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In this paper we study localization results for classical sequences of linear positive
operators that are particular cases of the generalized Baskakov/Mastroianni operators and
also for certain class of composite operators that can be derived from them by means
of a suitable transformation. Amongst these composite operators we can find classical
sequences like the Meyer–König and Zeller operators and the Bleimann, Butzer and Hahn
ones. We extend in different senses the traditional form of the localization results that we
find in the classical literature and we show several examples of sequences with different
behavior to this respect.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction and notation

A classical method to approximate a function f : I → R defined on an interval I ⊆ R consists in considering a sequence of
linear operators {Ln : W ⊆ C(I) → C(I)}n∈N defined on certain subspace W to obtain a sequence of approximants {Ln f }n∈N

for the initial function f . We can find many examples of such type of approximation processes. Probably, the sequence of
the Bernstein operators on [0,1], {Bn : C[0,1] → C[0,1]}n∈N , represents the best known case. However it is possible to find
in the literature many other instances of similar sequences of linear positive operators as the Baskakov operators, Baskakov–
Schurer operators, Mirakjan or generalized Mirakjan operators, etc. With the purpose of obtaining results for a wide class of
linear positive operators we are going to consider here the generalized sequence of Baskakov [5] or the similar sequence of
the Mastroianni operators [12] that, for x ∈ [0,∞) and a suitable function f : IΦ → R, are defined by

Ln f (x) =
∞∑

i=0

(−1)i xi

i! Diφn(x) f

(
i

n

)
,

where Φ = {φn : [0,∞) → R}n∈N is a sequence of analytic functions and IΦ ⊆ [0,∞) a subinterval which have to meet the
following conditions:

(A) φn(0) = 1 for every n ∈ N.
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(B) We have IΦ = [0,∞) or IΦ = [0, A] with A > 0 and

(−1)k Dkφn(x) � 0

for every n ∈ N, k ∈ N0 = N ∪ {0} and x ∈ IΦ .
(C1) (Original Baskakov operators) There exists c ∈ N such that for every n ∈ N,

Dk+1φn(x) = −nDkφn−c(x), (1)

for all n � c, k ∈ N and x ∈ [0,∞).
(C2) (Mastroianni operators) For every n ∈ N and k ∈ N0 there exist p(n,k) ∈ N and αn,k : [0,∞) → R such that

Di+kφn(x) = (−1)kαn,k(x)Diφp(n,k)(x) (2)

for every i ∈ N0 and x ∈ [0,∞) in such a way that limn→∞ n
p(n,k)

= limn→∞ αn,k(x)
nk = 1.

The operators Ln are linear and positive. As a matter of fact, depending on f , Ln f could be defined in the whole real axis
but condition (B) guarantees the positivity only on IΦ . It is also well known that the operators Ln preserve the degree
of the polynomials and all the convexities and they also present good simultaneous approximation properties since they
approximate not only the function but also all its derivatives (see [4, p. 344]).

From the generalized Baskakov operators we can derive many of the classical sequences of linear positive operators by
making an adequate selection of Φ as we show in the following table.

Baskakov operators φn(x) = (1 + x)−n IΦ = [0,∞)

Baskakov–Schurer operators φn(x) = (1 + x)−(n+p)

Szász operators φn(x) = e−nx

Szász–Mirakjan operators φn(x) = e−(n+p)x

Bernstein operators φn(x) = (1 − x)n IΦ = [0,1]

We can find a large number of papers devoted to the study of the properties of convergence of these operators. In
particular, the ‘conservative properties’ of the approximation operators are of special interest. That is to say, it is important
to determine whether the operators reproduce the properties of the functions that we are trying to approximate. To this
respect the preservation of the shape properties like the positivity or convexities are key points in the analysis of the
Bernstein type operators like the Baskakov/Mastroianni sequences.

This paper is devoted to the study of a particular type of preserving properties usually known as ‘localization results’.
Consider the Bernstein operators and the functions f1, f2 : [0,1] → R such that f1| J = f2| J for certain open subinterval
J ⊆ [0,1]. In this situation it is well known that for x ∈ J we cannot deduce that Bn f1(x) = Bn f2(x). However we have a
special behavior for such a point x expressed by means of the infinitesimal relation

Bn f1(x) = Bn f2(x) + o
(
n−1). (3)

From the outstanding book on Bernstein operators by Lorentz [11, p. 7 and Theorem 4.1.3], similar localization results for
Bernstein and other operators appear in many monographs (see also for instance [9, identity (3.3), p. 308]). It is immediate
that, in general, a localization result can be written in the following form too: given a function f : IΦ → R such that f | J = 0
for certain open subinterval J ⊆ IΦ , for all x ∈ J we have

Ln f (x) = o
(
n−1).

Our purpose is to extend this type of localization results in various senses and to show that several classical sequences of
linear positive operators present different behaviors to this respect.

Given m ∈ N0, consider a polynomial p : IΦ → R of degree m, where we say that p is of degree m whenever Dm p is a
non-vanishing constant. Since the operators Ln preserve the degree of the polynomials, for any r > m it is immediate that

Dr Ln f = 0.

To extend the localization results to the study of the convergence for the derivatives, suppose now that a function f : IΦ → R

behaves as a polynomial of degree m locally. Then we cannot assert that Dr Ln vanishes but we can try to obtain conclusions
on the local convergence for such derivative. Here we understand the local polynomial behavior in two senses:

(a) Local behavior: we say that the function f is a polynomial of degree m locally on the subinterval J ⊆ IΦ open with
respect to the topology of IΦ whenever f | J = p for certain polynomial p of degree m.
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(b) Pointwise behavior: we say that f is a polynomial of degree m punctually at x ∈ IΦ whenever f is differentiable of any
order at x and Di f (x) = 0 for all i > m and Dm f (x) �= 0.

It is straightforward that condition (a) implies condition (b) for any point x ∈ J . In both cases we want to check whether it
is obtained a special order of convergence towards zero for the derivative Dr Ln f on J or at x respectively.

In Section 2 we study this problem for the generalized Baskakov operators. Moreover, since in general these operators are
defined for functions of exponential growth, we study exponential type moments with the purpose of obtaining localization
results for the class of functions for which the operators yield convergence. In Section 3 we prove results for composite
operators that can be obtained from the generalized Baskakov operators. In this last section we show several examples of
sequences with different behaviors for the localization results.

In order to deal with functions with pointwise polynomial behavior we present the following notation.

Definition 1. Given a function f : IΦ → R differentiable of any order at x ∈ IΦ we define

degx( f ) = min
{

s ∈ N0: Di f (x) = 0, ∀i � s
} − 1,

where we assume the convention that min(∅) = ∞.

It is immediate to prove the properties that we include in the following lemma.

Lemma 2. Given the functions f , g : IΦ → R differentiable of any order at x ∈ IΦ ,

(i) if degx( f ),degx(g) � 0 then degx( f · g) = degx( f ) + degx(g),
(ii) if degx( f ) = −1 then degx( f · g) = −1,

(iii) degx( f + g) � max{degx( f ),degx(g)},
(iv) for s ∈ N0 , degx(Ds f ) = max{degx( f ) − s,−1},
(v) if f is a polynomial, deg( f ) = degx( f ).

Let us fix some notation. Throughout the paper t : R � z �→ t(z) = z ∈ R stands for the identity map on R. We also denote
by t the restrictions of the identity map to any subinterval. For all i ∈ N0, Di is the ith differential operator and whenever
it is necessary we will use brackets, Di[·], to mark the scope of a differential operator. We will make an extensive use of
the functional notation and only when an expression may be misunderstood we use the notation di/dxi to indicate the
variable for which we are differentiating. We will say that f : IΦ → R is of exponential growth whenever it is possible to
find K ,α ∈ R

+ such that | f | � K eαt on IΦ . Given x ∈ R and i, j ∈ N0, xi = x(x − 1) · · · (x − i + 1), with x0 = 1, is the falling
factorial and σ

j
i denotes the second kind Stirling numbers. Finally, we use the standard notation o and O for infinitesimal

expressions and in addition we write

an = o
(
n−∞)

to denote the fact that an = o(n−i), for all i ∈ N.

2. Localization results for generalized Baskakov operators

With the aim of obtaining results for the derivatives of the operators Ln we introduce the following modified sequence:
given r ∈ N0, n ∈ N, x ∈ [0,∞) and suitable f : IΦ → R, we define the operators

Lr,n f (x) =
∞∑

i=0

(−1)i+r xi

i! f

(
i

n

)
Di+rφn(x)

nr
.

These operators are linear and positive. They already appear in [10] and by means of the classical differentiation formulas
for Ln (see [4, p. 345], though we would like to point up that in Eq. (5.3.80) of [4] the factor i!/ni should be removed) we
can establish the following relation between Lr,n and the derivatives of Ln ,

Dr Ln f = nr Lr,n
(
�r

1
n

f
)
, (4)

where �r
1
n

is the forward difference operator of order r. Along the paper we adopt the convention that �r
1
n

f (x) = 0 when-

ever some of the knots of the forward difference (x + j
n , j = 0, . . . , r) falls outside IΦ . With the above definition it is obvious

that L0,n = Ln .
Let us study first the moments for the operators Lr,n . In particular in the following result we find a sufficient condition

for the central moments of exponential type to have a good convergence behavior.
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Proposition 3. Given r ∈ N0 let us suppose that

Drφn = (−1)rqr(n)e(an+b)g, (5)

where a,b ∈ R, a �= 0, qr(n) is a polynomial on n of degree r such that qr(n) > 0 for n large enough and g is a function analytic at 0
with g(0) = 0 and Dg(0) = −1/a. Then for any x ∈ [0,∞) and h ∈ N0 ,

Lr,n
((

et − ex)h)
(x) = O

(
n−[ h+1

2 ]).
Proof. Let us take k > 0. Then for any given x ∈ IΦ , a Taylor series expansion of the function Drφn(x − e

k
n t) at the origin,

yields

Drφn
(
x − e

k
n t

) =
∞∑

i=0

di

dti

(
Drφn

(
x − e

k
n t

))∣∣
t=0

ti

i! =
∞∑

i=0

Dr+iφn(x)(−1)iei k
n

ti

i! .

Now if we evaluate at x, we have

Drφn
(
x − e

k
n x

) = (−1)rnr
∞∑

i=0

(−1)r+i xiek i
n

i!
Di+rφn(x)

nr
= (−1)rnr Lr,n

(
ekt)(x).

Therefore

Lr,n
(
ekt)(x) = (−1)rn−r Drφn

(
x
(
1 − e

k
n
))

. (6)

Notice that if we admit φn to be analytic on IΦ for all n then this last expression holds true at least for n large enough
even for x ∈ R.

From the hypotheses, it follows that g = −1
a t + ∑∞

i=2 aiti and it is also immediate that 1 − ek/n = −∑∞
j=1

(k/n) j

j! then

(an + b)g
(
x
(
1 − ek/n)) = −xn

(
1 − ek/n) − b

a
x
(
1 − ek/n) + (an + b)

∞∑
i=2

aix
i(1 − ek/n)i

= xk + b

a

k

n
x +

∞∑
j=2

(
n + b

a

)
x
(k/n) j

j! + (an + b)

∞∑
i=2

aix
i(−1)i

( ∞∑
j=1

(k/n) j

j!

)i

︸ ︷︷ ︸
=H

.

Take into account that H is an expansion on 1
n where all the monomials are of the form ks( 1

n )v with s � 2v and hence,
since all the series that appear in the formula are absolutely convergent, we can rewrite it as an expansion on 1

n of the
form

(an + b)g
(
x
(
1 − ek/n)) = kx +

∞∑
j=1

a j(k, x)n− j

with a j(x,k) a polynomial on k of degree at most 2 j for all j. If we use the power expansion of et we can also deduce that

e(an+b)g(x(1−ek/n)) = ekx
∞∑
j=1

ã j(x,k)n− j,

where again ã j(x,k) is a polynomial on k of degree at most 2 j. Therefore with (5) we have

Drφn
(
x
(
1 − e

k
n
)) = (−1)rqr(n)ekx

∞∑
j=1

ã j(x,k)n− j,

and together with (6), finally

Lr,n
(
ekt)(x) = qr(n)

nr
ekx

∞∑
ã j(x,k)n− j .
j=1
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Now, by means of Newton’s binomial formula,

Lr,n
((

et − ex)h)
(x) =

h∑
k=0

(
h

k

)
Lr,n

(
ekt(−1)h−ke(h−k)x)(x)

= qr(n)

nr

h∑
k=0

(
h

k

)
(−1)h−ke(h−k)xekx

∞∑
j=1

ã j(x,k)n− j

= qr(n)

nr
ehx

h∑
k=0

(
h

k

)
(−1)h−k

∞∑
j=1

ã j(k, x)n− j

= qr(n)

nr
ehx

∞∑
j=1

n− j
h∑

k=0

(
h

k

)
(−1)h−kã j(k, x)

= qr(n)

nr
ehx

∞∑
j=1

n− j�h
1

[
ã j(t, x)

]
(0).

Since ã j(k, x) is a polynomial on k of degree at most 2 j we have that �h
1[ã j(t, x)](0) = 0 for all h > 2 j and therefore all

summands for j < [ h+1
2 ] vanish. Then, as qr(n) is a polynomial of degree r, the last expression is O(n−[ h+1

2 ]) and we end
the proof. �

For the classical sequences that appear in the table of page 426 we have that for n large enough,

Baskakov operators Drφn(x) = (−1)r(n + r − 1)r e−(n+r) log(1+x)

Baskakov–Schurer operators Drφn(x) = (−1)r(n + r + p − 1)r e−(n+r+p) log(1+x)

Szász operators Drφn(x) = (−1)rnr e−nx

Szász–Mirakjan operators Drφn(x) = (−1)r(n + p)r e−(n+p)x

Bernstein operators Drφn(x) = (−1)rnr e(n−r) log(1−x)

and therefore all of them are under the assumptions of the preceding result and then Proposition 3 holds for the corre-
sponding operators Lr,n .

From now on we assume that Φ is chosen in such a way that the conditions of Proposition 3 hold. In this way, the
theses of the proposition are true for the operators Lr,n that we are going to handle.

Indeed, once we have proved the preceding result for exponential type moments, it is posible to reach a similar conclu-
sion for moments defined in terms of non-exponential functions as it can be seen in the following corollary that we will
partially extend in the following section.

Corollary 4. Let η : IΦ → R be a function of class C1 on IΦ such that 0 � Dη � et . Then, for all h ∈ N0 and x ∈ IΦ ,

Lr,n
((

η − η(x)
)h)

(x) = O
(
n− h

2
)
.

Proof. For any x1, x2 ∈ IΦ with x1 � x2 we have

0 � η(x2) − η(x1) =
x2∫

x1

Dη(z)dz �
x2∫

x1

ezdz = ex2 − ex1 .

In this case, if h is an even number it is straightforward that we have 0 � (η − η(x))h � (et − ex)h and then

0 � Lr,n
((

η − η(x)
)h)

(x) � Lr,n
((

et − ex)h)
(x) = O

(
n− h

2
)
.

On the other hand, if h = 2p + 1, p ∈ N0, we can use a Schwartz type inequality to obtain∣∣Lr,n
((

η − η(x)
)h)

(x)
∣∣ = ∣∣Lr,n

((
η − η(x)

)2p(
η − η(x)

))
(x)

∣∣
�

(
Lr,n

((
η − η(x)

)4p)
(x)

) 1
2
(
Lr,n

((
η − η(x)

)2)
(x)

) 1
2

= (
O

(
n−2p)) 1

2
(

O
(
n−1)) 1

2 = O
(
n− h

2
)
. �
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In particular if we take η = t , for the usual polynomial moments the last corollary yields

Lr,n
(
(t − x)h)(x) = O

(
n− h

2
)
, ∀x ∈ IΦ, h ∈ N. (7)

Since the polynomial moments will play an important role throughout the paper, we will denote

Tr,h,n(x) = Lr,n
(
(t − x)h)(x) (8)

and also, for short, Th,n = T0,h,n . Notice that Tr,h,n is a function on IΦ so that Ds Tr,h,n(x) stands for the derivative
ds

dzs |z=xTr,h,n(z).
In the following proposition we prove several facts about the moments Tr,h,n that in part are a consequence of Corollary 4

and improve (7).

Corollary 5. For any s, r,h ∈ N0 and x ∈ IΦ :

(i) Ds Tr,h,n(x) is a polynomial on n−1 of degree r + h and order [ h+1
2 ]. As a consequence

Ds Tr,h,n(x) = O
(
n−[ h+1

2 ]).
(ii) Ds Tr,h,n(x) =

s∑
j=0

(
s

j

)
(−1)s− jhs− j D j[Lr,n

(
(t − x)h−s+ j)](x).

Proof. Let us prove claim (i). In [4, Eq. (5.3.81)] by means of a McLaurin series it is obtained an alternative representation
for the operators Ln . Similar arguments apply to prove the following expression for Lr,n ,

Lr,n f (x) =
∞∑

i=0

(−1)i+r xi

i!
Di+rφn(0)

nr
�i

1
n

f (0), (9)

which for the case r = 0 corresponds to the mentioned equation that appears in [4]. From the assumptions of Proposition 3,
that are supposed to be satisfied, it is immediate that Di+rφn(0) is a polynomial of degree i + r on n. Moreover, for
every j ∈ N0 and f = t j , we can use the second kind Stirling numbers, σ i

j , to write the forward difference in (9) as

�i
1
n
(t j)(0) = i!σ i

jn
− j . In this way, since �i

1
n
(t j) = 0 for i > j, from (9) we deduce that Lr,n(t j)(x) is a polynomial on n−1 of

degree r + j. Since Tr,h,n(x) is a linear combination of Lr,n(t j)(x), i = 0, . . . ,h, we have that Tr,h,n(x) is again a polynomial
on n−1 of degree r + h. Finally, with (7) we easily deduce that Tr,h,n(x) is a polynomial on n−1 with exponents between
[ h+1

2 ] and r + h. Accordingly, as Tr,h,n(x) is a finite polynomial on n−1, it is immediate that the same conclusion is satisfied
for any derivative Ds Tr,h,n(x) too.

For claim (ii), as a consequence of the definition of Lr,n and Leibnitz’s formula

Ds Tr,h,n(x) = ds

dzs

∣∣∣∣
z=x

[
Lr,n

(
(t − z)h)(z)

]
=

∞∑
i=0

(−1)i+r 1

i!nr

ds

dzs

∣∣∣∣
z=x

[
zi Di+rφn(z)

(
i

n
− z

)h]

=
∞∑

i=0

(−1)i+r 1

i!nr

s∑
j=0

(
s

j

)
D j[ti Di+rφn

]
(x)(−1)s− jhs− j

(
i

n
− x

)h−s+ j

=
s∑

j=0

(
s

j

)
(−1)s− jhs− j

∞∑
i=0

(−1)i+r D j
[

ti

i!
Di+rφn

nr

]
(x)

(
i

n
− x

)h−s+ j

=
s∑

j=0

(
s

j

)
(−1)s− jhs− j D j[Lr,n

(
(t − x)h−s+ j)](x). �

Let us prove now our first localization result. The following proposition is valid for a function that vanishes locally in the
sense that we explain in point (a) of page 426. This result is a preliminary step to prove the main theorem of this section.

Proposition 6. Let f : IΦ → R of exponential growth and a subinterval J ⊆ IΦ open with respect to the topology of IΦ be such that
f | J = 0. Then, for all r ∈ N0 and x ∈ J ,

Dr Ln f (x) = o
(
n−∞)

.
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Proof. It is possible to find a subinterval J1 open with respect to the topology of J with x ∈ J1 ⊆ J and n0 ∈ N large enough
such that for any n � n0,

�r
1
n

f | J1 = 0. (10)

Moreover, since f is of exponential growth, there exits K ,α > 0 such that | f | � K eαt and then for any z ∈ IΦ ,

∣∣�r
1
n

f (z)
∣∣ �

r∑
i=0

(
r

i

)∣∣∣∣ f

(
z + i

n

)∣∣∣∣ �
r∑

i=0

(
r

i

)
K eα(z+ i

n ) = K
(
1 + e

α
n
)r

eαz � K1eαz,

with K1 = K (1 + eα)r . Therefore �m
1
n

f is also a function of exponential growth for the constants K1 and α which do not

depend on n. This fact together with (10) implies that for any even number h ∈ N big enough, we can find K2 > 0 such that
for all n � n0,∣∣�r

1
n

f
∣∣ � K2

(
et − ex)h

.

Since the operators Lr,n are positive, we obtain∣∣Lr,n
(
�r

1
n

f
)
(x)

∣∣ � K2Lr,n
((

et − ex)h)
(x) = O

(
n− h

2
)
.

But h is arbitrarily large and we can assert that Lr,n(�r
1
n

f )(x) = o(n−∞). Now, identity (4) yields

Dr Ln f (x) = nr Lr,n
(
�r

1
n

f
)
(x) = nro

(
n−∞) = o

(
n−∞)

. �
We are at this point in a position to show a localization result for the derivatives of the Ln operators with pointwise

conditions. We will obtain such a result as an immediate consequence of the proposition below. Following the terminology
of page 426 we analyze in this proposition and the next theorem the localization results for the rth derivative and functions
with polynomial behavior of degree less than r. The preceding proposition studies the case r = −1 and now we are going
to extend the result for r � 0.

Proposition 7. Let f : IΦ → R be a function of exponential growth and let r ∈ N0 , h ∈ N and x ∈ IΦ be such that f is differentiable at
x of order r + h + 2. Let us suppose that Di f (x) = 0, for r � i � r + h. Then

Dr Ln f (x) = O
(
n−[ h+2

2 ]).
Proof. Consider the sequence of linear positive operators given by

L̃n(g) = Dr Ln Ir(g),

where I g(z) = ∫ z
0 g(u)du and Ir = I◦ r)· · · ◦I is the rth composition of I .

It is straightforward that for all α ∈ N,

Ir(t − x)α = 1

(α + r)r
(t − x)α+r + pr−1

with pr−1 a polynomial of degree r − 1. We know that Ln preserves the degree of the polynomials so that Dr Ln(pr−1) = 0
and then by (4)

L̃n
(
(t − x)α

) = 1

(α + r)r
Dr Ln

(
(t − x)α+r + pr−1

) = nr

(α + r)r
Lr,n

(
�r

1
n
(t − x)α+r). (11)

By using the definition of forward difference we can write

�r
1
n
(t − x)α+r =

r∑
i=0

(
r

i

)
(−1)r−i

(
t + i

n
− x

)α+r

=
r∑(

r

i

)
(−1)r−i

α+r∑(
α + r

j

)
(t − x) j

(
i

n

)α+r− j
i=0 j=0
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=
α+r∑
j=0

(
α + r

j

)
1

nα+r− j
(t − x) j

r∑
i=0

(
r

i

)
(−1)r−i iα+r− j

=
α+r∑
j=0

(
α + r

j

)
1

nα+r− j
(t − x) j�r

1tα+r− j(0).

If we take into account that �r
1tα+r− j(0) = r!σ r

α+r− j = 0 whenever α < j, with (11) and claim (i) of Corollary 5 we obtain

L̃n
(
(t − x)α

)
(x) = r!

(α + r)r

α∑
j=0

(
α + r

j

)
σ r

α+r− j
1

nα− j
Lr,n

(
(t − x) j)(x)

= r!
(α + r)r

α∑
j=0

(
α + r

j

)
σ r

α+r− j
1

nα− j
O

(
n−[ j+1

2 ])
= O

(
n−[ α+1

2 ]). (12)

Since f is differentiable of order r + h + 2 at x, there exists a bounded subinterval J ⊆ IΦ open with respect to the
topology of IΦ with x ∈ J such that f ∈ Cr+h+1( J ). Consider any subinterval J1 ⊆ J open with respect to IΦ with x ∈ J1
and d( J1, IΦ − J ) > 0. It is possible to define a function g ∈ Cr+h+1(IΦ) in such a way that{

g|IΦ− J = 0,

g| J1 = f | J1 .

Moreover, it is clear that g is differentiable of order r + h + 2 at x.
We will prove only for even h since for odd h the same arguments can be used. Then, the hypotheses on the derivatives

of f at x, the last identity and a Taylor series for Dr g guarantee that for all z ∈ IΦ ,

Dr g(z) =
h+2∑
i=0

Dr+i g(x)

i! (z − x)i + μ(z)(z − x)h+2

= Dr+h+1 g(x)

(h + 1)! (z − x)h+1 + Dr+h+2 g(x)

(h + 2)! (z − x)h+2 + μ(z)(z − x)h+2,

for certain bounded function μ : IΦ → R such that limz→x μ(z) = μ(x) = 0. Therefore, since L̃n is linear and positive if we
apply the operator and evaluate at x we have∣∣∣∣L̃n

(
Dr g

)
(x) − Dr+h+1 g(x)

(h + 1)! L̃n
(
(t − x)h+1)(x) − Dr+h+2 g(x)

(h + 2)! L̃n
(
(t − x)h+2)(x)

∣∣∣∣ � ‖μ‖IΦ · L̃n
(
(t − x)h+2)(x),

where ‖ · ‖IΦ stands for the sup norm on IΦ . Hence, on account of (12), it follows that L̃n(Dr g)(x) = O(n−[ h+2
2 ]).

We know that ( f − g)| J1 = 0 and then from Proposition 6 it follows that Dr Ln( f − g)(x) = o(n−∞). Finally, it is immediate
that L̃n(Dr g) = Dr Ln g and then

Dr Ln f (x) = Dr Ln g(x) + Dr Ln( f − g)(x) = O
(
n−[ h+2

2 ]) + o
(
n−∞) = O

(
n−[ h+2

2 ]). �
The immediate conclusion of the last proposition is the announced localization theorem for the derivatives of the Ln

operators and functions with pointwise polynomial behavior in the sense of point (b) of page 426.

Theorem 8. Let f : IΦ → R be of exponential growth and let r ∈ N0 and x ∈ IΦ be such that f is differentiable at x of any order with
degx( f ) < r. Then

Dr Ln f (x) = o
(
n−∞)

.

From this theorem we can also derive a localization result in the line of point (a) of page 426. In fact, it is a simple
corollary that, in the conditions of the theorem, if we also have that f | J = p for a polynomial p of degree m < r and J ⊆ IΦ
open with respect to IΦ , we deduce that Dr Ln f (x) = o(n−∞) for all x ∈ J .

Of course, the preceding theorem is valid for Baskakov, Baskakov–Schurer, Szász, Szász–Mirakjan operators for functions
of exponential growth and for Bernstein operators with bounded functions.
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Remark 9. Theorem 8 can be formulated in a way similar to that of the classical localization results presented in the
introduction of the paper (see identity (3)). That is to say, given two functions f1, f2 : IΦ → R of exponential growth and
differentiable of any order at x ∈ IΦ with Di f1(x) = Di f2(x) for all i � r, we have

Dr Ln f1(x) − Dr Ln f2(x) = o
(
n−∞)

.

As a consequence, if we have Dr f1| J = Dr f2| J for certain J ⊆ IΦ open with respect to IΦ then we have that

Dr Ln f1(x) − Dr Ln f2(x) = o
(
n−∞)

, ∀x ∈ J .

3. Composite operators

We can find in the literature several classical sequences that are obtained by composition from the generalized Baskakov
operators Ln . With the purpose of studying such composite operators we are going to analyze a general class of linear
operators that are obtained from Ln through a transformation of the following type: given the subintervals I ⊆ R and
I1 ⊆ IΦ , a C∞ diffeomorphism ϕ : I → I1 ⊆ IΦ and a C∞ function q : I1 → R with q > 0, we consider any transformation

Ψ : R
I → R

IΦ

such that

Ψ ( f )|I1 = q · ( f ◦ ϕ−1).
Since ϕ and q are of class C∞ , it is immediate that the fact that f is differentiable of order k at certain x ∈ I implies that
Ψ f is also differentiable of order k at ϕ(x). On the other hand it is also clear that the inverse transformation is given by

Ψ −1 : R
I1 → R

I ,

Ψ −1( f ) = 1

q ◦ ϕ
· ( f ◦ ϕ).

For every such a transformation Ψ we consider the composite operator

LΨ
n : R

I → R
I ,

LΨ
n = Ψ −1 ◦ Ln ◦ Ψ.

Such kind of transformations and composite operators, Ψ and LΨ
n , can also be found in [7] where they are introduced in

order to obtain estimates in weighted approximation.
In this section we are going to extend our localization results to this kind of composite operators. At the end of the

section we will show several examples of classical sequences that can be obtained from the generalized Baskakov operators
by means of a suitable transformation Ψ . It is of interest the fact that the behavior for such composite sequences with
respect to the localization results may differ considerably from the case of the Baskakov operators and the examples that
we give later illustrate this aspect.

In what follows Ψ is one of the transformations described above, given for certain fixed functions ϕ , q, and LΨ
n is the

corresponding composite operator.
We can transfer easily some of the properties of the Baskakov operators to the LΨ

n operators. For instance, LΨ
n are linear

and positive and we will see that LΨ
n reproduces the behavior of Ln for the convergence of moments. For this purpose,

in the next lemma we first give a representation for the derivatives of the transformations of a function in terms of the
derivatives of the function that we will also use later at several points.

Lemma 10. There exist the sequences of functions ψs,k : I → R and ψ̃s,k : I1 → R, s,k ∈ N0 , s � k, such that for all f1 : I1 → R and
f2 : I → R differentiable enough we have

(i) DkΨ −1( f1) =
k∑

s=0

(
Ds[ f1] ◦ ϕ

) · (ψ̃s,k ◦ ϕ),

(ii) DkΨ ( f2) =
k∑

s=0

(
Ds[ f2] ◦ ϕ−1) · (ψs,k ◦ ϕ−1).

Proof. Let us prove (i). For k = 0 it is clear that we can take ψ̃0,0 = 1/q. Let us proceed now by induction on k. If we
suppose that the result holds for certain value of k, by simply differentiation we have
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Dk+1Ψ −1( f1) =
k∑

s=0

[(
Ds+1[ f1] ◦ ϕ

) · Dϕ · (ψ̃s,k ◦ ϕ) + (
Ds[ f1] ◦ ϕ

) · D[ψ̃s,k ◦ ϕ]]

=
k+1∑
s=0

(
Ds[ f1] ◦ ϕ

) · (ψ̃s,k+1 ◦ ϕ)

with

ψ̃s,k+1 ◦ ϕ =
⎧⎨
⎩

D[ψ̃0,k ◦ ϕ], if s = 0,

Dϕ · (ψ̃s−1,k ◦ ϕ) + D[ψ̃s,k ◦ ϕ], if 1 � s � k,

Dϕ · (ψ̃k,k ◦ ϕ), if s = k + 1.

Claim (ii) can be proved in much the same way. �
As a consequence of Proposition 7 we can prove the following lemma which partially extend Corollary 4.

Lemma 11. Let η : I → R be a function of class C∞ on I such that Ψ (η) is of exponential growth. Then for all h ∈ N0 and x ∈ I ,

LΨ
n

((
η − η(x)

)h)
(x) = O

(
n−[ h+1

2 ]).
Proof. From the definition we know that

LΨ
n

((
η − η(x)

)h)
(x) = 1

q(ϕ(x))
Ln

(
Ψ

((
η − η(x)

)h))(
ϕ(x)

)
.

But claim (ii) of Lemma 10 implies that for any k ∈ N0 with k < h,

Dk[Ψ ((
η − η(x)

)h)](
ϕ(x)

) =
k∑

s=0

Ds[(η − η(x)
)h]

(x) · ψs,k(x)

and it is immediate that Ds[(η − η(x))h](x) = 0 for all s � k < h. Then DkΨ ((η − η(x))h)(ϕ(x)) = 0, for all k < h. Thus, by
Proposition 7 we have

Ln
(
Ψ

((
η − η(x)

)h))(
ϕ(x)

) = O
(
n−[ h+1

2 ])
which ends the proof. �

As we have explained before, the behavior for the composite operators LΨ
n is different from the case of the Baskakov

operators studied in Section 2. Only the results that do not involve the derivatives can be transferred to LΨ
n directly. In fact,

the following result is the extension for the composite operators of Proposition 6 and the case r = 0 of Proposition 7.

Proposition 12. Given a function f : I → R such that Ψ f is of exponential growth, the following claims hold:

(i) Let J ⊆ I be a subinterval open with respect to the topology of I such that f | J = 0, then for all r ∈ N0 and x ∈ J ,

Dr LΨ
n f (x) = o

(
n−∞)

.

(ii) Let x ∈ I and h ∈ N be such that f is differentiable at x of order h + 2. Let us suppose that Di f (x) = 0 for all i = 0, . . . ,h, then

LΨ
n f (x) = O

(
n−[ h+2

2 ]).
Proof. For a given x ∈ I let us denote x̃ = ϕ(x) and f̃ = Ψ f . By means of claims (i) and (ii) of Lemma 10 we know that,
provided f is differentiable enough, for every k ∈ N0,

Dk LΨ
n ( f )(x) = Dk[Ψ −1Ln f̃

]
(x) =

k∑
s=0

Ds Ln f̃ (x̃) · ψ̃s,k(x̃), (13)

Dk f̃ (x̃) =
k∑

Ds f (x) · ψs,k(x). (14)

s=0
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Let us prove claim (i). If f | J = 0 and x ∈ J , we have that f̃ |ϕ( J ) = 0 and x̃ ∈ ϕ( J ). Besides ϕ( J ) ⊆ IΦ is an open

subinterval with respect to IΦ . Then by Proposition 6, Ds Ln( f̃ )(x̃) = o(n−∞) for any s ∈ N0. Therefore, from (13) with k = r,
claim (i) follows.

For (ii), if x is under the assumptions of the claim, from (14) it follows that Dk f̃ (x̃) = 0 for k = 0, . . . ,h and then
Proposition 7 proves that

LΨ
n f (x) = 1

q(x̃)
Ln f̃ (x̃) = O

(
n−[ h+2

2 ]). �
We can now formulate our main result for composite operators. As it is described on page 426, we take a function

with pointwise polynomial behavior of degree m and we want to establish a localization result for the rth derivative with
r > m. We will see that for this situation the result depends on the asymptotic expression of the composite operators for
the monomials tδ (that is to say on LΨ

n (tδ)) which correspond for the Ln operators to the functions Ψ (tδ) = q · (ϕ−1)δ . In
the theorem, an asymptotic expansion of the type an = ∑∞

j=0 b jn−1 must be understood in the sense that for every s ∈ N

we have an = ∑s
j=0 b jn−1 + O(n−(s+1)).

Theorem 13. Let us suppose that for all δ ∈ N0 ,

LΨ
n

(
tδ

) = tδ +
∞∑
j=1

n− j pδ, j, (15)

where for all δ and j we have that pδ, j ∈ C∞(I). Given x ∈ I , r ∈ N0 , m ∈ N0 ∪ {−1} with r > m, let f : I → R be a function
differentiable of any order at x with degx( f ) = m and such that Ψ f is of exponential growth. Then

Dr LΨ
n ( f )(x) =

⎧⎨
⎩

o(n−∞), if m = −1,

o(n−∞), if m = 0 and LΨ
n (1) = 1,

o(n−∞), if m = 1 and LΨ
n (1) = 1, LΨ

n (t) = t.

(16)

Furthermore, given α ∈ N suppose that α = 1 or α � 2 with

degx(pδ, j) < δ + r − m, ∀δ � 2α − 2, ∀ j � α − 1 (17)

then

Dr LΨ
n ( f )(x) = O

(
n−α

)
.

Proof. Let us denote again f̃ = Ψ f and x̃ = ϕ(x). Accordingly, identities (13) and (14) remain valid.
Take an arbitrary h ∈ N. Since f is differentiable of any order at x we can find a subinterval Γ ⊆ I open with respect

to I with x ∈ Γ such that f ∈ Ch+r(Γ ) and therefore we also have f̃ ∈ Ch+r(ϕ(Γ )). Then, for any s = 1, . . . , r and any

z ∈ ϕ(Γ ), consider the functions g = f̃ − ∑h
i=0

Di f̃ (z)
i! (t − z)i and gs = f̃ − ∑h

i=0
Ds+i f̃ (z)
(s+i)! (t − z)s+i defined both of them on

IΦ . Since D j g(z) = Ds+ j gs(z) = 0 for all j = 0, . . . ,h, by means of Proposition 7 we know that Ln g(z) = O(n−[ h+2
2 ]) and

Ds Ln gs(z) = O(n−[ h+2
2 ]) and therefore for all z ∈ ϕ(Γ ),

Ln( f̃ )(z) =
h∑

i=0

Di f̃ (z)

i! Ln
(
(t − z)i)(z)

︸ ︷︷ ︸
=Gh,n(z)

+ O
(
n−[ h+2

2 ]), (18)

Ds Ln( f̃ )(z) =
h∑

i=0

Ds+i f̃ (z)

(s + i)! Ds Ln
(
(t − z)s+i)(z) + O

(
n−[ h+2

2 ]). (19)

It is clear that Gh,n ∈ Cr(ϕ(Γ )) and by claim (i) of Corollary 5 we know that for every z ∈ ϕ(Γ ), Gh,n(z) is a polynomial on
n−1 of degree h and consequently we can consider the decomposition

Gh,n(z) = G̃h,n(z) + Ĝh,n(z), (20)

where both G̃h,n(z) and Ĝh,n(z) are polynomials on n−1 with G̃h,n(z) of degree [ h+2
2 ] − 1 and Ĝh,n(z) = O(n−[ h+2

2 ]). Then
(18) can be also written as

Ln( f̃ )(z) = G̃h,n(z) + O
(
n−[ h+2

2 ]).



436 A.-J. López-Moreno, J.-M. Latorre-Palacios / J. Math. Anal. Appl. 380 (2011) 425–439
Notice that both identity (20) and the degrees on n−1 of the members of such a decomposition are preserved by differenti-
ating.

Moreover, it is easily seen that we can also consider the functions Ψ −1Gh,n , Ψ −1G̃h,n , Ψ −1Ĝh,n ∈ Cr(Γ ) (even if Gh,n ,
G̃h,n and Ĝh,n are not defined on the whole interval I1) which maintain the same properties as polynomials in n−1 and
again from (18), it is a simple matter to obtain

LΨ
n f (z) = Ψ −1Gh,n(z) + O

(
n−[ h+2

2 ]) = Ψ −1G̃h,n(z) + O
(
n−[ h+2

2 ]), ∀z ∈ Γ. (21)

Let us study the derivatives of Gh,n . If we make use of the definition of Gh,n given in (18), the notation Ti,n established
in (8) and Leibnitz’s formula, we have

DsGh,n(x̃) =
h∑

i=0

s∑
j=0

(
s

j

)
Di+s− j f̃ (x̃)

i! D j Ti,n(x̃).

Notice that in the last expression we can assume that j � i since otherwise the derivative of the moment Ti,n vanishes. Then,

we can easily make the following changes in the order of the sums
∑h

i=0
∑s

j=0 = ∑s
j=0

∑h
i=0 = (ĩ = i − j) = ∑s

j=0
∑h− j

ĩ=0
.

On the other hand, for ĩ > h − j, from claim (i) of Corollary 5, we have

D j T ĩ+ j,n(x̃) = O
(
n−[ h+2

2 ]),
so, except an infinitesimal expression O(n−[ h+2

2 ]), we can extend the sum over ĩ up to
∑h

ĩ=0
. Writing again i instead of ĩ,

we obtain

DsGh,n(x̃) =
h∑

i=0

Ds+i f̃ (x̃)

(s + i)!
s∑

j=0

(s + i)!
(i + j)!

(
s

j

)
D j Ti+ j,n(x̃) + O

(
n−[ h+2

2 ]).
If we apply claim (ii) of Corollary 5 to compute D j Ti+ j,n(x̃), we get

DsGh,n(x̃) =
h∑

i=0

Ds+i f̃ (x̃)

(s + i)!
s∑

j=0

(s + i)!
(i + j)!

(
s

j

) j∑
α=0

(
j

α

)
(−1) j−α(i + j) j−α Dα Ln

(
(t − x̃)i+α

)
(x̃) + O

(
n−[ h+2

2 ])

=
h∑

i=0

Ds+i f̃ (x̃)

(s + i)!
s∑

α=0

(s + i)!
(i + α)!

(
s

α

)
Dα Ln

(
(t − x̃)i+α

)
(x̃)

s∑
j=α

(
s − α

s − j

)
(−1) j−α + O

(
n−[ h+2

2 ])
and it is immediate that the sum on j in the last expression is equal to 1 whenever α = s and vanishes otherwise. So we
finally have

DsGh,n(x̃) =
h∑

i=0

Ds+i f̃ (x̃)

(s + i)! Ds Ln
(
(t − x̃)s+i)(x̃) + O

(
n−[ h+2

2 ]).
Therefore, with (19) and (20) we can assert that for all s = 1, . . . , r,

Ds Ln( f̃ )(x̃) = DsGh,n(x̃) + O
(
n−[ h+2

2 ]) = DsG̃h,n(x̃) + O
(
n−[ h+2

2 ]).
Then, if we use (13) we deduce that

Dr LΨ
n ( f )(x) = Dr[Ψ −1Ln( f̃ )

]
(x)

=
r∑

s=0

Ds Ln( f̃ )(x̃) · ψ̃s,r(x̃)

=
r∑

s=0

DsG̃h,n(x̃) · ψ̃s,r(x̃) + O
(
n−[ h+2

2 ])
= Dr[Ψ −1(G̃h,n)

]
(x) + O

(
n−[ h+2

2 ]). (22)

Let us obtain now an expression for Ψ −1(G̃h,n). For this purpose, consider, for every z ∈ Γ , the function g∗ = f −∑h
i=0

Di f (z)
(t − z)i for which it is clear that Di g∗(z) = 0 for all i = 0, . . . ,h. Then, Proposition 12 implies that
i!
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LΨ
n f (z) =

h∑
i=0

Di f (z)

i! LΨ
n

(
(t − z)i)(z) + O

(
n−[ h+2

2 ])
and hence with (21) we deduce that

Ψ −1(G̃h,n)(z) =
h∑

i=0

Di f (z)

i! LΨ
n

(
(t − z)i)(z) + O

(
n−[ h+2

2 ]). (23)

But, from hypotheses (15) of the theorem, with the aid of Newton’s binomial formula, we have for every i ∈ N that

LΨ
n

(
(t − z)i)(z) =

[ h+2
2 ]−1∑
j=1

n− jqi, j(z) + O
(
n−[ h+2

2 ]) (24)

with

qi, j =
i∑

δ=0

(
i

δ

)
(−1)i−δti−δ pδ, j .

Notice also that, in particular for i = 0, if we take q0, j = p0, j from (15) it follows that

LΨ
n

(
(t − z)0)(z) = LΨ

n (1)(z) = 1 +
[ h+2

2 ]−1∑
j=1

n− jq0, j(z) + O
(
n−[ h+2

2 ]). (25)

Take into account that in the case that (17) holds we have

degx

(
ti−δ pδ, j

) = i − δ + degx(pδ, j) < i − δ + δ + r − m = i + r − m

and therefore, in this case, the central moments at x also meet condition (17). That is to say,

degx(qi, j) < i + r − m. (26)

From (23), (24) and (25), since Ψ −1(G̃h,n) is a polynomial on n−1 of degree [ h+2
2 ] − 1, it is immediate that

Ψ −1(G̃h,n) = f +
[ h+2

2 ]−1∑
j=1

n− j
h∑

i=a

Di f

i! qi, j, (27)

where

a =
⎧⎨
⎩

0, in the general case,

1, if LΨ
n (1) = 1,

2, if LΨ
n (1) = 1 and LΨ

n (t) = t.

Let us see that the assertions of the theorem follows from (22) and (27).
For the three cases of (16), it is immediate that whenever i � a we have degx(Di f ) = −1 and therefore

degx(Di f · qi, j) = −1 and accordingly Dr[Di f · qi, j](x) = 0. Moreover, since degx( f ) = m < r we always have Dr f (x) = 0.
Then the rth derivative of all the summands in (27) vanishes and therefore Dr[Ψ −1(G̃h,n)](x) = 0. Hence by means of (22),
since h is arbitrary, we obtain (16).

For m > −1 and α � 2, let us take h = 2α − 2. If condition (17) is satisfied then we have seen that (26) also holds and
hence

degx

(
Di f · qi, j

) = m − i + degx(qi, j) < m − i + i + r − m = r.

Accordingly, we have again that all the rth derivatives of the summands in (27) vanish and it follows that

Dr[Ψ −1(G̃h,n)
]
(x) = 0

and (22) leads us again to the result. Finally, for α = 1 the result is straightforward from (27). �
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Remark 14. The result of the preceding theorem is sharp in the following sense. If condition (17) of Theorem 13 does not
hold for certain values of α, r and m, then it is not possible to guarantee that Dr LΨ

n f (x) = O(n−α) for every function with
pointwise polynomial behavior of degree m at x.

For instance if, for α,m ∈ N0 with m � 2α − 1, δ = m and certain j0 � α − 1, we have that (17) fails at x ∈ IΦ this means
that

degx(pm, j0) � m + r − m = r. (28)

Consider now the function tm for which, from the hypotheses of Theorem 13, we know that LΨ
n (tm) = tm + ∑∞

j=1 n− j pm, j .
In the proof of the theorem it is justified (see (22)) that

Dr LΨ
n

(
tm)

(x) =
α−1∑
j=1

n− j Dr pm, j(x) + O
(
n−α

)
.

But because of (28) we cannot assure that Dr pm, j0 (x) = 0. In particular, in many cases we have that the functions pδ, j are
polynomials on the whole I (not only pointwise at x) and then degx(pm, j0 ) � r implies that deg(pm, j0 ) � r and we will have
Dr pm, j0 (x) = 0 only for a finite set of points x. For the rest of points we conclude that

Dr LΨ
n

(
tm−1)(x) �= O

(
n−α

)
.

In what follows let us use the results of this section to analyze several cases of composite linear positive operators.

3.1. The Meyer–König and Zeller operators

The Meyer–König and Zeller operators in the slight variation by Cheney and Sharma [8] are defined for f : [0,1) → R by

Mn f (x) = (1 − x)n+1
∞∑

i=0

(
n + i

i

)
xi f

(
i

n + i

)
.

Let us take φn(x) = (1 + x)−(n+1) in the definition of the generalized Baskakov operators and let us consider the trans-
formation Ψ given by ϕ = t

1−t and q = 1 (that is to say, Ψ f = f ◦ ϕ−1). Then Mn = LΨ
n so that the Meyer–König and

Zeller operators can be obtained as composite operators from the generalized Baskakov operators. It is also well known that
Mn(ti) = ti for i = 0,1. On the other hand, in [1, Theorem 2] Abel proves that for these operators the functions pδ, j are
polynomials on [0,1) with

deg(pδ, j) = δ + j.

Then Theorem 13 yields the following result.

Theorem 15. Let f : [0,1) → R a function such that f � Ceα t
1−t for certain constants C,α ∈ R

+ , differentiable of any order at
x ∈ [0,1). Given m ∈ N0 ∪ {−1} such that degx( f ) = m and r ∈ N0 , r > m, we have

Dr Mn( f )(x) =
{

o(n−∞), if m = −1,0,1,

O(n−(r−m)), if m > 1.

3.2. The Bleimann, Butzer and Hahn operators

For a function f : [0,∞) → R and x ∈ [0,∞), the Bleimann, Butzer and Hahn operators [6] are defined by

BBHn( f )(x) = 1

(1 + x)n

n∑
i=0

(
n

i

)
xi f

(
i

n + 1 − i

)
.

It is well known that the BBH operators are linear and positive and also that BBHn(ti) = ti for i = 0,1. We have already seen
on page 426 that the generalized Baskakov operators yield the Bernstein operators by taking φn = (1 − t)n and IΦ = [0,1].
We can derive the BBH operators from the Bernstein operators (see [3]) as BBHn = LΨ

n+1 if we take I1 = [0,1), ϕ = t
1+t ,

q = 1 − t and the transformation

Ψ ( f )(x) =
{

q(x) · ( f ◦ ϕ−1)(x), if x ∈ [0,1),
0, if x = 1.
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Moreover, in [2, Proposition 3] it is proved that

BBHn
(
(1 + t)δ

) = (1 + t)δ +
∞∑
j=1

1

(n + 1) j
p̃δ, j(t + 1),

with p̃δ, j a polynomial of degree δ + j. From this expression it is easy to deduce, for n > 1, that

LΨ
n

(
tδ

) = BBHn−1
(
tδ

) = tδ +
∞∑
j=1

1

n j
pδ, j,

again with pδ, j a polynomial of degree δ + j. Therefore we can use Theorem 13 to obtain the following result.

Theorem 16. Let f : [0,∞) → R be a function such that (t + 1) f is bounded and differentiable of any order at x ∈ [0,∞). Given
m ∈ N0 ∪ {−1} such that degx( f ) = m and r ∈ N0 with r > m,

DrBBHn( f )(x) =
{

o(n−∞), if m = −1,0,1,

O(n−(r−m)), if m > 1.

3.3. An example with different behavior

Consider the sequence of linear positive operators LΨ
n given for φn(x) = e−nx , ϕ = − log(1 − t) : I = [0,1) → I1 = IΦ =

[0,∞) and Ψ f = f ◦ ϕ−1. For any f : [0,1) → R and x ∈ [0,1), from the definition of the Baskakov operators, it is a simple
matter to find the explicit expression

LΨ
n f (x) = (1 − x)n

∞∑
i=0

logi((1 − x)−n)

i! f
(
1 − e− i

n
)
.

It is immediate that LΨ
n (1) = 1. Moreover, with the aid of (6), for every z ∈ [0,1), we have

LΨ
n (t)(z) = Ln(Ψ t)

(
ϕ(z)

) = Ln
(
ϕ−1)(ϕ(z)

) = Ln
(
1 − e−t)(ϕ(z)

) = 1 − e−nϕ(z)(1−e
−1
n ).

It can be checked that

1 − e−nϕ(z)(1−e
−1
n ) = 1 − e−ϕ(z) − 1

2n
ϕ(z)e−ϕ(z) + O

(
n−2)

so we finally obtain

LΨ
n (t) = t + 1

2n
(1 − t) log(1 − t) + O

(
n−2).

That is to say p1,1 = 1
2 (1 − t) log(1 − t) and then Dk p1,1(x) �= 0 (except for Dp1,1(

e−1
e ) = 0) for all k ∈ N0 and x ∈ [0,1) or,

what is the same, degx(p1,1) = ∞. With this all at hand, Theorem 13 and Remark 14 lead us to the following result.

Theorem 17. Let f : [0,1) → R be a function such that f (1−e−t) is of exponential growth and differentiable of any order at x ∈ [0,1).
Given m ∈ N0 ∪ {−1} such that degx( f ) = m and r ∈ N0 with r > m,

Dr LΨ
n ( f )(x) =

{
o(n−∞), if m = −1,0,

O(n−1), if m > 0.

References

[1] U. Abel, The moments of the Meyer–König and Zeller operators, J. Approx. Theory 82 (1995) 352–361.
[2] U. Abel, On the asymptotic approximation with bivariate operators of Bleimann, Butzer and Hahn, J. Approx. Theory 97 (1999) 181–198.
[3] J.A. Adell, F.G. Badía, J. de la Cal, On the iterates of some Bernstein-type operators, J. Math. Anal. Appl. 209 (1997) 529–541.
[4] F. Altomare, M. Campiti, Korovkin-Type Approximation Theory and Its Applications, de Gruyter Stud. Math., vol. 17, Walter de Gruyter, Berlin, New

York, 1994.
[5] V.A. Baskakov, An example of a sequence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk SSSR 113 (1957) 249–251.
[6] G. Bleimann, P.L. Butzer, L. Hahn, A Bernstein-type operator approximating continuous functions on the semi-axis, Nederl. Akad. Wetensch. Indag.

Math. 42 (1980) 255–262.
[7] J. Bustamante, L. Morales de la Cruz, Korovkin type theorems for weighted approximation, Int. J. Math. Anal. 1 (26) (2007) 1273–1283.
[8] E.W. Cheney, A. Sharma, Bernstein power series, Canad. J. Math. 16 (1964) 241–252.
[9] R.A. DeVore, G.G. Lorentz, Constructive Approximation, Compr. Stud. Math., vol. 303, Springer-Verlag, Berlin, Heidelberg, 1993.

[10] A.J. López-Moreno, Weighted simultaneous approximation with Baskakov type operators, Acta Math. Hungar. 102 (1–2) (2004) 143–151.
[11] G.G. Lorentz, Bernstein Polynomials, second edition, Chelsea Publishing Company, New York, 1983.
[12] G. Mastroianni, Sur un operatore lineare e positivo, Rend. Accad. Sci. Fis. Mat. Napoli (4) 46 (1979) 161–176.


	Localization results for generalized Baskakov/Mastroianni and composite operators
	Introduction and notation
	Localization results for generalized Baskakov operators
	Composite operators
	The Meyer-König and Zeller operators
	The Bleimann, Butzer and Hahn operators
	An example with different behavior

	References


