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1. Introduction

Let Bn denote the open unit ball in Cn. For H a Banach space of analytic functions on Bn and ϕ an analytic self-map
of Bn, the composition operator Cϕ is defined by Cϕh = h ◦ ϕ for h in H for which the function h ◦ ϕ also belongs to H .
Researchers have been interested in studying how the function theoretic behavior of ϕ affects the properties of Cϕ on H
and vice versa. When H is a classical Hardy space or a weighted Bergman space of the unit disk, it follows from Littlewood
Subordination Theorem that Cϕ is bounded onH (see, for example, [1, Section 3.1]). On the other hand, the situation becomes
more complicated in higher dimensions. For n ≥ 2, there exist unbounded composition operators on theHardy and Bergman
spaces of Bn, even with polynomial mappings. The interested reader is referred to [1, Chapter 3] for these examples and
certain necessary and sufficient conditions for the boundedness and compactness of Cϕ .

Let f : Bn → C be an analytic function and let ϕ be as above. The weighted composition operator Wf ,ϕ is defined by
Wf ,ϕh = f · (h ◦ ϕ) for all h ∈ H for which the function f · (h ◦ ϕ) also belongs to H . Weighted composition operators
have arisen in the work of Forelli [2] on isometries of classical Hardy spaces Hp and in Cowen’s work [3,4] on commutants
of analytic Toeplitz operators on the Hardy space H2 of the unit disk. Weighted composition operators have also been used
in descriptions of adjoints of composition operators (see [5] and the references therein). Boundedness and compactness of
weighted composition operators on various Hilbert spaces of analytic functions have been studied bymanymathematicians
(see, for example, [6–9] and references therein). Recently researchers have started investigating the relations between
weighted composition operators and their adjoints. Cowen and Ko [10] and Cowen et al. [11] characterize self-adjoint
weighted composition operators and study their spectral properties on weighted Hardy spaces on the unit disk whose
kernel functions are of the form Kw(z) = (1 − wz)−κ for κ ≥ 1. In [12], Bourdon and Narayan study normal weighted
composition operators on the Hardy space H2. They characterize unitary weighted composition operators and apply their
characterization to describe all normal operatorsWf ,ϕ in the case ϕ fixes a point in the unit disk.

The purpose of the current paper is to study self-adjoint, unitary and normal weighted composition operators on a class
of Hilbert spaces H of analytic functions on the unit ball. We characterize Wf ,ϕ whose adjoint is a weighted composition

E-mail addresses: trieu.le2@utoledo.edu, trieule@ub-alumni.org.

0022-247X/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2012.05.065

http://dx.doi.org/10.1016/j.jmaa.2012.05.065
http://www.elsevier.com/locate/jmaa
http://www.elsevier.com/locate/jmaa
mailto:trieu.le2@utoledo.edu
mailto:trieule@ub-alumni.org
http://dx.doi.org/10.1016/j.jmaa.2012.05.065


T. Le / J. Math. Anal. Appl. 395 (2012) 596–607 597

operator or the inverse of a weighted composition operator. As a consequence, we generalize certain results in [12,10,11]
to higher dimensions and also obtain results that have not been previously known in one dimension.

For any real number γ > 0, letHγ denote the Hilbert space of analytic functions on Bn with reproducing kernel functions

K γz (w) = K γ (w, z) =
1

(1 − ⟨w, z⟩)γ
for z, w ∈ Bn.

By definition, Hγ is the completion of the linear span of {K γz : z ∈ Bn} with the inner product ⟨K γz , K
γ
w ⟩ = K γ (w, z) (this

is indeed an inner product due to the positive definiteness of K γ (w, z)). It is well known that any function f ∈ Hγ is analytic
on Bn and for z ∈ Bn, we have f (z) = ⟨f , K γz ⟩.

For any multi-index m = (m1, . . . ,mn) ∈ Nn
0 (here N0 denotes the set of non-negative integers) and z = (z1, . . . , zn) ∈

Bn, we write zm = zm1
1 · · · zmn

n . It turns out that Hγ has an orthonormal basis consisting of constant multiplies of the
monomials zm, for m ∈ Nn

0. The spaces Hγ belong to the class of weighted Hardy spaces introduced by Cowen and
MacCluer in [1, Section 2.1]. They are called (generalized) weighted Bergman spaces by Zhao and Zhu in [13] because of
their similarities with other standard weighted Bergman spaces on the unit ball. In fact, for γ > n, Hγ is the weighted
Bergman space A2

γ−n−1(Bn), which consists of all analytic functions that are square integrable with respect to the weighted
Lebesgue measure (1 − |z|2)γ−n−1dV (z), where dV is the Lebesgue volume measure on Bn. If γ = n, Hn is the usual Hardy
space on Bn. When n ≥ 2 and γ = 1, H1 is the so-called Drury–Arveson space, which has been given a lot of attention
lately in the study of multi-variable operator theory and interpolation (see [14,15] and the references therein). For arbitrary
γ > 0, Hγ coincides with the space A2

γ−n−1(Bn) in [13] (we warn the reader that when γ < n, the space A2
γ−n−1(Bn) is not

defined as the space of analytic functions that are square integrable with respect to (1 − |z|2)γ−n−1dV (z), since the latter
contains only the zero function).

2. Bounded weighted composition operators

As wementioned in the Introduction, the composition operator Cϕ is not always bounded on Hγ of the unit ball Bn when
n ≥ 2. On the other hand, if ϕ is a linear fractional self-map of the unit ball, then it was shown by Cowen and MacCluer [16]
that Cϕ is bounded on the Hardy space and all weighted Bergman spaces of Bn. It turns out, as we will show below, that
for such ϕ, Cϕ is always bounded on Hγ for any γ > 0. We will need the following characterization of Hγ , which follows
from [13, Theorem 13].

For any multi-index m = (m1, . . . ,mn) of non-negative integers and any analytic function h on Bn, we write ∂mh =

∂ |m|h
∂z

m1
1 ···∂zmn

n
, where |m| = m1 + · · · +mn. For any real number α, put dµα(z) = (1− |z|2)−n−1+αdV (z), where dV is the usual

Lebesgue measure on the unit ball Bn.

Theorem 2.1. Let γ > 0. The following conditions are equivalent for an analytic function h on Bn.

(a) h belongs to Hγ .
(b) For some non-negative integer k with 2k + γ > n, all the functions ∂mh, where |m| = k, belong to L2(Bn, dµγ+2k).
(c) For every non-negative integer k with 2k + γ > n, all the functions ∂mh, where |m| = k, belong to L2(Bn, dµγ+2k).

Remark 2.2. Theorem 2.1 in particular shows that for any given positive number s, the function h belongs to Hγ if and only
if for any multi-index l with |l| = s, ∂ lh belongs to Hγ+2s. As a consequence, Hγ1 ⊂ Hγ2 whenever γ1 ≤ γ2.

Recall that the multiplier space Mult(Hγ ) of Hγ is the space of all analytic functions f on Bn for which fh belongs to Hγ
whenever h belongs to Hγ . Since norm convergence in Hγ implies point-wise convergence on Bn, it follows from the closed
graph theorem that f is a multiplier if and only if the multiplication operator Mf is bounded on Hγ . It is well known that
Mult(Hγ ) is contained in H∞, the space of bounded analytic functions on Bn. For γ ≥ n, it holds that Mult(Hγ ) = H∞. This
follows from the fact that for such γ the norm on Hγ comes from an integral. On the other hand, when n ≥ 2 and γ = 1
(hence Hγ is the Drury–Arveson space), Mult(Hγ ) is strictly smaller than H∞ (see [14, Remark 8.9] or [15, Theorem 3.3]).
However we will show that if f and all of its partial derivatives are bounded on Bn, then f is a multiplier of Hγ for all γ > 0.

Lemma 2.3. Let f be a bounded analytic function such that for each multi-index m, the function ∂mf is bounded on Bn. Then f
belongs toMult(Hγ ), and hence the operator Mf is bounded on Hγ for any γ > 0.

Proof. Let γ > 0 be given. Choose a positive integer k such that γ + 2k > n. Let h belong to Hγ . For any multi-index m
with |m| = k, the derivative ∂m(fh) is a linear combination of products of the form (∂ t f )(∂ sh) for multi-indexes s, t with
s + t = m. For such s and t , ∂ sh belongs to Hγ+2|s| ⊂ Hγ+2k (by Remark 2.2) and ∂ t f , which is bounded by the hypothesis, is
a multiplier of Hγ+2k (since Mult(Hγ+2k) = H∞). Thus, (∂ t f )(∂ sh) belongs to Hγ+2k. Therefore, ∂m(fh) belongs to Hγ+2k. By
Theorem 2.1, fh is in Hγ . Since hwas arbitrary in Hγ , we conclude that f is a multiplier of Hγ . �
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An analytic map from Bn into itself is a linear fractional map [16] if there is a linear operator A on Cn, two vectors B, C in
Bn and a complex number d such that

ϕ(z) =
Az + B

⟨z, C⟩ + d
for z ∈ Bn.

Using Lemma 2.3 together with the aforementioned Cowen–MacCluer’s result, we show that for ϕ a linear fractional self-
map of the unit ball, the composition operator Cϕ is bounded on Hγ for all γ > 0. In [17], Jury proves that Cϕ is bounded on
Hγ for all γ ≥ 1 by an approach using kernel functions. He also obtains an estimate for the norm of Cϕ but we do not need
it here.

Proposition 2.4. Let γ > 0 be given. Suppose ϕ is a linear fractional map of Bn into itself, then Cϕ is bounded on Hγ .

Proof. Since Cϕ is a closed linear operator, to show that Cϕ is bounded on Hγ , it suffices to show that h ◦ ϕ belongs to Hγ
whenever h belongs to Hγ . For γ > n, this follows from [16, Theorem 15].

Now consider γ > max{0, n−2}. Write ϕ = (ϕ1, . . . , ϕn). For each j, we have ∂zj(h◦ϕ) = (∂z1h◦ϕ)(∂zjϕ1)+· · ·+(∂znh◦

ϕ)(∂zjϕn). For 1 ≤ k ≤ n, since ∂zkh belongs toHγ+2 (by Remark 2.2) and γ +2 > n, we see that ∂zkh◦ϕ also belongs toHγ+2.
On the other hand, since ∂zjϕk is analytic in a neighborhood of the closed unit ball, it satisfies the hypothesis of Lemma 2.3.
Therefore by Lemma 2.3, the product (∂zkh ◦ ϕ)(∂zjϕk) belongs to Hγ+2. Thus, ∂zj(h ◦ ϕ) is in Hγ+2 for all 1 ≤ j ≤ n. Now
Remark 2.2 shows that h ◦ ϕ belongs to Hγ .

Repeating the above argument, we obtain the conclusion of the proposition for γ > max{0, n − 4}, then γ >
max{0, n − 6}, and so on. Therefore the conclusion holds for all γ > 0. �

Remark 2.5. Proposition 2.4 together with Lemma 2.3 shows that if ϕ is a linear fractional self-map of Bn and f is analytic
on an open neighborhood of Bn, then the weighted composition operatorWf ,ϕ is bounded on Hγ for all γ > 0.

We close this section with some elementary properties of bounded weighted composition operators. Suppose Wf ,ϕ is
bounded on Hγ for some γ > 0. Then the action of the adjointW ∗

f ,ϕ on the kernel functions can be computed easily. Indeed,
for any z, w in Bn, by the properties of the reproducing kernel functions,

(W ∗

f ,ϕK
γ
z )(w) = ⟨W ∗

f ,ϕK
γ
z , K

γ
w ⟩ = ⟨K γz , f · (K γw ◦ ϕ)⟩

= f (z)K γw(ϕ(z)) = f (z)K γϕ(z)(w).

This gives the well known formula

W ∗

f ,ϕK
γ
z = f (z)K γϕ(z). (2.1)

It is straight forward that the set of bounded weighted composition operators on any Hγ is closed under operator
multiplication. In fact for analytic functions f , g and analytic self-mapsϕ,ψ ofBn forwhich bothWf ,ϕ andWg,ψ are bounded
on some Hγ , we have

Wf ,ϕWg,ψ = Wf ·g◦ϕ,ψ◦ϕ . (2.2)

Another elementary fact we would like to mention is that each non-zero weighted composition operator Wf ,ϕ is
determined uniquely by the pair f and ϕ. In fact, suppose Wf ,ϕ = Wg,ψ on Hγ and f is not identically zero. Then since
f = Wf ,ϕK

γ

0 and g = Wg,ψK
γ

0 , we obtain f = g . Now for any h ∈ Hγ , since f · (h ◦ ϕ − h ◦ ψ) = 0 and f is not identically
zero, we have h ◦ ϕ = h ◦ψ . Write ϕ = (ϕ1, . . . , ϕn) andψ = (ψ1, . . . , ψn). Choosing h(z) = zj, we conclude that ϕj = ψj
for j = 1, . . . , n. Thus, ϕ = ψ .

3. Unitary weighted composition operators

Unitaryweighted composition operators have been used in the study of Toeplitz operators onHardy and Bergman spaces,
see for example [18, p. 189]. In this section we will characterize all unitary weighted composition operators. In fact, we will
show that Wf ,ϕ is unitary on Hγ if and only if ϕ is an automorphism and f is a constant multiple of a reproducing kernel
function associated with ϕ.

For a ∈ Bn, we define the normalized reproducing kernel kγa by

kγa (w) = K γa (w)/∥K
γ
a ∥ =

(1 − |a|2)γ /2

(1 − ⟨w, a⟩)γ
forw ∈ Bn.

Let ϕa be theMoebius automorphism of the ball that interchanges 0 and a. The formulas in [19, Section 2.2.1] show that ϕa is
a linear fractional map of Bn. Put Ua = Wkγa ,ϕa

, the weighted composition operator on Hγ given by ϕa and kγa . By Remark 2.5,
Ua is a bounded operator. It turns out that Ua is in fact a self-adjoint unitary operator, that is, U∗

a = Ua and U2
a = 1. This fact

is well known and it is a consequence of a change of variables when Hγ is a weighted Bergman space (γ > n) or the Hardy
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space (γ = n). See [20, Proposition 1.13] for weighted Bergman spaces and [20, Proposition 4.2] for the Hardy space. On
these spaces, one has the relation [18, p. 189] UaTηUa = Tη◦ϕa , where Tη denotes the Toeplitz operator with symbol η.

For other values of γ , for example, the Drury–Arveson space, the inner product on Hγ does not come from a measure on
Bn so the approach using integral formulas does not seem to work. Our approach here makes use of the kernel functions
and it works for all γ > 0. We in fact show that for each given γ > 0, for each automorphism ψ of Bn, there corresponds a
weight function f for whichWf ,ψ is a unitary operator on Hγ . The function f depends on ψ and the value of γ .

Proposition 3.1. Let ψ be an automorphism of Bn. Put a = ψ−1(0) and b = ψ(0). Then the weighted composition operator
Wkγa ,ψ

is a unitary operator on Hγ and W ∗

kγa ,ψ
= W−1

kγa ,ψ
= Wkγb ,ψ

−1 .

Proof. We will make use of the identity

1 − ⟨ψ(z), ψ(w)⟩ =
(1 − ⟨a, a⟩)(1 − ⟨z, w⟩)

(1 − ⟨z, a⟩)(1 − ⟨a, w⟩)
, (3.1)

which holds for all z, w ∈ Bn (see [19, Theorem 2.2.5]). With z = w = 0, (3.1) gives |b| = |ψ(0)| = |a|. For any z ∈ Bn, we
have

kγb (ψ(z)) =
(1 − |b|2)γ /2

(1 − ⟨ψ(z), b⟩)γ
=

(1 − |b|2)γ /2

(1 − ⟨ψ(z), ψ(0)⟩)γ

=
(1 − |b|2)γ /2 · (1 − ⟨z, a⟩)γ

(1 − |a|2)γ
(by (3.1) withw = 0)

=


1 − |b|2

1 − |a|2

γ /2 1
kγa (z)

=
1

kγa (z)
(since |b| = |a|).

We obtain

kγa (z) · kγb (ψ(z)) = 1 for all z ∈ Bn. (3.2)

By Remark 2.5, the operators Wkγa ,ψ
and Wkγb ,ψ

−1 are bounded on Hγ . For h ∈ Hγ , (3.2) gives Wkγa ,ψ
Wkγb ,ψ

−1h =

kγa · (kγb ◦ψ) · h = h. ThereforeWkγa ,ψ
Wkγb ,ψ

−1 = I on Hγ . Similarly,Wkγb ,ψ
−1Wkγa ,ψ

= 1 on Hγ . HenceWkγa ,ψ
is an invertible

operator with inverseWkγb ,ψ
−1 .

Now let z andw be in Bn. Using (3.1), we compute
Wkγa ,ψ

K γψ(z)

(w) = kγa (w)K

γ

ψ(z)(ψ(w))

=
(1 − |a|2)γ /2

(1 − ⟨w, a⟩)γ
1

(1 − ⟨ψ(w),ψ(z)⟩)γ

=
(1 − |a|2)γ /2

(1 − ⟨w, a⟩)γ
(1 − ⟨w, a⟩)γ (1 − ⟨a, z⟩)γ

(1 − |a|2)γ (1 − ⟨w, z⟩)γ
=

K γz (w)

kγa (z)
.

Thus Wkγa ,ψ
K γψ(z) = K γz /k

γ
a (z). Using this and formula (2.1), we obtain

W ∗

kγa ,ψ
Wkγa ,ψ

(K γψ(z)) =
1

kγa (z)
W ∗

kγa ,ψ
(K γz ) = K γψ(z).

Since z was arbitrary and ψ is surjective, this implies, by linearity, that W ∗

kγa ,ψ
Wkγa ,ψ

h = h for all h in the span M of

{K γz : z ∈ Bn}. Since Wkγa ,ψ
is bounded on Hγ and M is dense in Hγ , we conclude that W ∗

kγa ,ψ
Wkγa ,ψ

= I on Hγ . Therefore
Wkγa ,ψ

is an invertible isometry on Hγ , and hence a unitary operator. �

Corollary 3.2. For any a in Bn, the operator Ua = Wkγa ,ϕa
is a self-adjoint unitary operator on Hγ .

Proof. Since ϕa is an automorphism of Bn with ϕ−1
a = ϕa and a = ϕ−1

a (0), the corollary follows immediately from
Proposition 3.1. �

For any linear operator V onCn with ∥V∥ ≤ 1, putψV (z) = Vz for z ∈ Bn. ThenψV is an analytic self-map of the unit ball.
We denote by CV the composition operator CψV on Hγ . Lemma 8.1 in [1] shows that CV is bounded on any Hγ and C∗

V = CV∗

(the boundedness of CV also follows from Proposition 2.4). When V is unitary, we obtain

Corollary 3.3. For any unitary operator V of Cn, the composition operator CV is a unitary operator on Hγ with adjoint C∗

V =

CV∗ = CV−1 .
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Proof. The corollary can be proved by using Proposition 3.1 together with the fact that ψV is an automorphism of Bn with
ψ−1

V = ψV−1 and ψ(0) = 0. It also follows (more easily) from the identities

CV∗CV = CVV∗ = I = CV∗V = CVCV∗ . �

Now assume that ϕ,ψ are analytic self-maps of the unit ball and f , g are analytic functions such that the weighted
composition operators Wf ,ϕ and Wg,ψ are bounded on Hγ . We seek necessary and sufficient conditions for which
Wf ,ϕW ∗

g,ψ = I on Hγ .
Consider first the case ϕ(0) = 0. For any z in Bn, by (2.1), we haveW ∗

g,ψK
γ
z = g(z)K γψ(z), soWf ,ϕW ∗

g,ψK
γ
z = g(z)fK γψ(z) ◦ϕ.

Therefore,

g(z)f (w)K γψ(z)(ϕ(w)) = K γz (w) for z, w ∈ Bn. (3.3)

Lettingw = 0 and using the fact that K γψ(z)(ϕ(0)) = K γψ(z)(0) = 1 and K γz (0) = 1 for all z ∈ Bn, we obtain g(z)f (0) = 1,
which gives g(z) = 1/f (0). Thus, g is a constant function.

Letting z = 0 in (3.3) gives (f (0))−1f (w)K γψ(0)(ϕ(w)) = K γ0 (w) = 1, which implies f (w) = f (0)/K γψ(0)(ϕ(w)) for
w ∈ Bn. Substituting this into (3.3), we obtain K γψ(z)(ϕ(w))/K

γ

ψ(0)(ϕ(w)) = K γz (w). Thus

(1 − ⟨ϕ(w), ψ(z)⟩)−γ

(1 − ⟨ϕ(w), ψ(0)⟩)−γ
= (1 − ⟨w, z⟩)−γ .

This gives (here we need to use the continuity of ϕ and ψ on Bn)

1 − ⟨ϕ(w), ψ(z)⟩
1 − ⟨ϕ(w), ψ(0)⟩

= 1 − ⟨w, z⟩ for all z, w ∈ Bn,

which implies
ϕ(w)

1 − ⟨ϕ(w), ψ(0)⟩
, ψ(z)− ψ(0)


= ⟨w, z⟩. (3.4)

By Lemma 3.10 below, there is an invertible linear operator A on Cn such that ψ(z) = ψ(0) + Az and ϕ(w) = (1 −

⟨ϕ(w), ψ(0)⟩)(A∗)−1w for z, w ∈ Bn. The latter implies

⟨ϕ(w), ψ(0)⟩ = (1 − ⟨ϕ(w), ψ(0)⟩) · ⟨(A∗)−1w,ψ(0)⟩,

which gives

1 − ⟨ϕ(w), ψ(0)⟩ =
1

1 + ⟨(A∗)−1w,ψ(0)⟩
=

1
1 + ⟨w, A−1ψ(0)⟩

.

Therefore ϕ is a linear fractional map given by the formula

ϕ(w) =
(A∗)−1w

1 + ⟨w, A−1ψ(0)⟩
for allw ∈ Bn.

It turns out that in order for ϕ and ψ to be self-maps of the unit ball, ψ(0) must be zero. To show this, we will make
use of Cowen–MacCluer’s results [16] on linear fractional maps. By the definition on [16, p. 369], the adjoint map of ϕ has
the formula σ(w) = A−1w − A−1ψ(0). Since ϕ is a self-map of the unit ball, [16, Proposition 11] implies that σ is also a
self-map of the unit ball. On the other hand, it is clear that ψ ◦ σ = σ ◦ ψ = idBn , the identity map of Bn. This shows that
both ψ and σ are automorphisms of Bn.

To finish the proof, we use the description of the automorphism group of the unit ball [19, Theorem 2.2.5], which in
particular says that any automorphism that does not fix the origin must be a linear fractional map with a non-constant
denominator. Since the denominator of ψ is a constant, ψ must fix the origin: ψ(0) = 0. Therefore we obtain ϕ(w) =

(A∗)−1w and ψ(w) = Aw for w ∈ Bn. But ϕ and ψ map the unit ball into itself, hence A is a unitary operator. Since
(A∗)−1

= A, we see that ϕ(w) = Aw = ψ(w) forw ∈ Bn. Furthermore, since ψ(0) = 0, we have

f (w) = f (0)/K γψ(0)(ϕ(w)) = f (0)/K γ0 (ϕ(w)) = f (0),

which is a constant function. Since g(w) = 1/f (0), we have f (w)g(w) = 1 for allw ∈ Bn.
Thus we have shown the ‘only if’ part of the following proposition. The ‘if’ part is much easier and it follows from

Corollary 3.3.

Proposition 3.4. Let f , g be analytic functions onBn and let ϕ,ψ be analytic self-maps of Bn withϕ(0) = 0. ThenWf ,ϕW ∗

g,ψ = I
on Hγ if and only if f , g are constant functions with f g ≡ 1 and there is a unitary operator A on Cn so that ϕ(w) = ψ(w) = Aw
for w ∈ Bn. In this case, Wf ,ϕ and Wg,ψ are constant multiples of a unitary composition operator.
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The general case (without the assumption ϕ(0) = 0) now follows from Proposition 3.4 after multiplying both Wf ,ϕ and
Wg,ψ by a unitary operator.

Theorem 3.5. Let f , g be analytic functions on Bn and let ϕ,ψ be analytic self-maps of Bn. Then Wf ,ϕW ∗

g,ψ = I on Hγ if and
only if ϕ = ψ , an automorphism of Bn; and there is a constant λ ≠ 0 such that f = λkγa and g = (1/λ)kγa , where a = ϕ−1(0).
Furthermore, both Wf ,ϕ and Wg,ψ are constant multiples of the unitary operator Wkγa ,ϕ

.

Proof. The ‘if’ part follows from Proposition 3.1 so we only need to prove the ‘only if’ part. Put b = ϕ(0). Define

f̃ = f · kγb ◦ ϕ, ϕ̃ = ϕb ◦ ϕ and g̃ = g · kγb ◦ ψ, ψ̃ = ϕb ◦ ψ.

Then by (2.2), Wf̃ ,ϕ̃ = Wf ,ϕUb and Wg̃,ψ̃ = Wg,ψUb. Since Ub is a unitary, we have Wf̃ ,ϕ̃W
∗

g̃,ψ̃
= Wf ,ϕW ∗

g,ψ . Therefore the
second product is the identity operator if and only if the first product is the identity operator. Since ϕ̃(0) = ϕb(ϕ(0)) =

ϕb(b) = 0, by Proposition 3.4, Wf̃ ,ϕ̃W
∗

g̃,ψ̃
= I on Hγ if and only if f̃ , g̃ are constant functions with f̃ · g̃ ≡ 1 and there

exists a unitary operator A on Cn such that ϕ̃(w) = ψ̃(w) = Aw for w ∈ Bn. The identity ϕ−1
b = ϕb now implies

ϕ(z) = ψ(z) = ϕb(Az) for z ∈ Bn. Thus ϕ = ψ and they equal an automorphism of Bn. Suppose f̃ ≡ λ ≠ 0 and
g̃ ≡ 1/λ. By (3.2), we obtain

f =
f̃

kγb ◦ ϕ
=

λ

kγϕ(0) ◦ ϕ
= λkγ

ϕ−1(0)
= λkγa .

Similarly, g = (1/λ)kγa . ThusWf ,ϕ = λWkγa ,ϕ
and Wg,ψ = (1/λ)Wkγa ,ϕ

. �

Corollary 3.6. Let f be an analytic function on Bn and ϕ be an analytic self-map of Bn such that the operator Wf ,ϕ is bounded
on Hγ for some γ > 0. Then TFAE

(a) Wf ,ϕ is a unitary on Hγ .
(b) Wf ,ϕ is a co-isometry on Hγ .
(c) ϕ is an automorphism of Bn and f = λkγ

ϕ−1(0)
for some complex number λ with |λ| = 1.

Proof. The implication (a) ⇒ (b) is trivial. The implications (b) ⇒ (c) ⇒ (a) follow from Theorem 3.5 in the case g = f
and ψ = ϕ. �

Remark 3.7. The equivalence of (a) and (b) in the above corollary is not surprising in one dimension. This follows from the
fact that in one dimension most weighted composition operators are injective. In fact if f is not identically zero and ϕ is
not a constant function, then Wf ,ϕ is injective on any Hγ on the unit disk. In dimensions greater than one, it may happen
that the kernel ofWf ,ϕ is non-trivial even in the case f does not vanish and ϕ is a non-constant map of Bn. Thus, it might be
surprising that all co-isometric weighted composition operators are in fact unitary on Hγ . Corollary 3.6 also shows that any
unitary weighted composition operator on Hγ is of the form a constant (of modulus one) multiplying a unitary operator in
Proposition 3.1.

Remark 3.8. The equivalence between (a) and (c) for weighted composition operators on the Hardy space of the unit disk
is shown by Bourdon and Narayan in [12] by a different route. They show that ifWf ,ϕ is unitary, then ϕ must be a univalent
inner function, and hence, an automorphism of the unit disk.

In [12], Bourdon and Narayan go on to characterize the spectra of these unitary weighted composition operators. Their
spectral characterizations are based on whether the automorphism ϕ is elliptic, hyperbolic or parabolic. While the case of
elliptic automorphisms (which fix a point inBn) can be carried on to higher dimensions, we have not been able to resolve the
other two cases. The following spectral description is a consequence of a result in the next section about normal weighted
composition operators.

Proposition 3.9. Let f be an analytic function and ϕ an automorphism of Bn that fixes a point p ∈ Bn. Suppose Wf ,ϕ is unitary
on Hγ . Then |f (p)| = 1; all eigenvalues of ϕ′(p) belong to the unit circle; and the spectrum of Wf ,ϕ is the closure of the set

{f (p)} ∪ {f (p) · λ1 · · · λs : λj ∈ σ(ϕ′(p)) for 1 ≤ j ≤ s and s = 1, 2, . . .}.

Here σ(ϕ′(p)) is the set of eigenvalues of the matrix ϕ′(p).

Proof. Since Wf ,ϕ is normal, the description of its spectrum follows from Proposition 4.4 in Section 4 below. Since the
spectrum ofWf ,ϕ must be a subset of the unit circle, we conclude that |f (p)| = 1 and |λ| = 1 for any λ in σ(ϕ′(p)). �

We end this section with a lemma that was used in the proof of Proposition 3.4. We only need the finite dimensional
version but the infinite dimensional case is also interesting in its own right. This result might have appeared in the literature
but since we are not aware of an appropriate reference, we provide here a proof.
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Lemma 3.10. Let M be a Hilbert space with an inner product denoted by ⟨, ⟩. Suppose F and G are twomaps from the unit ballB
of M intoM such that ⟨F(w),G(z)⟩ = ⟨w, z⟩ for allw, z inB . Then there is an orthogonal decompositionM = M1⊕M2⊕M3;
there are bounded linear operators A, B from M into M1 with B∗A = 1; and there are (possibly non-linear) maps F1 : M → M2
and G1 : M → M3 such that F(w) = Aw + F1(w) and G(z) = Bz + G1(z) for allw, z in B .

If M has finite dimension, then both M2 and M3 are {0} and hence F(w) = Aw and G(z) = Bz = (A∗)−1z for w, z ∈ B . If,
in addition, F and G map B into itself, then A is a unitary operator.

If F = G, then F1 = G1 = 0; A = B; and hence F(z) = G(z) = Az for z ∈ B . Furthermore, A is an isometry on M.

Proof. Let N be the closure of the linear span of {G(z) : z ∈ B}. Then we have PN G = G (here PN is the orthogonal
projection from M onto N ) and for allw, z ∈ B,

⟨PN F(w),G(z)⟩ = ⟨F(w),G(z)⟩ = ⟨w, z⟩.

For any z, w1, w2 in B and complex numbers c1, c2 such that c1w1 + c2w2 also belongs to B, we have

⟨PN F(c1w1 + c2w2)− c1PN F(w1)− c2PN F(w2),G(z)⟩ = ⟨c1w1 + c2w2, z⟩ − c1⟨w1, z⟩ − c2⟨w2, z⟩ = 0.

Since the range of PN F is contained in N and the linear span of the set {G(z) : z ∈ B} is dense in N , we conclude that
PN F(c1w1 + c2w2) = c1PN F(w1) + c2PN F(w2). From this, it follows that PN F extends to a linear operator on M. We call
this extension A and denote the closure of its range by M1. So A can be regarded as an operator from M into M1. We have
⟨Aw,G(z)⟩ = ⟨w, z⟩ for all w, z ∈ B. We claim that A is a closed operator and hence by the Closed Graph Theorem, it is
bounded. Suppose {wm} is a sequence in M such thatwm → 0 and Awm → y asm → ∞. For z ∈ B,

0 = lim
m→∞

⟨wm, z⟩ = lim
m→∞

⟨Awm,G(z)⟩ = ⟨y,G(z)⟩.

Since y belongs to M1 ⊂ N and the linear span of {G(z) : z ∈ B} is dense in N , we conclude that y = 0. So A is a closed
operator.

Now for w, z ∈ B, ⟨Aw, PM1G(z)⟩ = ⟨Aw,G(z)⟩ = ⟨w, z⟩. It then follows, by the same argument as before, that PM1G
extends to a bounded linear operator on M. Call this operator B. Then the range of B is contained in M1 (hence we may
regard B as an operator from M into M1) and we have ⟨Aw, Bz⟩ = ⟨w, z⟩ for w, z ∈ B. As before, B can be shown to be a
closed operator, hence it is bounded and we have B∗A = 1.

Put M2 = M ⊖ N and M3 = N ⊖ M1. Put F1 = PM2F and G1 = PM3G. We then have, on B,

F = PN F + PM2F = A + F1,
G = PN G = PN PM1G + PN (I − PM1)G = PM1G + PM3G = B + G1.

If M is a finite dimensional space, then it follows from B∗A = 1 that both A and B are invertible operators from M onto
M1. Therefore, M1 = M, which forces M2 = M3 = {0}. So F(w) = Aw and G(z) = Bz = (A∗)−1z for w, z ∈ B. If both
F and G map B into itself, then ∥A∥ ≤ 1 and ∥(A∗)−1

∥ ≤ 1. Consequently, both A and A−1 are contractive operators on M.
This forces A to be unitary.

If F = G then we have F1 = G1 = 0 and A = B. But B∗A = 1, so A∗A = 1 and hence A is an isometry on M. �

4. Normal weighted composition operators

Recall that for V a linear operator onCn with ∥V∥ ≤ 1, we denote by CV the composition operator induced by the analytic
self-mapψV (z) = Vz of Bn. If V is normal, then since CVC∗

V = CV∗V = CVV∗ = C∗

VCV , the operator CV is normal on Hγ . It turns
out that these are all normal composition operators on Hγ for each γ > 0. The following result is part of [1, Theorem 8.2].

Proposition 4.1. Let γ > 0 and let ϕ be an analytic mapping of Bn into itself. Then Cϕ is normal on Hγ if and only if ϕ(z) = Az
for some normal linear operator A on Cn with ∥A∥ ≤ 1.

The spectrum of a normal composition operator can be determined easily. Let A be a normal linear operator on Cn with
∥A∥ ≤ 1, we will identify the eigenvalues and eigenvectors of CA on Hγ . We will show that CA is diagonalizable and hence
its spectrum is the closure of the set of its eigenvalues.

Since A is normal, there is an orthonormal basis {u1, . . . , un} of Cn which consists of eigenvectors of A. Write Auj = λjuj,
where λj is the eigenvalue corresponding to uj for 1 ≤ j ≤ n (note that some of these eigenvalues may be the same). Then
the spectrum of A is given by σ(A) = {λ1, . . . , λn}. Let {e1, . . . , en} be the standard orthonormal basis for Cn and let V be
the unitary operator on Cn such that Vuj = ej for 1 ≤ j ≤ n. For any z = (z1, . . . , zn) in Cn, we have

VAV ∗(z) = (λ1z1, . . . , λnzn). (4.1)

Recall from the Introduction that for any γ > 0, the set of analytic monomials {zm = zm1
1 · · · zmn

n : m = (m1, . . . ,mn) ∈

Nn
0} is a complete orthogonal set in Hγ . By (4.1), we have CVAV∗(zm) = λmzm for allm ∈ Nn

0 (here we write λm = λ
m1
1 · · · λmn

n
and use the convention that 00

= 1). Since CVAV∗ = CV∗CACV and CV is unitary with C∗

V = CV∗ (by Corollary 3.3), we conclude
that the set {CV zm : m ∈ Nn

0} is a complete orthogonal set in Hγ and for eachm ∈ Nn
0, the function CV zm is an eigenfunction
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for CA with eigenvalue λm. Thus the operator CA is diagonalizable in Hγ and the spectrum σ(CA) is the closure of the set
{λm : m ∈ Nn

0}.
The eigenfunctions CV (zm) of CA can be described in terms of the eigenvectors of A as follows.

CV (zm) = CV (z
m1
1 · · · zmn

n ) = CV (⟨z, e1⟩m1 · · · ⟨z, en⟩mn)

= ⟨Vz, e1⟩m1 · · · ⟨Vz, en⟩mn = ⟨z, V ∗e1⟩m1 · · · ⟨z, V ∗en⟩mn

= ⟨z, u1⟩
m1 · · · ⟨z, un⟩

mn .

We have thus obtained.

Proposition 4.2. Let A be a normal operator on Cn with ∥A∥ ≤ 1. Let {u1, . . . , un} be an orthonormal basis for Cn consisting of
eigenvectors of A. Write Auj = λjuj for 1 ≤ j ≤ n. Then the following statements hold.

(a) The set {fm(z) = ⟨z, u1⟩
m1 · · · ⟨z, un⟩

mn : m = (m1, . . . ,mn) ∈ Nn
0} is a complete orthogonal set of Hγ .

(b) Each fm is an eigenfunction of CA with eigenvalue λm = λ
m1
1 · · · λmn

n .
(c) The spectrum of CA is the closure of the set {λm : m ∈ Nn

0}, where λ = (λ1, . . . , λn). This set can also be written as
{1} ∪ {α1 · · ·αs : αj ∈ σ(A) for 1 ≤ j ≤ s and s = 1, 2, . . .}.

In [12], Bourdon and Narayan study normal weighted composition operators on the Hardy space of the unit disk. They
provide twonecessary conditions forWf ,ϕ to be normal [12, Lemma2 and Proposition 3]: (1) either f ≡ 0 or f never vanishes,
and (2) if ϕ is not a constant function and f is not the zero function, then ϕ is univalent. While condition (1) is still valid in
all dimensions with the same proof, condition (2) no longer holds in dimension greater than one, as Proposition 4.1 shows.
On the other hand, we will see that the characterization of normalWf ,ϕ on Hγ remains the same if the map ϕ fixes a point in
the unit ball. Our approach here was inspired by that in [12] but the argument has been simplified. Furthermore, our proof
works for all Hγ in any dimension.

Theorem 4.3. Suppose ϕ is an analytic self-map of Bn that fixes a point p in Bn. If Wf ,ϕ is a non-zero normal operator, then there
exist a constant α ≠ 0 and a normal linear operator A on Cn with ∥A∥ ≤ 1 such that

f = α
kγp

kγp ◦ ϕ
, and ϕ(z) = ϕp(Aϕp(z)) for z ∈ Bn. (4.2)

Conversely, if f and ϕ satisfy (4.2), then α = f (p) and Wf ,ϕ is unitarily equivalent to the normal operator f (p)CA (in fact,
Wf ,ϕ = Up


f (p)CA


Up) and hence it is normal.

Proof. We assume first ϕ(0) = 0 andWf ,ϕ is a non-zero normal operator. By (2.1), we have

W ∗

f ,ϕK
γ

0 = f (0)K γϕ(0) = f (0)K γ0 .

This shows that K γ0 is an eigenvector ofW ∗

f ,ϕ with eigenvalue f (0). SinceWf ,ϕ is normal, we obtainWf ,ϕK
γ

0 = f (0)K γ0 , which
implies f · K γ0 ◦ ϕ = f (0)K γ0 and hence f = f (0) since K γ0 ≡ 1. So f is a constant function (which is non-zero because Wf ,ϕ
is a non-zero operator). This in turns implies that Cϕ is normal on Hγ . By Proposition 4.1, there is a normal linear operator
on Bn with ∥A∥ ≤ 1 such that ϕ(z) = Az for z ∈ Bn.

For general p, definef = (kγp ◦ϕ ◦ϕp)(f ◦ϕp)k
γ
p andϕ = ϕp ◦ϕ ◦ϕp. By (2.2), UpWf ,ϕUp = Wf ,ϕ . SinceWf ,ϕ andWf ,ϕ are

unitarily equivalent (recall that Up is a self-adjoint unitary operator), one is normal if and only if the other is normal. Sinceϕ(0) = 0, the above argument shows that Wf ,ϕ is normal if and only iff is a constant function, say,f ≡ α andϕ(z) = Az
for some normal operator A on Cn with ∥A∥ ≤ 1. Thus we obtain (kγp ◦ ϕ ◦ ϕp)(f ◦ ϕp)k

γ
p ≡ α and ϕp ◦ ϕ ◦ ϕp(z) = Az. Using

the fact that ϕp ◦ ϕp is the identity map on Bn, we get

f =
α

(kγp ◦ ϕ)(kγp ◦ ϕp)
, and ϕ(z) = ϕp(Aϕp(z)) for z ∈ Bn. (4.3)

On the other hand, since ϕp(0) = p = ϕ−1
p (0), (3.2) gives kγp · (kγp ◦ ϕp) = 1. Therefore f can be written as f = α

kγp
kγp ◦ϕ

. Since

kγp (ϕ(p)) = kγp (p), we see that f (p) = α.
Conversely, if f and ϕ satisfy (4.2), then they satisfy (4.3) (with α = f (p)) and hence Wf ,ϕ is unitarily equivalent to the

normal operator f (p)CA. �

We now use Theorem 4.3 and Proposition 4.2 to discuss the spectra of normal weighted composition operators. Suppose
that f and ϕ satisfy (4.2). Let {u1, . . . , un} be an orthonormal basis for Cn consisting of eigenvectors of A. Let λj be the
eigenvalue of A corresponding to the eigenvector uj and put fj(z) = ⟨z, uj⟩ for 1 ≤ j ≤ n. For each multi-index
m = (m1, . . . ,mn) in Nn

0, we write fm = f m1
1 · · · f mn

n . From Proposition 4.2 we know that {fm : m ∈ Nn
0} is a complete

orthogonal set of Hγ and CA(fm) = λmfm for each m, where λ = (λ1, . . . , λn).
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For 1 ≤ j ≤ n, put

gj(z) = (Upfj)(z) = kγp (z)fj(ϕp(z)) = kγp (z)⟨ϕp(z), uj⟩.

Put gm = gm1
1 · · · gmn

n = Up(fm) for m = (m1, . . . ,mn) ∈ Nn
0. Since Up is unitary on Hγ , the set {gm : m ∈ Nn

0} is a complete
orthogonal set of Hγ . Since Wf ,ϕ = Up(f (p)CA)Up by Theorem 4.3 and Up = U−1

p , we conclude that Wf ,ϕgm = f (p)λmgm for
m ∈ Nn

0. Therefore the spectrum ofWf ,ϕ is the closure of the set {f (p)λm : m ∈ Nn
0}, which is the same as

{f (p)} ∪ {f (p) · α1 · · ·αs : αj ∈ σ(A) for 1 ≤ j ≤ s and s = 1, 2, . . .}.

On the other hand, by the chain rule, we have

ϕ′(p) = ϕ′

p(Aϕp(0))Aϕ′

p(p) = ϕ′

p(0)Aϕ
′

p(p).

Since ϕp ◦ ϕp = IBn , ϕp(0) = p and ϕp(p) = 0, the chain rule again gives ϕ′
p(p)ϕ

′
p(0) = ϕ′

p(0)ϕ
′
p(p) = In, the identity

operator on Cn. Therefore ϕ′(p) and A are similar and hence they have the same set of eigenvalues, counting multiplicities.
In particular, σ(A) = σ(ϕ′(p)). We thus obtain the description of the spectrum ofWf ,ϕ intrinsically in terms of f and ϕ.

Proposition 4.4. Let f be a non-zero analytic function and ϕ an analytic self-map of Bn that fixes a point p on Bn. Suppose Wf ,ϕ
is a normal operator on Hγ . Then the spectrum of Wf ,ϕ is the closure of the set

{f (p)} ∪ {f (p) · α1 · · ·αs : αj ∈ σ(ϕ′(p)) for 1 ≤ j ≤ s and s = 1, 2, . . .}.

We have characterized normal weighted composition operators induced by analytic self-maps of Bn that fix a point in
Bn. Our approach (conjugating Wf ,ϕ by a unitary) does not seem to work for ϕ that has only fixed points on the sphere. In
the rest of this section, we investigate normal weighted composition operators of a certain type.

In [12, Section 5], Bourdon and Narayan note that in one dimension, the function f in the conclusion of Theorem 4.3 is in
fact a constant multiple of K γσ(0), where σ is the adjoint of the linear fractional map ϕ. They then go on to find necessary and
sufficient conditions for the normality of Wf ,ϕ , where ϕ is a linear fractional map and f = K γσ(0). It turns out that in higher
dimensions similar results also hold but they are less obvious because of the complicated settings of several variables.

Recall that a linear fractional map ϕ has the form ϕ(z) =
Az+B

⟨z,C⟩+d , where A is a linear operator on Cn; B, C are vectors in
Cn; and d is a complex number. Given such a map ϕ, its adjoint is defined by

σ(z) = σϕ(z) =
A∗z − C

−⟨z, B⟩ + d
.

For more details on σ and its relation with ϕ, see [16].
We begin by a lemma that can be verified by a direct computation, using the formulas of ϕ, σ and of the reproducing

kernel functions.

Lemma 4.5. Let ϕ be a linear fractional self-map of Bn and let σ be its adjoint. Then for any point a in Bn, we have

K γϕ(0) · K
γ
a ◦ σ = K

γ

σ(0)(a)K
γ

ϕ(a) and K γσ(0) · K
γ
a ◦ ϕ = K

γ

ϕ(0)(a)K
γ

σ(a).

By Remark 2.5, both operators WKγ
ϕ(0),σ

and WKγ
σ(0),ϕ

are bounded on Hγ . Now the first identity in Lemma 4.5 together
with (2.1) shows that

WKγ
ϕ(0),σ

K γa = W ∗

Kγ
σ(0),ϕ

K γa for all a ∈ Bn,

which implies that

WKγ
ϕ(0),σ

= W ∗

Kγ
σ(0),ϕ

. (4.4)

We point out that this formula is in fact equivalent to the formula of C∗
ϕ given by Cowen and MacCluer in [16, Theorem 16],

which can be written as

C∗

ϕ = MKγ
ϕ(0)

CσM∗

1/Kγ
σ(0)
.

Here for an analytic function g on the unit ball, Mg denotes the operator of multiplication by g on Hγ .
For any point p in Bn, it follows from [19, Definition 2.2.1] that the involution ϕp of Bn has the form ϕp(z) =

Tz+p
1−⟨z,p⟩ for

some self-adjoint operator T depending on p. This implies that the adjoint of ϕp is the same as ϕp. Now let f , ϕ satisfy
(4.2) in Theorem 4.3. Then the adjoint σ of ϕ has the form σ(z) = ϕp(A∗ϕp(z)) for z ∈ Bn. (Note that the adjoint of
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ψ1 ◦ ψ2 is the composition of the adjoint of ψ2 and the adjoint of ψ1, in this order, see [16, Lemma 12].) In particular,
σ(p) = ϕp(A∗ϕp(p)) = p. We thus obtain

f = α
kγp

kγp ◦ ϕ
= α

K γp
K γp ◦ ϕ

= α
K γσ(p)
K γp ◦ ϕ

=
α

K
γ

ϕ(0)(p)
K γσ(0).

The last equality follows from the second identity in Lemma 4.5. Therefore we see that f is a constant multiple of K γσ(0).
In the rest of this section, we assume that ϕ is a linear fractional map and f = K γσ(0), where as above σ is the adjoint map

of ϕ. We look for conditions for which the weighted composition operator Wf ,ϕ is normal. We emphasize here that in the
case ϕ has a fixed point p in Bn, Theorem 4.3 provides a complete answer: Wf ,ϕ is normal if and only if ϕ(z) = ϕp(Aϕp(z))
for some normal operator A on Bn. The result below does not require that ϕ have a fixed point in Bn.

Proposition 4.6. Suppose ϕ is a linear fractional self-map of Bn and σ is its adjoint. Let γ > 0 and put f = K γσ(0). Then the
operator Wf ,ϕ is normal on Hγ if and only if |ϕ(0)| = |σ(0)| and ϕ ◦ σ = σ ◦ ϕ.

Proof. Using (4.4) and (2.2), we compute

W ∗

f ,ϕWf ,ϕ = WKγ
ϕ(0),σ

WKγ
σ(0),ϕ

= WKγ
ϕ(0)·K

γ
σ(0)◦σ , ϕ◦σ ,

Wf ,ϕW ∗

f ,ϕ = WKγ
σ(0),ϕ

WKγ
ϕ(0),σ

= WKγ
σ(0)·K

γ
ϕ(0)◦ϕ, σ◦ϕ .

This shows thatWf ,ϕ is normal if and only if ϕ ◦ σ = σ ◦ ϕ and

K γϕ(0) · K
γ

σ(0) ◦ σ = K γσ(0) · K
γ

ϕ(0) ◦ ϕ. (4.5)

By the first identity in Lemma 4.5, the left hand side of (4.5) equals

K
γ

σ(0)(σ (0))K
γ

ϕ(σ (0)) = (1 − |σ(0)|2)−γ K γϕ(σ (0)).

Similarly, by the second identity in Lemma 4.5, the right hand side of (4.5) equals

K
γ

ϕ(0)(ϕ(0))K
γ

σ(ϕ(0)) = (1 − |ϕ(0)|2)−γ K γσ(ϕ(0)).

Thus (4.5) holds if and only if |σ(0)| = |ϕ(0)| and ϕ(σ(0)) = σ(ϕ(0)). The latter is certainly true if ϕ ◦ σ = σ ◦ ϕ.
Therefore, the operator WKγ

σ(0),ϕ
is normal if and only if ϕ ◦ σ = σ ◦ ϕ and |ϕ(0)| = |σ(0)|, which completes the proof

of the proposition. �

Remark 4.7. Proposition 4.6 in the case of the Hardy space on the unit disk (n = 1) was obtained by Bourdon and Narayan
in [12, Proposition 12] but their conclusion was stated in a slightly different way.

Remark 4.8. In the casen = 1 andϕ(z) =
az+b
cz+d for complex numbers a, b, c, d, an easy calculation shows that the conditions

obtained in Proposition 4.6 are equivalent to |b| = |c| and ab − cd = bd − ac .
When n ≥ 2 and ϕ(z) =

Az+B
⟨z,C⟩+d , the conditions can then be expressed in terms of A, B, C and d. We leave this to the

interested reader.

We conclude the section by a result taken from [12, Proposition 13] with a slightly modified proof using Remark 4.8.

Proposition 4.9. Suppose that ϕ is a linear fractional self-map of the unit disk of parabolic type (so there is an ω with |ω| = 1
such that ϕ(ω) = ω and ϕ′(ω) = 1). Then the operator WKγ

σ(0),ϕ
is normal on Hγ for any γ > 0. Here as before, σ is the adjoint

map of ϕ.

Proof. As it is explained in the proof of [12, Proposition 13], we only need to consider ω = 1 and ϕ of the form

ϕ(z) =
(2 − t)z + t

−tz + (2 + t)
, where Re(t) ≥ 0.

Since a = 2 − t, b = t, c = −t and d = 2 + t , we have |b| = |c| and ab − cd = bd − ac = 4Re(t). The conclusion now
follows from Remark 4.8 and Proposition 4.6. �
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5. Self-adjoint weighted composition operators

In this section we characterize when the adjoint of a weighted composition operator on Hγ is another weighted
composition operator. As a consequence, we determine necessary and sufficient conditions for which the operator Wf ,ϕ
is a self-adjoint operator. This generalizes the characterizations obtained in [10,11], where the one-dimensional case is
considered. Furthermore, our solutions to the equationW ∗

g,ψ = Wf ,ϕ seems to be new even in one dimension.
We will need the following elementary result regarding maps on the unit ball of a Hilbert space. The existence of the

linear extensions follows from a similar argument as in the proof of Lemma 3.10. The boundedness is well known and it is
a consequence of the closed graph theorem.

Lemma 5.1. Let M be Hilbert space with an inner product ⟨, ⟩. Suppose F and G are two maps from the unit ball B of M into M
such that for all z, w ∈ B , ⟨F(w), z⟩ = ⟨w,G(z)⟩. Then there is a bounded linear operator A on M such that F(w) = Aw and
G(w) = A∗w for allw ∈ B .

By (4.4) we see that the adjoint of WKγ
σ(0),ϕ

is the weighted composition operator WKγ
ϕ(0),σ

when ϕ is a linear fractional
map and σ is the adjoint map of ϕ. Our main result in this section shows that any non-zero weighted composition operator
whose adjoint is a weighted composition operator must be a constant multiple of an operator of this form.

Theorem 5.2. Let f , g be analytic functions on Bn and ϕ,ψ be analytic self-maps of Bn. Then Wf ,ϕ and Wg,ψ are non-zero
bounded operators on Hγ and W ∗

g,ψ = Wf ,ϕ if and only if there are vectors c, d in Bn, a linear operator A on Cn and a non-zero
complex number α such that

ϕ(z) =
d + Az

1 − ⟨z, c⟩
and ψ(z) =

c + A∗z
1 − ⟨z, d⟩

for all z ∈ Bn, (5.1)

and f = α K γc = α K γψ(0), g = α K γd = α K γϕ(0). In particular, the maps ϕ and ψ are linear fractional maps.

Remark 5.3. Note that the mapψ in (5.1) is the adjoint of ϕ. Thus Theorem 5.2 says, in particular, that ifWg,ψ is the adjoint
operator ofWf ,ϕ , then ψ is the adjoint of ϕ.

Proof. Suppose firstW ∗

g,ψ = Wf ,ϕ on Hγ and they are non-zero operators. For any z andw in Bn, using (2.1) we have

f (w)K γz (ϕ(w)) = (Wf ,ϕK γz )(w) = (W ∗

g,ψK
γ
z )(w) = g(z)K γψ(z)(w). (5.2)

Letting z = 0 in (5.2) gives f (w) = g(0)K γψ(0)(w) = g(0)

1 − ⟨w,ψ(0)⟩

−γ
for w ∈ Bn. This, in particular, implies

f (0) = g(0), which is non-zero by the assumption that operators are non-zero.
Lettingw = 0 in (5.2) gives

g(z) = f (0)K γz (ϕ(0)) = f (0)

1 − ⟨ϕ(0), z⟩

−γ
for z ∈ Bn.

Substituting the formulas for f , g and K(·, ·) into (5.2) and canceling the constants, we obtain

(1 − ⟨w,ψ(0)⟩)−γ (1 − ⟨ϕ(w), z⟩)−γ = (1 − ⟨ϕ(0), z⟩)−γ (1 − ⟨w,ψ(z)⟩)−γ .

This identity implies

(1 − ⟨w,ψ(0)⟩)(1 − ⟨ϕ(w), z⟩) = (1 − ⟨ϕ(0), z⟩)(1 − ⟨w,ψ(z)⟩). (5.3)

An easy calculation then gives
1 − ⟨w,ψ(0)⟩


ϕ(w)− ϕ(0), z


=


w,


1 − ⟨z, ϕ(0)⟩


ψ(z)− ψ(0)


.

Using Lemma 5.1, we conclude that there exists a linear operator A on Cn such that

ϕ(w) =
ϕ(0)+ Aw

1 − ⟨w,ψ(0)⟩
and ψ(z) =

ψ(0)+ A∗z
1 − ⟨z, ϕ(0)⟩

for allw, z ∈ Bn.

Put α = f (0), c = ψ(0) and d = ϕ(0), we see that f , g and ϕ,ψ satisfy (5.1).
For the converse, suppose f , g and ϕ,ψ are as above such that ϕ and ψ map the unit ball into itself. Since Wf ,ϕ =

αWKγ
ψ(0),ϕ

and Wg,ψ = αWKγ
ϕ(0),ψ

, (4.4) gives Wg,ψ = W ∗

f ,ϕ on Hγ , which is equivalent to Wf ,ϕ = W ∗

g,ψ . The boundedness of
these operators on Hγ follows from Remark 2.5. �

As an immediate application of Theorem5.2,we obtain a characterization of self-adjointweighted composition operators.

Corollary 5.4. Let f be an analytic function and ϕ an analytic self-map of Bn. Then Wf ,ϕ is a non-zero self-adjoint bounded
operator on Hγ if and only if there is a vector c ∈ Bn, a self-adjoint linear operator A on Cn and a real number α such that
f = α K γc = α K γϕ(0) and ϕ(z) =

c+Az
1−⟨z,c⟩ for z ∈ Bn.
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Proof. Since W ∗

f ,ϕ = Wf ,ϕ , Theorem 5.2 shows that there are vectors c, d in Bn, a linear operator A on Cn and a complex
number α such that for all z ∈ Bn, f (z) = α K γd = α K γc and ϕ(z) =

d+Az
1−⟨z,c⟩ =

c+A∗z
1−⟨z,d⟩ . This shows that α = α, c = d and

A∗
= A and hence f , ϕ have the required form. �

In [10,11], the authors go on to describe the eigenvectors, eigenvalues and other spectral properties of self-adjoint
weighted composition operators onHγ (γ ≥ 1) of the unit disk. Their analysis is based on the classification of linear fractional
self-maps of the unit disk.

In dimension n ≥ 2 and in the caseϕ has a fixed point inBn (the elliptic case), eigenvectors, eigenvalues and the spectrum
of the self-adjoint operator Wf ,ϕ can be described as in Proposition 4.4 and in the discussion preceding this proposition.
The cases where all the fixed points of ϕ lie on the unit sphere (the parabolic and hyperbolic cases) are, we believe, more
complicated and seem to require more careful analysis. We leave this open for future research.
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