. 1f |x] < 2%, then |Fj ()| < C(1 + [x])2272 737,

It is easy to see that [ G;j(x)dx < oco. Finally we have

/w;(x)dxg Z j! log’zj/Gj(x)dx<oo. ]

jz2M

Proof of Theorem 3. We may construct a ¢1(x) € C5°([—1, 1]) such that ¢ = ¢1+n > 0. According to [2], we have b;‘bl (x) elL!
1
and 5 (x) € L'. Henceforth finally we have ¢ (x) € B?‘l NLogg ([—1,1D), b (x) ¢ L' and Vi) € L. o

References

[1] R. Coifman, G. Weiss, Extensions of Hardy spaces and their uses in analysis, Bull. Amer. Math. Soc. 83 (1977) 569-646.

[2] C. Fefferman, E.M. Stein, HP spaces of several variables, Acta Math. 129 (1972) 137-193.

[3] Y. Meyer, Ondelettes et opérateurs, I et II, Hermann, Paris, 1991-1992.

[4] A. Uchiyama, J.M. Wilson, Approximate identities and H'(R), Proc. Amer. Math. Soc. 88 (1983) 53-58.

[5] G. Weiss, Some problems in the theory of Hardy spaces, in: Proc. Sympos. Pure Math., vol. 35, Amer. Math. Soc., Providence, RI, 1979, pp. 189-200.
[6] E.M. Stein, Harmonic Analysis—Real Variable Methods, Orthogonality, and Integrals, Princeton University Press, 1993.

[7] Q.X. Yang, Wavelet and Distribution, Beijing Science and Technology Press, 2002 (in Chinese).



	Remarks on Hardy spaces deﬁned by non-smooth approximate identity
	Introduction
	A weaker sufﬁcient condition for Hardy space
	Meyer's wavelets and Ḃ0,11
	End point Triebel-Lizorkin spaces
	References


