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This contribution shows how to obtain Lp-decay rates, with 2 � p � +∞, for zero-mass
perturbations of degenerate scalar viscous shock waves using energy methods. The proof is
based upon previous work by Matsumura and Nishihara (Comm. Math. Phys. 165 (1) (1994)
83–96), by extending their weighted energy estimates to Lp-norms, and by obtaining sharp
decay rates for the antiderivative of the perturbation with the aid of basic interpolation
inequalities. The analysis applies to shocks of all orders of degeneracy and it is elementary.
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1. Introduction

Consider a scalar conservation law with second order viscosity in one dimension

ut + f (u)x = (
b(u)ux

)
x, (1)

where f ,b ∈ C2, b > 0, and (x, t) ∈ R × [0,+∞). Suppose that the triple (u+, u−, s) ∈ R
3, with u− �= u+ (without loss of

generality, we take u+ < u−), constitutes a generalized shock front [16], namely, a weak solution of form

u(x, t) =
{

u−, x − st < 0,

u+, x − st > 0,

to the underlying inviscid conservation law

ut + f (u)x = 0,

which satisfies both the Rankine–Hugoniot jump condition,

−s(u+ − u−) + f (u+) − f (u−) = 0,

and the generalized entropy condition [17],

−s(u − u−) + f (u) − f (u−) < 0, for all u ∈ (u+, u−).

This paper studies traveling wave solutions (shock profiles) to Eq. (1) of form u(x, t) = ū(x − st), where ū satisfies

(
b(ū)ū′)′ = f (ū)′ − sū′,

ū(ξ) → u±, as ξ → ±∞.
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Here, ′ = d/dξ denotes differentiation with respect to the moving (galilean) variable ξ := x − st , and s is the shock speed. In
this paper we assume that the flux function u �→ f (u) changes its convexity in u ∈ (u+, u−), a hypothesis which allows us
to consider sonic (or degenerate) shocks, namely, waves whose speed matches one of the characteristic speeds with s = f ′(u+)

or s = f ′(u−).
Sonic shocks appear in more complicated systems, for example, for sonic Chapman–Jouguet waves in combustion the-

ory [3], for which the scalar case considered here can be loosely regarded as a toy model; see [12,28,18] for an (unabridged)
survey on the topic. From the mathematical point of view, sonic shocks can also be regarded as a boundary case between
classical shocks and undercompressive waves in the sense of Freistühler [4].

Motivated by such considerations, during the mid-90’s there appeared some works on the stability of scalar degenerate
shock profiles [22,23,25,21]. The first result, due to Mei [22], used the energy method of Goodman [6] and Matsumura–
Nishihara [20], under the special assumption of only one inflection point for the flux function f . The seminal work of
Matsumura and Nishihara [21] introduced a suitable, asymmetric weight function, not bounded on the sonic side, which ac-
commodates properly on the compressive side, yielding the right sign in the energy estimates (see, for example, Remark 1.4
below). Their work provides stability under decaying data, with decay rates in L∞ spaces, which are not sharp. Later on,
their weight function was used in other contexts, such as multi-dimensional equations [25], exponentially decaying initial
perturbations [23], and 2×2 systems [1]. All these works have in common the use of energy methods, yielding not so sharp
decay rates in L∞ spaces, and are restricted to zero-mass perturbations.

During the early years of the last decade, Howard introduced a different approach [11,12], generalizing the methods in-
troduced by Howard and Zumbrun [9,10,31] for classical shocks. Howard’s analysis follows pointwise bounds on the Green’s
function for the linearized operator around the wave. Such bounds arise from a suitable construction of the resolvent kernel
of the linear operator (from which the Green’s function can be retrieved from Laplace inversion formulae), sharp ODE esti-
mates, and under the assumption of spectral stability (or Evans function condition), which is also proved to hold. In [12], the
analysis applies to zero-mass perturbations and the integrated operator, whereas [11] treats the general case. These methods
offered more information on the asymptotic behavior of such waves than energy methods, yielding sharper decay rates in
all L p spaces, with p � 1 (by a factor t−1/2 log t in the case of zero-mass perturbations; see [12] for details), accommodating
slower decaying data. The application of the pointwise Green’s function method is, however, much more complicated than
in the classical shock case, due to the fact that degenerate profiles decay algebraically, in contrast to the exponential decay
of Laxian shocks. This makes the Evans function non-analytic near λ = 0. Thus, the standard estimates must be replaced by
difficult and very technical ODE estimates. Although technically impressive and flexible, such estimations are very hard. We
also note that these methods apply to shocks of order of degeneracy equal to one, and have been extrapolated to the 2 × 2
systems case [14,13].

The purpose of this contribution is simply to observe that sharper decay rates for zero-mass perturbations of vis-
cous degenerate shocks can be obtained using energy methods and interpolation inequalities. This analysis retrieves the
Matsumura–Nishihara weight function, and extends their energy estimates to L p spaces, with 2 � p � +∞. The main obser-
vation is perhaps the combination of basic estimates with interpolation inequalities of Nash-type (see [2,24]), to get sharp
decay rates for the integral of the perturbation (which is assumed to have zero-mass). This general principle, extrapolable
to multi-dimensions, is explained in Section 3 below. This sharp decay rate for the integrated variable representing the per-
turbation is then used to establish decay rates of the derivatives. This work follows the general L p-method of Kawashima
et al. [15], introduced in the context of non-compressive, rarefaction-type waves (see also the recent related L p-stability
analysis for degenerate waves on half spaces [30]). In contrast with these last two works, however, our analysis uses in-
terpolation inequalities directly to obtain decay rates for the integrated variable. The method is elementary and applies to
shocks of all orders of degeneracy.

Before making precise the statement of the main result, we have to make some preliminary observations.

1.1. Normalizations

By translation invariance and without loss of generality, we normalize the flux function f such that the profile is sta-
tionary (i.e. s = 0), obeying the equation

b(ū)ūx = f (ū). (2)

This is accomplished by taking the change of coordinates x → x − st , and by normalizing f → f (u) − su + c, where c =
su± − f (u±) is a constant. Consequently, f (u±) = 0 and f (ū(·)) ∈ L2(R). The latter is a standard normalization in stability
analyses (see, e.g., [7,19]). Therefore, and without loss of generality, we summarize our assumptions as follows:

f ,b ∈ C2, b > 0, (regularity and positive diffusion), (A1)

f (u−) = f (u+) = 0, (Rankine–Hugoniot condition), (A2)

f (u) < 0 for all u ∈ (u+, u−), (generalized entropy condition). (A3)

Remark 1.1. It is well-known [17] that entropy condition (A3) reduces to Lax entropy condition f ′(u+) < 0 < f ′(u−) when
the mode is strictly convex, i.e., when f ′′ > 0. Otherwise, the generalized entropy condition (A3) implies the non-strict



866 R.G. Plaza / J. Math. Anal. Appl. 382 (2011) 864–882
condition f ′(u+) � 0 � f ′(u−), which allows sonic waves with f ′(u+) = 0 or f ′(u−) = 0. For concreteness, we shall con-
sider for the rest of the paper that the shock is sonic on the positive side, namely, that f ′(u+) = 0. Whence, we rewrite
assumption (A3) as

f (u) < 0, ∀u ∈ (u+, u−), and, f ′(u+) = 0 < f ′(u−). (A3′)

1.2. Existence and structure of profiles

It is well-known [29,21,5] that, under assumptions (A1) to (A3′), traveling wave solutions to (1) exist.

Proposition 1.2. Under (A1)–(A3′), let us define

θ := min

{
k ∈ Z

+:
dk f

duk
(u+) �= 0

}
� 1,

as the degree of degeneracy of the shock. Then there exists a traveling wave solution ū of (2) with ū(±∞) = u± , unique up to transla-
tions. Moreover, ū is monotone decreasing, ūx < 0, and ū and its derivatives decay as

∣∣∂ j
x
(
ū(x) − u−

)∣∣ � Ce−c|x|,∣∣∂ j
x
(
ū(x) − u+

)∣∣ � C |x|−1/θ , (3)

for j = 0,1,2, some uniform C > 0, and all x ∈ R.

Proof. See, e.g., Howard [12, Section 2]. �
Remark 1.3. Observe that, as a by-product of the existence result, the profile decays algebraically on the sonic side.

1.3. Perturbation equations

Let ū(x) be the stationary profile satisfying (2) and (3), under assumptions (A1)–(A3′). Since any translate of the traveling
wave is also a solution, the most we can expect is orbital stability, or the property that a solution initially near ū(x) will
approach to a translate ū(x − δ) as t → +∞, with δ ∈ R uniquely determined by the mass carried by the initial perturbation

m0 =
∫
R

(
u0(x) − ū(x)

)
dx.

We shall restrict our analysis to the class of perturbations with zero-mass, and choose δ such that∫
R

(
u0(x) − ū(x − δ)

)
dx = 0.

This choice allows us to write the perturbation as

u(x, t) − ū(x − δ) = vx(x, t), (4)

for some function v(·, t) in L2, i.e., we are able to integrate the equation [6,8]. We suppose, without loss of generality, that
δ = 0, yielding the condition∫

R

(
u0(x) − ū(x)

)
dx = 0. (5)

In view of last observations, substitute now u(x, t) = vx(x, t) + ū(x) into (1) to obtain

vxt + f (vx + ū)x = (
b(vx + ū)(vxx + ūx)

)
x. (6)

Integrating in (−∞, x) we get the integrated equation for the perturbation

vt + f (vx + ū) = b(vx + ū)(vxx + ūx),

which, in view of the profile equation (2), can be recast as

vt = b(ū)vxx − a(x)vx + F , (7)

with

a(x) := f ′(ū) − b(ū)x, (8)
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and where

F := −(
f (vx + ū) − f (ū) − f ′(ū)vx

) + (
b(vx + ū) − b(ū) − b′(ū)vx

)
(ūx + vxx) + +b′(ū)vx vxx, (9)

comprises the nonlinear terms. Observe that

F = b′(ū)vx vxx + O
(

v2
x

)
. (10)

Upon differentiation,

Fx = b′(ū)vx vxxx + O
(

v2
x + v2

xx

)
. (11)

Note that the first is the only term of order O(|vx||vxxx|).
The integrated linear operator [6] is then defined as

Lv := b(ū)vxx − a(x)vx. (12)

This operator was introduced by Goodman [6,8], who recognized that compressivity of the wave (in the convex case f ′′ > 0)
yields “good” energy estimates for the integrated operator, but not for the original linearized operator around the wave.

Therefore, after these reformulations, the Cauchy problem for the perturbation v is written as follows,

vt = Lv + F , for (x, t) ∈ R × (0,+∞), (13)

v(x,0) = v0(x) =
x∫

−∞

(
u0(y) − ū(y)

)
dy, for x ∈ R. (14)

1.4. The Matsumura–Nishihara weight function

In the case of non-convex modes, and in order to obtain energy estimates with a good sign yielding stability, Matsumura
and Nishihara [21] introduced the following weight function,

η(x) := η̄
(
ū(x)

)
,

η̄(u) := (u − u+)(u − u−)

f (u)
> 0, u ∈ (u+, u−), (15)

which clearly satisfies the conditions

η ∼ |ū − u+|−θ , as x → +∞, (16)

η ∼ C > 0, as x → −∞, (17)

which amount to

η ∼ 〈x〉+ :=
{

(1 + x2)1/2, x � 0,

1, x < 0

(see [21] for details). In particular we have that η is bounded below,

η � C̄−1 > 0, for all x ∈ R, (18)

for some uniform C̄ > 0. Note, however, that it is not bounded above as it blows up on the sonic side when x → +∞.

Remark 1.4. One of the remarkable properties of the Matsumura–Nishihara weight function (15) is that it leads to the right
sign of the term

Φ(x) := ((
b(ū)η

)
x + a(x)η

)
x < 0, (19)

for all x ∈ R, which appears in energy estimates [21]. Indeed, using (2) we get

Φ(x) = ((
b(ū)η

)
x + a(x)η

)
x

= (
f (ū)η̄′(ū) + f ′(ū)η̄(ū)

)
x

= (
(d/du)

(
f (u)η̄(u)

)
|u=ū

)
x

= ūx
(
d2/du2)( f (u)η̄(u)

)
|u=ū

= −2|ūx| < 0,
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in view of monotonicity of the profile and of (d2/du2)( f (u)η̄(u)) = 2. Observe that, when η ≡ 1 and f ′′ > 0 (that is, in the
non-sonic, convex case), Φ = f ′′(ū)ūx < 0 has, naturally, a negative sign. Property (19) and its use for stability estimates
can be seen in the original L2 estimate of [21], in the L p estimates of Lemma 4.2 below, and, notably, in the L1

η estimate of
Lemma 4.7.

Also, observe from the definition of η and (2) that

ηx = η̄′(ū)ūx = 2ū − (u+ + u−) − f ′(ū)η

b(ū)
,

yielding |ηx| � C(1 + η), for all x ∈ R, as ū and f ′(ū) are uniformly bounded. Using (18) we readily find that

|ηx| � Cη, (20)

for some uniform C > 0 and all x ∈ R.
Finally, let us specify some notation. W m,p will denote the standard Sobolev spaces in R. In terms of the weight function,

L p
η will denote the space of measurable functions u such that η1/pu ∈ L p , or that

‖u‖p
L p
η

:=
∫
R

η|u|p dx < +∞,

for each 1 � p < +∞.

1.5. Main result

After these preparations, we are ready to state the main theorem.

Theorem 1.5. Under assumptions (A1)-(A3′), with u+ < u− , let ū be the traveling wave solution to (1) of Proposition 1.2. Suppose
that the integrability condition (5) holds, and that

v0 :=
x∫

−∞

(
u0(x) − ū(x)

)
dx ∈ Zη,p, (21)

where Zη,p = L1
η ∩ L2

η ∩ L p
η ∩ W 2,p , for some 2 � p < +∞, and where η denotes the Matsumura–Nishihara weight function (15). Then

there exists a positive constant ε̂ > 0 such that if ‖v0‖Zη,p < ε̂ , then the Cauchy problem for Eq. (1) with initial condition u(0) = u0

has a unique global solution u − ū ∈ C([0,+∞]; W 1,p) satisfying

‖u − ū‖L p � C M E0t−1/2(1 + t)−
1
2 (1−1/p), 2 � p < +∞, (22)

‖u − ū‖L∞ � C M E0t−1/2−1/2p(1 + t)−
1
2 (1−1/p), (23)

for all 0 < t < +∞, where E0 = ‖v0‖L1
η
+ ‖v0‖Lp

η
+ ‖v0‖2

L2
η

, and with uniform constant M > 0.

Remark 1.6. Observe that the decay rates (22) seem almost sharp. In particular, we got rid of the log t term appearing in
the decay rates for zero-mass perturbations in [12, pp. 24–26]. Actually, Howard eliminated the log t term in his analysis of
non-zero mass perturbations [11] as well. The decay rates of zero-mass perturbations, however, are inherently sharper. Such
observation comes from the fact that the perturbations do not transport mass. Heuristically, in the case of the heat kernel,
the perturbation

u(x, t) =
∫
R

(4πt)−1/2e−(x−y)2/4t u0(y)dy

gains a t−1 factor under the assumption of
∫

u0 = 0. Since it does not transport mass, the decay rate is determined by
diffusion, both above and below the traveling wave (see [11] for details).

Remark 1.7. Like in [21], our results apply to zero-mass perturbations only and require very rapidly decaying data, as v0
must belong to the weighted space Zη,p . A natural direction of investigation would be to treat the general case. Nonetheless,
the method presented here is simpler than that using the Evans function, and it might be possibly applied to the more
complicated (and more interesting) problem of stability of degenerate viscous shock profiles for general systems, which
remains open.
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Plan of the paper

Section 2 collects the interpolation inequalities, as well as some useful observations which will be used throughout
the analysis. We use a suitable interpolation inequality in weighted spaces for the (non-bounded) Matsumura–Nishihara
function. Section 3 contains the basic principle for the establishment of the decay rates. It is based on two inequalities:
one expresses some kind of diffusion, and the other expresses uniform boundedness in the L1

η norm. The central Section 4
contains the proofs of the a priori energy estimates for local solutions to the integrated equations. Finally, Section 5 makes
use of such estimates to provide a global existence theorem with rates of decay, leading to the proof of the main theorem.

2. Interpolation inequalities

In this section we collect some interpolation inequalities involving weighted spaces and the Matsumura–Nishihara weight
function, which play a crucial role in the analysis. In the sequel we often use the following basic identities:

∂x|u| = uux

|u| , (24)

∂x

(
1

p
|u|p

)
= |u|p−2uux, (25)

∣∣(|u|p/2)
x

∣∣2 = p2

4
|u|p−2u2

x , (26)

(|u|p−2)
xuux = 4(p − 2)

p2

∣∣(|u|p/2)
x

∣∣2
, (27)

(|u|p−2u
)

x = (p − 1)|u|p−2ux, (28)

for all u ∈ W 2,p , with 2 � p < +∞. We start with an elementary result.

Lemma 2.1. Let 2 � p < +∞. Then

‖u‖p∞ � C‖ux‖L p ‖u‖p−1
Lp , (29)

‖ux‖L p � C
∥∥(|ux|p/2)

x

∥∥2/(p+2)

L2 ‖u‖2/(p+2)

L p , (30)

for all u ∈ W 2,p , with some constants C = C(p) > 0.

Proof. Use (25) to obtain

1

p
|u|p =

x∫
−∞

|u|p−2uux dx,

as u ∈ W 2,p and u(−∞) = ux(−∞) = 0. By Hölder’s inequality for L p norms with 1/p + (p − 1)/p = 1 we arrive at

|u|p � p

∫
R

|u|p−1|ux|dx � ‖ux‖L p ‖u‖p−1
Lp ,

yielding (29) with C(p) = p.
To show (30), integrate by parts and apply (28); the result is

‖ux‖p
L p = −

∫
R

(|ux|p−2ux
)

xu dx = −(p − 1)

∫
R

|ux|p−2uxxu dx.

In view of (26) and Hölder’s inequality with 1/p + 1/2 + (p − 2)/(2p) = 1 we readily obtain

‖ux‖p
L p � (p − 1)

∫
R

|ux|(p−2)/2|ux||ux|(p−2)/2|u|dx

�
(
2(p − 1)/p

)∫
R

∣∣(|ux|p/2)
x

∣∣|ux|(p−2)/2|u|dx

�
(
2(p − 1)/p

)∥∥(|ux|p/2)
x

∥∥
L2‖u‖L p ‖ux‖−1+p/2

Lp ,

which yields (30) with C(p) = (2(p − 1)/p)2/(p+2) . �
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We now present a version in weighted norms of the interpolation (or Nash-type [24]) inequality which can be found in
[2, Lemma 1, p. 129]. For the proof we follow [2] closely, with the appropriate adaptations to the weighted spaces under
consideration. Notably, the original inequality remains valid in weighted spaces, even though the function η is not bounded
above on the sonic side.

Lemma 2.2 (Weighted interpolation inequality). For each 2 � p < +∞ there exists some constant C = C(p) > 0 such that

‖u‖p(p+1)/(p−1)

L p
η

� C‖u‖2p/(p−1)

L1
η

∥∥(|u|p/2)
x

∥∥2
L2
η
, (31)

for every u ∈ W 2,p ∩ L p
η ∩ L1

η , with ux ∈ W 2,p ∩ L p
η , where η denotes the Matsumura–Nishihara weight function.

Proof. Apply the Sobolev-type inequality ‖v‖2∞ � 2‖v‖L2‖vx‖L2 , to the function v = |u|p/2 and use (18) to obtain

‖u‖p∞ = ∥∥|u|p/2
∥∥2

∞ � 2
∥∥|u|p/2

∥∥
L2

∥∥(|u|p/2)
x

∥∥
L2 � 2C̄

∥∥η1/2|u|p/2
∥∥

L2

∥∥η1/2(|u|p/2)
x

∥∥
L2 ,

yielding

‖u‖p∞ � 2C̄
∥∥|u|p/2

∥∥
L2
η

∥∥(|u|p/2)
x

∥∥
L2
η
. (32)

Notice that
∥∥|u|p/2

∥∥2
L2
η

= ∥∥η1/2|u|p/2
∥∥2

L2 =
∫
R

η|u|p dx = ∥∥η1/pu
∥∥p

L p = ‖u‖p
L p
η
.

Furthermore, we estimate

‖u‖2p2/(p−1)

L p
η

=
( ∫

R

η|u|p dx

)2p/(p−1)

�
(

‖u‖p−1∞
∫
R

η|u|dx

)2p/(p−1)

= ‖u‖2p∞‖u‖2p/(p−1)

L1
η

. (33)

Combine (33) with (32) to arrive at

‖u‖p(p+1)/(p−1)

L p
η

=
‖u‖2p2/(p−1)

L p
η

‖u‖p
L p
η

�
‖u‖2p∞ ‖u‖2p/(p−1)

L1
η

‖|u|p/2‖2
L2
η

� 4C̄2
∥∥(|u|p/2)

x

∥∥2
L2
η
‖u‖2p/(p−1)

L1
η

,

yielding the result with C := 4C̄2, as claimed. �
Remark 2.3. For each u, ux ∈ W 1,p ∩ L p

η , by Hölder’s inequality and the identity (26) we have that

∥∥(|u|p/2)
x

∥∥2
L2
η

=
∫
R

η
∣∣(|u|p/2)

x

∣∣2
dx = p2

4

∫
R

η|u|p−2u2
x dx

� p2

4

( ∫
R

η|ux|p dx

)2/p( ∫
R

η|u|p dx

)(p−2)/p

= p2

4
‖ux‖2

Lp
η
‖u‖p−2

Lp
η

< +∞.

3. L p-decay rates

Before obtaining the a priori estimates for solutions to the integrated perturbation equation, we state the basic principle
for the establishment of sharp decay rates in weighted L p spaces. We begin with an elementary lemma.

Lemma 3.1. Suppose ρ is a nonnegative, continuously differentiable function of t � 0 that satisfies the differential inequality

dρ

dt
� −Cρβ,

for all t � 0, with C > 0, β > 1, and initial condition ρ(0) = ρ0 > 0. Then ρ(t) � ζ(t) a.e. in t � 0, where ζ is the solution to

dζ

dt
= −Cζ β, ζ(0) = ρ0.

Proof. Define ψ(t) := (β − 1)−1(ρ1−β − ζ 1−β). Clearly ψ(0) = 0 and dψ/dt � 0 in t � 0. Therefore ψ(t) � 0 a.e., that is,
ρ � ζ a.e. �
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Proposition 3.2. Let 2 � p < +∞, and suppose that u is the solution to a certain evolution (linear or nonlinear) equation, which
satisfies the bounds

d

dt

∥∥u(t)
∥∥p

L p
η

� −C1
∥∥(|u|p/2)

x(t)
∥∥2

L2
η
, (34)

∥∥u(t)
∥∥

L1
η

� C0, (35)

for all 0 < t < T � +∞, and uniform constants C1, C0 > 0. Then, there exists a positive constant C̄ > 0 such that
∥∥u(t)

∥∥
L p
η

� C̄(1 + t)−
1
2 (1−1/p), (36)

for all 0 < t < T . Moreover, the constant C̄ is of order

C̄ = O
(
C0 + ∥∥u(0)

∥∥
L p
η

)
. (37)

Proof. From (34) and the interpolation inequality (31) we obtain

d

dt

∥∥u(t)
∥∥p

L p
η

� −C1

C

∥∥u(t)
∥∥p(p+1)/(p−1)

L p
η

∥∥u(t)
∥∥−2p/(p−1)

L1
η

.

Since 2p/(p − 1) > 0, estimate (35) implies that

d

dt

∥∥u(t)
∥∥p

L p
η

� −C1

C
C−2p/(p−1)

0

∥∥u(t)
∥∥p(p+1)/(p−1)

L p
η

.

By Lemma 3.1, ‖u(t)‖p
Lp
η

will then be bounded by the solution ζ(t) of the following initial value problem

dζ

dt
= −C2ζ

β,

ζ(0) = ∥∥u(0)
∥∥p

L p
η
, (38)

with β := (p + 1)/(p − 1) > 1, C2 := (C1/C)C−2p/(p−1)

0 . The solution to (38) is

ζ(t) =
(

2C2

p − 1
t + ∥∥u(0)

∥∥−2p/(p−1)

L p
η

)−(p−1)/2

. (39)

Indeed, on one hand there holds ζ(0) = ‖u(0)‖p
Lp
η

. On the other hand a direct computation yields

dζ

dt
= −C2

(
ζ−2/(p−1)

)−(p−1)/2−1 = −C2ζ
β .

Therefore we have that ‖u(t)‖p
Lp
η

� ζ(t) for all 0 < t < T a.e. Now, for each t > 0

ζ(t)−2/(p−1) = 2C2

p − 1
t + ∥∥u(0)

∥∥−2p/(p−1)

L p
η

� C3(t + 1) > 0,

where C3 := min{2C2/(p − 1),‖u(0)‖−2p/(p−1)

Lp
η

} > 0. Henceforth,

ζ(t) � C
− 1

2 (p−1)

3 (1 + t)−
1
2 (p−1),

which, in turn, yields
∥∥u(t)

∥∥p
L p
η

� C̃
(
C0 + ∥∥u(0)

∥∥
L p
η

)p
(1 + t)−

1
2 (p−1),

with uniform C̃ = C̃(p) > 0, because from definitions of C2 and C3 we have C
− 1

2 (p−1)

3 � (C p C p
0 + ‖u(0)‖p

Lp
η
) �

C̃(C0 + ‖u(0)‖Lp
η
)p , with C p and C̃ depending only on p. This shows both (36) and (37). �

Remark 3.3. Observe that the decay rate in (36) seems optimal for strictly parabolic equations of second order, because it is
the decay rate in L p for the heat kernel. The inequality (34) expresses diffusion in some way, whereas (35) simply expresses
boundedness of the L1

η norm.
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4. A priori energy estimates

In this section we perform the energy estimates for solutions to (13) and (14). Assume 2 � p < +∞ is fixed. Let us
define the suitable space for solutions as

Zη,p := W 2,p ∩ Lp
η ∩ L1

η ∩ L2
η,

Xη,p(0, T ) := {
v ∈ C

([0, T ]; Zη,p
)
, vx ∈ L2([0, T ]; Zη,p

)}
,

with 0 < T � +∞.
According to custom, the global existence of solutions to (13) and (14) is proved by a continuation argument based on a

local existence result combined with the corresponding a priori energy estimates. Using the variation of constants formula
and by a standard contraction mapping argument it is possible to prove the following short-time existence result. We omit
the details.

Proposition 4.1 (Local existence). For any ε0 > 0 there exists a positive constant T0 depending on ε0 such that if v0 ∈ Zη,p and
‖v0‖Zη,p � ε0 , then the Cauchy problem (13) and (14) has a unique solution v ∈ Xη,p(0, T0) satisfying ‖v(t)‖Zη,p < 2ε0 for each
0 � t � T0 .

This section is thus devoted to the establishment of a priori estimates for solutions to (13) and (14).

4.1. The basic energy estimate

The next lemma is the main result of this section.

Lemma 4.2 (Basic energy estimate). Let 2 � p < +∞, and let v(t) ∈ Xη,p(0, T ) be a solution to (13) for some T > 0. Then there holds
the estimate

1

p

∥∥v(t)
∥∥p

L p
η

+ 4(p − 1)

p2

t∫
0

∥∥b(ū)1/2(∣∣v(τ )
∣∣p/2)

x

∥∥2
L2
η

dτ + 2

p

t∫
0

∫
R

|ūx|
∣∣v(τ )

∣∣p
dx dτ

= 1

p

∥∥v(0)
∥∥p

L p
η

+
t∫

0

∫
R

ηF v(τ )
∣∣v(τ )

∣∣p−2
dx dτ (40)

for all 0 � t � T .

Proof. Multiply Eq. (7) by ηv|v|p−2; the result is

ηv|v|p−2 vt = ηv|v|p−2b(ū)vxx − ηv|v|p−2a(x)vx + ηv|v|p−2 F .

Use (25), (26), (27), and rearrange the terms to find that

∂t

(
1

p
η|v|p

)
= (

b(ū)η|v|p−2 v vx
)

x − ((
b(ū)η

)
x + a(x)η

)
∂x

(
1

p
|v|p

)
− 4(p − 1)

p2
b(ū)η

∣∣(|v|p/2)
x

∣∣2 + ηF v|v|p−2.

Integrate last equation by parts and use (19) to obtain

1

p

d

dt

∥∥v(t)
∥∥p

L p
η

= − 2

p

∫
R

|ūx|
∣∣v(t)

∣∣p
dx − 4(p − 1)

p2

∥∥b(ū)1/2(∣∣v(t)
∣∣p/2)

x

∥∥2
L2
η
+ +

∫
R

ηF v(t)
∣∣v(t)

∣∣p−2
dx, (41)

for each t ∈ [0, T ). Integration of last equation in (0, t) leads to the basic energy estimate (40). �
Remark 4.3. Observe that since b ∈ C2(R), b > 0 and ū ∈ [u+, u−] then there holds 0 < C−1 � b(ū(x)) � C for all x ∈ R and
some uniform C > 0. This readily implies that

Ĉ−1
∥∥(|v|p/2)

x

∥∥2
L2
η

�
∥∥b(ū)1/2(|v|p/2)

x

∥∥2
L2
η

� Ĉ
∥∥(|v|p/2)

x

∥∥2
L2
η
, (42)

for some uniform constant Ĉ > 0 and all v, vx ∈ W 2,p ∩ L p
η .

Let us now define

R(t) := sup
τ∈[0,t]

∥∥v(τ )
∥∥

Zη,p
,

for each t ∈ [0, T ], with T > 0 fixed.
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Lemma 4.4. There exists ε1 > 0 sufficiently small such that if R(t) < ε1 for t ∈ [0, T ] then we have the estimate

∥∥v(t)
∥∥p

L p
η

+ Ĉ1

t∫
0

∥∥(∣∣v(τ )
∣∣p/2)

x

∥∥2
L2
η

dτ �
∥∥v(0)

∥∥p
L p
η
, (43)

for some Ĉ1 > 0 depending on p and ε1 , and for all 0 � t � T .

Proof. Thanks to the Sobolev-type inequality (29), under the assumption that R(t) < ε1 for each 0 � t < T , we have that∣∣v(τ )
∣∣ �

∥∥v(τ )
∥∥∞ � C

∥∥vx(τ )
∥∥1/p

L p

∥∥v(τ )
∥∥1−1/p

L p � C̃ε1, (44)∣∣vx(τ )
∣∣ �

∥∥vx(τ )
∥∥∞ � C

∥∥vxx(τ )
∥∥1/p

L p

∥∥vx(τ )
∥∥1−1/p

L p � C̃ε1, (45)

for some C̃ > 0, and all 0 < τ � t � T . From (10) we notice that∫
R

ηF v|v|p−2 dx =
∫
R

η b′(ū)vx vxx v|v|p−2 dx +
∫
R

ηO
(

v2
x

)
v|v|p−2 dx =: I1 + I2.

Using (44), the integral I2 is easily estimated, as

|I2| � CC̃ε1

∫
R

η|v|p−2 v2
x dx = 4CC̃ε1

p2

∫
R

η
∣∣(|v|p/2)

x

∣∣2
dx,

after applying (26). On the other hand, integrating by parts we obtain

I1 =
∫
R

η b′(ū)v|v|p−2∂x

(
1

2
v2

x

)
dx

= −1

2

∫
R

ηxb′(ū)v|v|p−2 v2
x dx − 1

2

∫
R

ηb′(ū)x v|v|p−2 v2
x dx − 1

2

∫
R

b′(ū)
(

v|v|p−2)
x v2

x dx

=: I3 + I4 + I5.

The integral I4 is estimated exactly as I2, because b′(ū) is uniformly bounded. Use (28), (26) and (45) to estimate I5 as
follows:

|I5| � p − 1

2

∫
R

η
∣∣b′(ū)

∣∣|v|p−2|vx|v2
x dx � 2(p − 1)C̃ε1

p2

∫
R

η
∣∣(|v|p/2)

x

∣∣2
dx.

Finally, use (20), (44) and (26) to estimate I3 in the same fashion; this yields

|I3| � C

2

∫
R

η|v|p−2|v|v2
x dx � CC̃ε1

2

∫
R

η
∣∣(|v|p/2)

x

∣∣2
dx.

Combining last estimates together we conclude that there exists a constant C > 0 depending on p such that∣∣∣∣
∫
R

ηF v|v|p−2 dx

∣∣∣∣ � Cε1

∫
R

η
∣∣(|v|p/2)

x

∣∣2
dx. (46)

Therefore, in view of (42) and substituting in the basic energy estimate (40), we obtain

1

p

∥∥v(t)
∥∥p

L p
η

+
(

4(p − 1)

p2Ĉ
− Cε1

) t∫
0

∥∥(∣∣v(τ )
∣∣p/2)

x

∥∥2
L2
η

dτ + 2

p

t∫
0

∫
R

|ūx|
∣∣v(τ )

∣∣p
dx dτ � 1

p

∥∥v(0)
∥∥p

L p
η
,

which implies (43) for ε1 > 0 sufficiently small. �
Observe that two immediate corollaries follow.

Corollary 4.5. Specializing (43) to the case p = 2 we have that if R(t) < ε1 for all 0 � t � T then

∥∥v(t)
∥∥2

L2
η
+ Ĉ1

t∫
0

∥∥vx(τ )
∥∥2

L2
η

dτ �
∥∥v(0)

∥∥2
L2
η
. (47)
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Corollary 4.6. If v ∈ Xη,p(0, T ) is a solution with R(t) � ε1 for 0 � t � T , then

d

dt

∥∥v(t)
∥∥p

L p
η

+ C1
∥∥(|v|p/2)

x(t)
∥∥2

L2
η

� 0, (48)

for some C1 > 0.

4.2. L1
η-bound

We now establish the boundedness of ‖v(t)‖L1
η

, which is crucial for the proof of Proposition 3.2. This a remarkable

property of the solutions to (13) and the Matsumura–Nishihara weight function.

Lemma 4.7. Assuming R(t) < ε1 , with ε1 > 0 just as in Lemma 4.4, the following estimate holds

∥∥v(t)
∥∥

L1
η

� C
(∥∥v(0)

∥∥
L1
η
+ ∥∥v(0)

∥∥2
L2
η

)
, (49)

for some C > 0, all 0 � t � T .

Proof. Multiply Eq. (7) by (sgn v)η and integrate in x ∈ R; noticing that∫
R

η(sgn v)vt dx =
∫
R

ηv vt/|v|dx =
∫
R

η
(|v|)t dx = d

dt

∥∥v(t)
∥∥

L1
η
,

we readily obtain

d

dt

∥∥v(t)
∥∥

L1
η

=
∫
R

b(ū)η(sgn v)vxx dx −
∫
R

a(x)η(sgn v)vx dx +
∫
R

η(sgn v)F dx. (50)

The linear terms are easily controlled thanks to the choice of the weight function η. Indeed, integrate by parts twice1 to
arrive at∫

R

b(ū)η(sgn v)vxx dx −
∫
R

a(x)η(sgn v)vx dx =
∫
R

((
b(ū)η

)
x + a(x)η

)
x|v|dx

=
∫
R

Φ(x)|v|dx = −2
∫
R

|ūx||v|dx < 0,

in view of (19). Upon substitution

d

dt

∥∥v(t)
∥∥

L1
η
+ 2

∫
R

|ūx||v|dx =
∫
R

η(sgn v)F dx. (51)

By estimate (10), the integral on the right-hand side can be written as

I :=
∫
R

b′(ū)η(sgn v)vx vxx dx +
∫
R

η(sgn v)O
(

v2
x

)
dx =: I1 + I2.

Integrate by parts and use (20) to estimate I1 as follows:

I1 = −1

2

∫
R

ηx(sgn v)b′(ū)v2
x dx − 1

2

∫
R

ηb′(ū)x v2
x dx

� C

2

∫
R

η
∣∣b′(ū)

∣∣v2
x dx + 1

2

∫
R

η
∣∣b′(ū)x

∣∣v2
x dx

� Cū‖vx‖2
L2
η
,

1 We have used the short-cut (sgn v)x ≡ 0, a.e. Clearly, the argument leading to (51) can be made rigorous using Friedrichs’ mollifiers, but we omit it.
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where Cū = C supx∈R{|b′(ū)| + |b′(ū)x|} > 0. Since we readily have I2 � C‖vx‖2
L2
η

, we obtain that |I| is bounded by C‖vx‖2
L2
η

,

for some C > 0. Substitute into (51) and integrate in (0, t) to arrive at

∥∥v(t)
∥∥

L1
η
+ 2

t∫
0

∫
R

|ūx|
∣∣v(τ )

∣∣dx dτ �
∥∥v(0)

∥∥
L1
η
+ C

t∫
0

∥∥vx(τ )
∥∥2

L2
η

dτ .

If R(t) < ε1 for all 0 � t � T , then we apply (47) to obtain the result. �
Remark 4.8. As a by-product of this estimation, which the reader may verify with no extra effort, the integrated operator L
generates a C0-semigroup of contractions in the Banach space L1

η (see, e.g., [27] for the appropriate generating theorems).
Under the further assumption of smallness of the nonlinear terms we obtain a bound for ‖v(t)‖L1

η
in terms of ‖v(0)‖L1

η∩L2
η

,

which is essential for the establishment of the decay rates.

The previous observations readily lead us to the following

Corollary 4.9. Let v ∈ Xη,p(0, T ) be a solution to (13), for some T > 0. If R(t) < ε1 for all 0 � t � T , then v satisfies the decay rate∥∥v(t)
∥∥p

L p
η

� C E p
0 (1 + t)−(p−1)/2, (52)

with

E0 := ∥∥v(0)
∥∥

L1
η
+ ∥∥v(0)

∥∥
L p
η
+ ∥∥v(0)

∥∥2
L2
η
. (53)

Proof. Since R(t) < ε1, we may apply Lemma 4.7 and Corollary 4.6 to conclude that properties (34) and (35) hold with
C0 = O(‖v(0)‖L1

η
+ ‖v(0)‖2

L2
η
). Then, by Proposition 3.2 we obtain the desired decay rate (52). �

4.3. Higher order estimates

The L p estimates for the derivatives cannot be controlled as in the L2 case (where ‖(|u|p/2)x‖ is equivalent to ‖ux‖ and
there is a natural way to construct a decreasing norm, see [21,26]). Thus, we follow the general method of [15] instead.

Differentiate equation (7) with respect to x, to obtain

vxt = (
b(ū)vxx

)
x − (

a(x)vx
)

x + Fx. (54)

We will use (11) and estimations of solutions to last equation in order to prove the following

Lemma 4.10. Suppose v ∈ Xη,p(0, T ), 2 � p < +∞, with 0 < T � 1 solves (13) (or, equivalently, (54)). Then there exists ε2 > 0,
sufficiently small, such that if R(t) < ε2 for 0 � t � T � 1, then there holds the estimate

1

p
tα(1 + t)β

∥∥vx(t)
∥∥p

L p + Ĉ2

t∫
0

τα(1 + τ )β
∥∥(|vx|p/2)

x(τ )
∥∥2

L2
η

dτ � C E p
0 tα−p/2(1 + t)β− 1

2 (p−1) (55)

for 0 � t � T , where α,β > 0 satisfy

α > p/2, β >
1

2
(p − 1), (56)

and C, Ĉ2 > 0 are constants depending on p, ε2, ū,α and β . Moreover, for 0 < t � T there holds the decay rate
∥∥vx(t)

∥∥p
L p � C E p

0 t−p/2(1 + t)−
1
2 (p−1). (57)

Remark 4.11. The additional assumption T � 1 means no loss of generality, as the local existence time can be chosen as
T̂0 = min{1, T0(ε0)} > 0, with T0(ε0) as in Proposition 4.1.

Proof of Lemma 4.10. Multiply Eq. (54) by |vx|p−2 vx; use (25) and integrate by parts in R to obtain∫
R

|vx|p−2 vx vxt dx = 1

p

d

dt

∥∥vx(t)
∥∥p

L p =
∫
R

|vx|p−2 vx
(
b(ū)vxx

)
x dx −

∫
R

|vx|p−2 vx
(
a(x)vx

)
x dx +

∫
R

|vx|p−2 vx Fx dx

=: I1 + I2 + I3. (58)
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The first integral contributes with the negative sign, a term upon which the small terms can be absorbed. Indeed,
integrate by parts and use (26) and (28) to estimate I1 as follows:

I1 = −
∫
R

(|vx|p−2 vx
)

xb(ū)vxx dx

= −(p − 1)

∫
R

b(ū)|vx|p−2 v2
xx dx

= −(p − 1)
(
4/p2) ∫

R

b(ū)
∣∣(|vx|p/2)

x

∣∣2
dx

� −4(p − 1)

Ĉ p2

∥∥(|vx|p/2)
x

∥∥2
L2 < 0, (59)

in view of boundedness of b(ū) (see (42)). In order to estimate I2, integrate by parts and make use of (25) and (28); the
result is

I2 =
∫
R

(|vx|p−2 vx
)

xa(x)vx dx

= (p − 1)

∫
R

a(x)|vx|p−2 vxx vx dx

= (1 − 1/p)

∫
R

a(x)
(|vx|p)

x dx

= −(1 − 1/p)

∫
R

a′(x)|vx|p dx � C‖vx‖p
L p , (60)

where C = (1 − 1/p) supx∈R |a′(x)| > 0. Now, in view of (11), I3 can be estimated as |I3| � C(|I4| + I5 + I6), where

I4 :=
∫
R

b′(ū)|vx|p−2 v2
x vxxx dx,

I5 :=
∫
R

|vx|p|vx|dx,

I6 :=
∫
R

|vx|p−1 v2
xx dx.

Assuming R(t) < ε2, use |vx| � ‖vx‖∞ < Cε2 and (26) to estimate

I6 � Cε2

∫
R

|vx|p−2 v2
xx dx � C pε2

∥∥(|vx|p/2)
x

∥∥2
L2 .

Likewise, I5 � ε2‖vx‖p
Lp . To estimate I4, integrate by parts and use (25) to get

I4 = −
∫
R

b′(ū)x|vx|p vxx dx − p

∫
R

b′(ū)|vx|p−2 vx v2
xx dx.

The first integral is bounded by
∫
R

∣∣b′(ū)x
∣∣|vx|p−2|vx||vx||vxx|dx � ε2

C

2

∫
R

|vx|p−2(v2
x + v2

xx

)
dx � Cε2

(‖vx‖p
L p + ∥∥(|vx|p/2)

x

∥∥2
L2

)
,

after having used (26). The second integral is estimated exactly as I6. Combining all these estimates together we arrive at

|I3| � Cε2
(‖vx‖p

p + ∥∥(|vx|p/2) ∥∥2
2

)
, (61)
L x L
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for some C > 0. Upon substitution of (59), (60) and (61) into (58), we obtain

1

p

d

dt

∥∥vx(t)
∥∥p

L p + 4(p − 1)

Ĉ p2

∥∥(|vx|p/2)
x(t)

∥∥2
L2 � C

∥∥vx(t)
∥∥p

L p + Cε2
∥∥(|vx|p/2)

x(t)
∥∥2

L2 . (62)

The last term, of order O(ε2) can be absorbed into the term or order O(1) on the left-hand side, provided ε2 is
sufficiently small. Note, from the estimates above, that the generic constant C does not depend on ε2. We are left to
estimate the ‖vx(t)‖p

Lp term. For that purpose choose auxiliary constants α,β > 0 satisfying (56); since α > p/2 � 1, then
tα−1(1 + t)β + tα(1 + t)β−1 � 2tα−1(1 + t)β . Whence,

tα(1 + t)β
d

dt

∥∥vx(t)
∥∥p

L p � d

dt

(
tα(1 + t)β

∥∥vx(t)
∥∥p

L p

) − 2Cα,βtα−1(1 + t)β
∥∥vx(t)

∥∥p
L p ,

where Cα,β > 0. Multiply (62) by tα(1 + t)β , integrate in (0, t) and use last inequality to arrive at

1

p
tα(1 + t)β

d

dt

∥∥vx(t)
∥∥p

L p + 4(p − 1)

Ĉ p2

t∫
0

τα(1 + τ )β
∥∥(|vx|p/2)

x(τ )
∥∥2

L2 dτ

� C̃

p

t∫
0

τα−1(1 + τ )β
∥∥vx(τ )

∥∥p
L p dτ + C

t∫
0

τα(1 + τ )β
∥∥vx(τ )‖p

L p dτ

+ Cε2

t∫
0

τα(1 + τ )β
∥∥(|vx|p/2)

x(τ )
∥∥2

L2 dτ

=: I7 + I8 + I9, (63)

for some C̃ > 0 depending on α and β . Thanks to the assumption T � 1, then clearly I8 � C I7, and I7 is estimated following
the method of [15]. The latter relies on the inequality

τα−1(1 + τ )β‖vx‖p
L p � Cτα(1 + τ )β

(
ε
∥∥(|vx|p/2)

x

∥∥2p/(p+2)

L2

)(
τ−1ε−1‖v‖2p/(p+2)

L p

)
� Cτα(1 + τ )β

(
ε(p+2)/p

∥∥(|vx|p/2)
x

∥∥2
L2 + C p,ετ

−p/2−1‖v‖p
L p

)
,

where we have used the inequality (30) and Hölder’s inequality with p/(p + 2) + 2/(p + 2) = 1; here ε > 0 is arbitrary.
Choose ε := ε

p/(p+2)

2 to obtain the estimate

I7 = (C̃/p)

t∫
0

τα−1(1 + τ )β
∥∥vx(τ )

∥∥p
L p dτ

� C pε2

t∫
0

τα(1 + τ )β
∥∥(|vx|p/2)

x(τ )
∥∥2

L2 dτ + C p,ε2

t∫
0

τα−p/2−1(1 + τ )β
∥∥v(τ )

∥∥p
L p dτ .

We now use the decay rate (52) (by taking ε2 < ε1/2, small), to estimate
∥∥v(τ )

∥∥p
L p � C

∥∥v(τ )
∥∥p

L p
η

� C E p
0 (1 + τ )−

1
2 (p−1),

and, consequently, to obtain

I7 � C pε2

t∫
0

τα(1 + τ )β
∥∥(|vx|p/2)

x(τ )
∥∥2

L2 dτ + CC p,ε2 E p
0 tα−p/2(1 + t)β− 1

2 (p−1),

because β > 1
2 (p − 1) and α > p/2. Since I8 � C I7, substitute all these estimates into (63) to obtain

1

p
tα(1 + t)β

d

dt

∥∥vx(t)
∥∥p

L p +
(

4(p − 1)

Ĉ p2
− Čε2

) t∫
0

τα(1 + τ )β
∥∥(|vx|p/2)

x(τ )
∥∥2

L2 dτ � C E p
0 tα−p/2(1 + t)β− 1

2 (p−1),

for some Č depending on α,β and p, and some C > 0 depending on ε2 as well; we may take ε2 > 0 sufficiently small such
that Ĉ2 := 4(p − 1)/(Ĉ p2) − Čε2 > 0 to obtain (55). The decay estimate (57) follows immediately from (55) for t > 0. �
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We finally proceed with the establishment of the a priori estimates for the second derivatives. The proof is similar to that
of the previous lemma, so we gloss over some of the details.

Lemma 4.12. Suppose v ∈ Xη,p(0, T ), 2 � p < +∞, with 0 < T � 1 solves (13). Then there exists ε3 > 0, sufficiently small, such that
if R(t) < ε3 for 0 � t � T � 1, then there holds the estimate

1

p
tγ (1 + t)δ

∥∥vxx(t)
∥∥p

L p + Ĉ3

t∫
0

τγ (1 + τ )δ
∥∥(|vxx|p/2)

x(τ )
∥∥2

L2
η

dτ � C E p
0 tγ −p(1 + t)δ−

1
2 (p−1) (64)

for 0 � t � T , where γ , δ > 0 satisfy

γ > p, δ >
1

2
(p − 1), (65)

and C, Ĉ3 > 0 are constants depending on p, ε3, ū, γ and δ. Moreover, for 0 < t � T there holds the decay rate

∥∥vxx(t)
∥∥p

L p � C E p
0 t−p(1 + t)−

1
2 (p−1). (66)

Proof. Multiply Eq. (54) by |vxx|p−2 vxxx , use (25) and (28), and integrate by parts in R, to obtain

1

p(p − 1)

d

dt

∥∥vxx(t)
∥∥p

L p = −
∫
R

|vxx|p−2 vxxx
(
b(ū)vxx

)
x dx +

∫
R

|vxx|p−2 vxxx
(
a(x)vx

)
x dx −

∫
R

|vxx|p−2 vxxx Fx dx

=: I1 + I2 + I3. (67)

Integrate by parts, and use (25), (26) and (42), to estimate I1 as follows:

I1 = −
∫
R

b(ū)|vxx|p−2 v2
xxx dx −

∫
R

b(ū)x|vxx|p−2 vxxx vxx dx

= −(
4
/

p2)∫
R

b(ū)
∣∣(|vxx|p/2)

x

∣∣2
dx − (1/p)

∫
R

b(ū)x
(|vxx|p)

x dx

� −(
4
/(

Ĉ p2))∥∥(|vxx|p/2)
x

∥∥2
L2 + C p,ū‖vxx‖p

L p ,

with C p,ū = (1/p) supx∈R |b(ū)xx| > 0. This integral provides the negative term which will absorb the small terms, plus
a term of order ‖vxx‖p

Lp . In the same fashion, integrate I2 by parts, and use (25), (28) to obtain

I2 = (1/p)

∫
R

a(x)
(|vxx|p)

x dx +
∫
R

a′(x)|vxx|p−2 vxxx vx dx

= −(1/p)

∫
R

a′(x)|vxx|p dx + (p − 1)−1
∫
R

a′(x)
(|vxx|p−2 vxx

)
x vx dx

� C p,ū‖vxx‖p
L p − (p − 1)−1

∫
R

a′(x)|vxx|p dx − (p − 1)−1
∫
R

a′′(x)|vxx|p−2 vxx vx dx

� C̃ p,ū‖vxx‖p
L p + C p

∫
R

|vxx|p−1|vx|dx

� C̃ p,ū‖vxx‖p
L p + C pε

p‖vx‖p
L p + Cε,p‖vxx‖p

L p ,

where we have used Hölder’s inequality with (p − 1)/p + 1/p = 1, and for any arbitrary ε > 0. Choose ε = ε
1/p
3 to get the

estimate

I2 � C‖vxx‖p
L p + Cε3‖vx‖p

L p .

In order to control the nonlinear terms, we proceed similarly. From (11), we may write I3 = I6 + I7 + I8, with

I6 := −
∫

b′(ū)|vxx|p−2 v2
xxx vx dx,
R
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I7 � C

∫
R

|vxx|p−2|vxxx|v2
x dx,

I8 � C

∫
R

|vxx|p−2|vxxx|v2
xx dx.

Use (26) and |vx| � ‖vx‖∞ < Cε3 to get

I6 � −(
4/p2)∫

R

b′(ū)|vx|
∣∣(|vxx|p/2)

x

∣∣2
dx � Cε3

∥∥(|vxx|p/2)
x

∥∥2
L2 ,

an absorbable term. In the same fashion, use (26) and Hölder inequality once again, now with (p −2)/p +2/p = 1, to obtain

I7 � C

2

(
ε2

∫
R

|vxx|p−2|vxxx|2 + ε−2
∫
R

|vxx|p−2|vx|2 dx

)

� C pε
2
∥∥(|vxx|p/2)

x

∥∥2
L2 + Cε

((
(p − 2)/p

)‖vxx‖p
L p + (2/p)‖vx‖p

L p

)
� C pε3

∥∥(|vxx|p/2)
x

∥∥2
L2 + C p,ε3

(‖vxx‖p
L p + ‖vx‖p

L p

)
,

after putting ε2 = ε3. Finally, we estimate I8 as follows

I8 � Cε2
∫
R

|vxx|p−2 v2
xxx dx + Cε−2‖vxx‖p

L p � Cε3
∥∥(|vxx|p/2)

x

∥∥2
L2 + C p,ε3‖vxx‖p

L p .

Substitute back all estimates into (67) and multiply by p − 1 to arrive at

1

p

d

dt

∥∥vxx(t)
∥∥p

L p +
(

4(p − 1)

Ĉ p2
− C̃ε3

)∥∥(|vxx|p/2)
x(t)

∥∥2
L2 � Čε3

(∥∥vxx(t)
∥∥p

L p + ∥∥vx(t)
∥∥p

L p

)
, (68)

where C̃ is independent of ε3, but, unlike in the proof of the previous lemma, now the constant Čε3 depends upon ε3

at order O(1/ε3) (this comes from the estimates of I7, I8 and I2). Thus, we write Čε3 =: C̄/ε3. This poses no further
complications as we shall see.

To control the term ‖vxx(t)‖p
Lp we proceed exactly as in the proof of the previous Lemma 4.10. First, let us choose

ε3 < 1
2 ε2 so that estimate (57) holds. Now, choose the auxiliary constants γ , δ > 0 satisfying (65) and multiply (68) by

tγ (1 + t)δ ; integrate in (0, t) to obtain

1

p
tγ (1 + t)δ

d

dt
‖vxx(t)‖p

L p +
(

4(p − 1)

Ĉ p2
− C̃ε3

) t∫
0

τγ (1 + τ )δ
∥∥(|vxx|p/2)

x(τ )
∥∥2

L2 dτ

� C̄

ε3

t∫
0

τγ −1(1 + τ )δ
∥∥vxx(τ )

∥∥p
L p dτ+,

C̄

ε3

t∫
0

τγ (1 + τ )δ
∥∥vx(τ )

∥∥p
L p dτ , (69)

after having absorbed the
∫

τγ (1 + τ )δ‖vxx‖p
Lp term under the assumption T � 1 as before.

The first term on the right-hand side of (69) is controlled (almost) exactly as in Lemma 4.10, yielding

t∫
0

τγ −1(1 + τ )δ
∥∥vxx(τ )

∥∥p
L p dτ

� ε(p+2)/pC p

t∫
0

τγ (1 + τ )δ
∥∥(|vxx|p/2)

x(τ )
∥∥2

L2 dτ + C p,ε

t∫
0

τγ −1−p/2(1 + τ )δ
∥∥vx(τ )

∥∥p
L p dτ

� ε2
3 C p

t∫
0

τγ (1 + τ )δ
∥∥(|vxx|p/2)

x(τ )
∥∥2

L2 dτ + CC p,ε3 E p
0 tγ −p(1 + t)δ−

1
2 (p−1),

with the only difference that, here, we have chosen ε := ε
2p/(p+2)

3 to keep the first term absorbable, and we have used the
decay estimate (57) for vx , with γ > p and δ > (p − 1)/2.
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In order to estimate the second term of the right-hand side of (69) we apply the decay estimate (57) directly. This yields,

t∫
0

τγ (1 + τ )δ
∥∥vx(τ )

∥∥p
L p � C E p

0 (1 + t)δ−
1
2 (p−1)tγ −p/2+1.

Substituting these two estimates back into (69), we obtain

1

p
tγ (1 + t)δ

d

dt

∥∥vxx(t)
∥∥p

L p +
(

4(p − 1)

Ĉ p2
− C̃ε3

) t∫
0

τγ (1 + τ )δ
∥∥(|vxx|p/2)

x(τ )
∥∥2

L2 dτ

� C̄ C pε3

t∫
0

τγ (1 + τ )δ
∥∥(|vxx|p/2)

x(τ )
∥∥2

L2 dτ + CC p,ε3 E p
0 (1 + t)δ−

1
2 (p−1)

(
tγ −p + tγ −p/2+1).

Noticing that tγ −p � tγ −p/2+1 for each 0 < t � T � 1, we merge the last two terms into the slower decay rate. The result
is estimate (64), where 0 < ε3 < ε2/2 < ε1/4 is chosen sufficiently small such that Ĉ3 := 4(p − 1)/(Ĉ p2) − (C̃ + C̄)ε3 > 0.
The decay estimate (66) follows directly from (64), for t > 0 and under assumption (65). This proves the lemma. �
5. Stability and proof of Theorem 1.5

Finally, in this section we apply the previous a priori estimates to obtain a global solution, leading to stability and the
proof of the main theorem.

5.1. Global existence

Here we perform the (almost) standard continuation argument to obtain global existence of solutions to the Cauchy
problem (13) and (14). We have to pay special attention to the fact that estimates for the derivatives (57) and (66) apply
only in time intervals of measure one and, thus, the proof deviates slightly from the standard argument. Notably, the energy
E0 does not involve norms of the derivatives, allowing us to extend the decay rates globally in time.

Theorem 5.1. Suppose v0 ∈ Zη,p , with 2 � p < +∞. Then there exists a positive constant ε̂ > 0 such that if ‖v0‖Zη,p < ε̂ , then the
Cauchy problem (13) and (14) has a unique global solution v ∈ Xη,p(0,+∞) which satisfies the following estimates

∥∥v(t)
∥∥

L1
η

� M E0, (70)

∥∥v(t)
∥∥

L p
η

� M E0(1 + t)−
1
2 (1−1/p), (71)

∥∥v(t)
∥∥

L2
η

� M E0(1 + t)−
1
4 , (72)

∥∥vx(t)
∥∥

L p � M E0t− 1
2 (1 + t)−

1
2 (1−1/p), (73)∥∥vxx(t)

∥∥
L p � M E0t−1(1 + t)−

1
2 (1−1/p), (74)

for all 0 < t < +∞, with some uniform constant M > 0, and where

E0 = ‖v0‖L1
η
+ ‖v0‖L p

η
+ ‖v0‖2

L2
η
.

Proof. Let ε̂ > 0 (to be chosen later) be such that ε̂ < 1
2 ε3, where ε3 is the fixed constant of Lemma 4.12. The local

solution can be continued globally in time provided ε̂ is sufficiently small. By Proposition 4.1, for each ε > 0 there exists
T0 = T0(ε) > 0 such that the solution exists in [0, T0(ε)]. Let us define T̂0(ε) := min{1, T0(ε)} � 1, so that we can apply
estimates (57) and (66). Since ε̂ < ε3, the short existence times clearly satisfy T̄0 := T̂0(ε3) � T̂0(ε̂). Therefore, we consider
the solution v(t) ∈ Xη,p(0, T̄0), which, by Proposition 4.1, satisfies ‖v(t)‖Zη,p < 2ε̂ < ε3 < 1

2 ε2 < 1
4 ε1, for all t ∈ [0, T̄0]. Thus,

we can apply estimates (43), (49), (57) and (66). Hence, we have

∥∥v(T̄0)
∥∥

L1
η

� C
(‖v0‖L1

η
+ ‖v0‖2

L2
η

)
,

∥∥v(T̄0)
∥∥2

L2
η

� ‖v0‖2
L2
η
,

∥∥v(T̄0)
∥∥p

L p � ‖v0‖p
p ,
η Lη
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with uniform C > 0. Since T̄0 � 1, we apply estimates (57) and (66). For instance, from (57) we get

∥∥vx(T̄0)
∥∥p

L p � C E0 T̄ −1/2
0 (1 + T̄0)

− 1
2 (1−1/p)

� C T̄ −1/2
0

(‖v0‖L1
η
+ ε3‖v0‖2

η
+ ε

p−1
3 ‖v0‖L p

η

)
� CC̃(ε3)‖v0‖Zη,p ,

where C̃(ε3) > 0 is a uniform constant depending on ε3, as T̄0 depends on ε3. Similarly, from (66) we obtain ‖vxx(T̄0)‖Lp �
CC̃(ε3)‖v0‖Zη,p .

This shows that there exists uniform constants Ĉ(ε3), and C∗ > 0 independent of ε3, such that∥∥v(T̄0)
∥∥

Zη,p
� C∗Ĉ(ε3)‖v0‖Zη,p < C∗Ĉ(ε3)ε̂, (75)

as ‖v0‖Zη,p < ε̂ , by hypothesis. We now choose ε̂ > 0 such that

0 < ε̂ < min

{
1,

ε3

2
,

ε3

2C∗Ĉ(ε3)
,

ε3

2C2∗ Ĉ(ε3)

}
. (76)

The reason why we took the third bound will be clear later. In this fashion, we obtain ‖v(T̄0)‖Zη,p < 1
2 ε3. Henceforth, we

can apply Proposition 4.1 once again by taking t = T̄0 as the initial time, to obtain a solution on the interval [T̄0,2T̄0], such
that ‖v(t)‖Zη,p < ε3 for all t ∈ [T̄0,2T̄0]. This shows that ‖v(t)‖Zη,p < ε3 for all t ∈ [0,2T̄0]. Let us define

E(T ) := ∥∥v(T )
∥∥

L1
η
+ ∥∥v(T )

∥∥
L p
η
+ ∥∥v(T )

∥∥2
L2
η
,

as the energy at each time step T > 0. Notice that estimates (43), (47) and (49) hold in [0,2T̄0]. This implies, in particular,
that E(2T̂0) � C E0. In fact, we also have that E(nT̄0) � C E0, with the same uniform constant C > 0, for each n = 1,2, . . . ,
as long as ‖v(t)‖Zη,p < ε3 on the interval t ∈ [0,nT̄0].

This will be achieved using estimates (57) and (66). They hold on the time interval [T̄0,2T̄0] only, which has measure
less than one. For instance, from (57) we get

∥∥vx(2T̄0)
∥∥

L p � C E(2T̄0)(2T̄0)
−1/2(1 + 2T̄0)

− 1
2 (1−1/p) � C2 E0 T̄ −1/2

0 � C2C̃(ε3)‖v0‖Zη,p ,

with the same uniform constants C > 0 and C̃(ε3) > 0. Similarly we have ‖vxx(2T̄0)‖Lp � C2C̃(ε3)‖v0‖Zη,p . Thus, we obtain
the bound

∥∥v(2T̄0)
∥∥

Zη,p
� C2∗ Ĉ(ε3)‖v0‖Zη,p < C2∗ Ĉ(ε3)ε̂ <

1

2
ε3,

with the same uniform constants C∗, Ĉ(ε3) as in (75), and by the choice of ε̂ in (76).
Thus we can repeat the procedure to the interval [2T̄0,3T̄0], yielding ‖v(t)‖Zη,p < ε3 up to time t = 3T̄0. Notice that,

since E(3T̄0) < C E0 with same constant C > 0, this yields again ‖v(3T̄0)‖Zη,p � C2∗ Ĉ(ε3)‖v0‖Zη,p < 1
2 ε3, with same uniform

constants C∗ and Ĉ(ε3). Henceforth, the procedure can be repeated successively on intervals [(n −1)T̄0,nT̄0], for n = 1,2, . . .

in order to obtain a global solution.
Notice that estimates (43), (47) and (49) hold in every interval [0,nT̄0], for each n ∈ N. This provides estimates (71), (72)

and (70) globally in time. In contrast, estimates (57) and (66) hold on each interval [(n − 1)T̄0,nT̄0]. Thanks to the fact that
E(T ) does not depend on the norms of the derivatives of v at previous time step, however, we can obtain the desired decay
rates. Indeed, since ‖v(t)‖Zη,p < ε3 for each t ∈ [(n − 1)T̄0,nT̄0], there holds

∥∥vx(t)
∥∥

L p � C E
(
(n − 1)T̄0

)
t−1/2(1 + t)−

1
2 (1−1/p) � C2 E0t−1/2(1 + t)−

1
2 (1−1/p),∥∥vxx(t)

∥∥
L p � C E

(
(n − 1)T̄0

)
t−1(1 + t)−

1
2 (1−1/p) � C2 E0t−1(1 + t)−

1
2 (1−1/p),

for all t ∈ [(n − 1)T̄0,nT̄0], and for each n = 1,2, . . . , with the same uniform bound C2 E0 (depending only on p, ε3 and
‖v0‖Zη,p ). This shows that the estimates hold globally in time, providing the decay rates (73) and (74), for some uniform
constant M > 0. This completes the proof of the theorem. �
5.2. Proof of Theorem 1.5

The conclusions of Theorem 1.5 follow directly from the global existence Theorem 5.1. Indeed, under assumption (5)
we may define the antiderivative of the perturbation v0 as (21). We then look at the equivalent Cauchy problem (13) and
(14) for v . Furthermore, if we suppose that u0 satisfies v0 ∈ Zη,p , take ε̂ > 0 just as in Theorem 5.1 to conclude that
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if ‖v0‖Zη,p < ε̂ , then there exists a global solution v ∈ Xη,p(0,+∞) to (13) and (14), satisfying estimates (70)–(74). As
v ∈ Xη,p(0,+∞) and vx = u − ū, then u − ū ∈ C([0,+∞); W 1,p), and it is a solution to (1), as v solves (6).

Decay rates (22) follows directly from (73), whereas to obtain the L∞ estimate (23), apply the inequality of Sobolev-type
(29) to vx , together with (73) and (74) to obtain

‖vx‖p∞ � C‖vxx‖L p ‖vx‖p−1
Lp � C M p E p

0 t−1/2−p/2(1 + t)−
p
2 (1−1/p),

yielding (23). This completes the proof.
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