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a b s t r a c t

Let Mn denote the Hardy–Littlewood maximal operator on the n-th iteration of a given
iterated function system (IFS). We give sufficient conditions on the IFS in order to ob-
tain a pointwise estimate for Mn in terms of the composition of M0 and a discrete
Hardy–Littlewood type maximal operator. As a corollary we prove the uniform preserva-
tion of Muckenhoupt condition along the Hutchinson orbits induced by such an IFS.
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0. Introduction

We shall start by introducing our result for the most elementary self-similar settings; the interval [0, 1]. The interval
[0, 1] = X can be regarded as the Banach fixed point for the mapping T on the compact sets K of the real line defined as

T (K) = ψ1(K) ∪ ψ2(K),

where ψ1(x) =
x
2 , ψ2(x) =

x
2 +

1
2 . The standard one dimensional Lebesgue length λ on [0, 1], can also be seen as the

invariant measure induced by the IFS Ψ = {ψ1, ψ2}. In fact, λ is the fixed point of the mapping S on the Borel probabilities
µ on [0, 1] defined by

S(µ)(E) =
1
2
µ

ψ−1

1 (E)

+

1
2
µ

ψ−1

2 (E)

,

for E a Borel subset of X .
The system Ψ = {ψ1, ψ2} is by no means the only IFS producing [0, 1] as the self-similar set and λ as the invariant

measure. Let us write TΨ and SΨ to denote the mappings T and S introduced above to emphasize its dependence on Ψ . The
system Φ = {φ1, φ2} with φ1(x) = ψ1(x) =

x
2 and φ2(x) = 1 −

x
2 (see Fig. 1), induces the mappings TΦ and SΦ changing

ψi by φi. The fixed points for TΦ and SΦ are, again, [0, 1] and λ. It is easy to realize that the system Φ has some advantages
over the system Ψ from the, let us say, analytical point of view. In fact, if µ is absolutely continuous with respect to λwith
density w, i.e. dµ(x) = w(x)dx, it is easy to check that SΨ (µ) is also absolutely continuous and that its Radon–Nikodym
derivative is given by

wΨ =


w ◦ ψ−1

1 on X1,

w ◦ ψ−1
2 on X2,
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Fig. 1. Ψ = {ψ1, ψ2} andΦ = {φ1, φ2}.

Fig. 2. Densities for SΨ (µ) and SΦ (µ).

where Xi = ψi(X) = ψi([0, 1]). Of course SΦ(µ) has the density

wΦ =


w ◦ φ−1

1 on X1,

w ◦ φ−1
2 on X2.

It is easy to see that Φ is continuity preserving but Ψ is not, in the sense that wΦ(x) if continuous if w is. The function
wΨ (x), instead, is generically discontinuous forw continuous.

Not only continuity is preserved by Φ but also some precise quantitative integral properties such as the Muckenhoupt
conditions. Take µ to be an absolutely continuous measure on [0, 1] with a density belonging to a Muckenhoupt class. To
fix ideas, take dµ(x) =

1
2w(x)dx, with w(x) = x−1/2. Hence µ is a Borel probability measure on [0, 1]. Moreover, µ is

doubling. In other words, regarding X = [0, 1] as a metric space with the restriction of the usual distance, we easily see that
µ(B(x, 2r)) ≤ 4µ(B(x, r)) for every x ∈ X and every r > 0. Here B(y, s) is the open ball in [0, 1] centered at y ∈ X with
radius s > 0. Precisely, B(y, s) = (y − s, y + s) ∩ [0, 1]. Actually the doubling property can be deduced from the fact that
w(x) is an A2 Muckenhoupt weight. We shall introduce later these classes of densities. Notice that while wΨ is no longer
doubling,wΦ is. In fact

2
√
2wΨ (x) =


x−1/2 if 0 < x < 1/2,
x −

1
2

−1/2

if 1/2 < x < 1,

(see Fig. 2), and

2
√
2wΦ(x) =


x−1/2 if 0 < x < 1/2,
(1 − x)−1/2 if 1/2 < x < 1.

For our purposes, two facts deserve to be emphasized. First, these behaviors persist along the iterations SnΨ of SΨ and SnΦ
of SΦ (see Fig. 3). Second, the densities associated to the measures SnΦ(µ) are all A2-Muckenhoupt weights. Moreover, the A2
constants are bounded uniformly with respect to n.

After the original work by BenjaminMuckenhoupt contained in [1] (see also [2,3]) it is well known that theMuckenhoupt
condition on a density w reflects the behavior of the Hardy–Littlewood maximal operator on the spaces Lp(µ) with
dµ(x) = w(x)dx. Hence, it looks natural to ask whether the above observed behavior of Snφ(µ) can be predicted from the
analysis of Hardy–Littlewood maximal functions.
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Fig. 3. Densities for S2Ψ (µ) and S2Φ (µ).

To state our result in the setting defined by the IFS Φ on X = [0, 1], we start by some basic notation. For any Borel
measurable function f on X and any x ∈ X , set

Mf (x) = sup
r>0

1
λ(B(x, r))


B(x,r)

|f (y)| dy,

to denote the standard centered Hardy–Littlewood maximal function on X . Here, as before, λ denotes the one dimensional
Lebesgue measure on X and B(x, r) = (x − r, x + r) ∩ X, x ∈ X .

For a given (large) positive integer N , we may regard the set IN := {1, 2, . . . ,N} with the counting measure and the
usual distance inherited from R1, as a metric measure space. In such a setting the Hardy–Littlewood maximal operator is
well defined. In fact, for g a real function (finite sequence) defined on IN and let i ∈ IN , the Hardy–Littlewood maximal
function is given by

MNg(i) = sup
r>0

1
card(I(i, r))


j∈I(i,r)

|g(j)|,

where I(i, r) = (i − r, i + r) ∩ IN .
It is easy to see directly by the standard covering arguments or to deduce from the general setting of spaces of

homogeneous type, that the operators MN are uniformly of weak type (1, 1) and hence uniformly bounded on each
Lp(IN , card) for 1 < p ≤ ∞.

Notice that for each n ∈ N and for each j = 1, 2, 3, . . . , 2n there exists one and only one sequence {α1, . . . , αn} with
αi ∈ {1, 2} such that φα1 ◦ · · · ◦ φαn([0, 1]) =

 j−1
2n ,

j
2n

. In fact, it is enough to take αi = βi + 1, where βi, i = 1, . . . , n, are

the n first terms in the binary expansion of any number in
 j−1

2n ,
j
2n

. This fact allows us to write

[0, 1] =

2n
j=1


j − 1
2n

,
j
2n


=

2n
j=1

Xn
j =

2n
j=1

φn
j (X), with φn

j = φα1 ◦ · · · ◦ φαn .

To simplify our statement, let us introduce the following notation. For a given Borel measurable f on [0, 1] and a fixed
z ∈ [0, 1], we writeM(f ◦ φn)(z) to denote the sequence gz(j) = M(f ◦ φn

j )(z), for j ∈ I2n = {1, 2, 3, . . . , 2n
}.

Theorem 1. There exists a constant C such that the inequality

(Mf )(φn
i (z)) ≤ CM2n [M(f ◦ φn)(z)](i) (0.1)

holds for every i = 1, 2, 3, . . . , 2n, every n ∈ N, every measurable function f defined on [0, 1] and every z ∈ [0, 1].

Inequality (0.1) reads, somehow more explicitly

(Mf )(φn
i (z)) ≤ C sup

r>0

1
card(I(i, r))


j∈I(i,r)

M(f ◦ φn
j )(z).

Let us show here how to use (0.1) to prove that the Muckenhoupt classes are preserved along the Hutchinson orbits.
Following [1] (see also [3]) we say that a non-negative integrable function w defined on [0, 1] is an Ap = Ap([0, 1])
Muckenhoupt weight, with 1 < p < ∞, if there exists a constant C such that the inequality

B(x,r)
w(y) dy


B(x,r)

w
−

1
p−1 (y) dy

p−1

≤ C (λ(B(x, r)))p

holds for every x ∈ X and r > 0. Here B(x, r) and λ have the same meaning as in the definition of the operatorM .
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Corollary 2. If w ∈ Ap([0, 1]) and dν = w(x)dx, then there exists a constant C such that
[0,1]

|Mf |p dνn ≤ C


[0,1]
|f |p dνn, (0.2)

for every n ∈ N and every measurable function f , where νn = SnΦ(ν). Hence νn is absolutely continuous with respect to dx and its
Radon–Nikodym derivative belongs uniformly to Ap([0, 1]).

Proof. Notice first that with the above notation we have that dνn(x) = wn(x)dx with wn = w ◦ (φn
j )

−1 on
 j−1

2n ,
j
2n

, for

every j = 1, . . . , 2n. Hence for a given measurable function h we have
[0,1]

h dνn =

2n
i=1


Xn
i

h(z)w((φn
i )

−1(z)) dz =
1
2n

2n
i=1


X
h(φn

i (x))w(x) dx. (0.3)

To prove (0.2)we apply (0.3), (0.1), the uniform Lp boundedness ofM2n with the countingmeasure, the Lp(wdx) boundedness
ofM and (0.3) again, as follows.

[0,1]
|Mf |p dνn =

1
2n

2n
i=1


[0,1]

|Mf (φn
i (x))|

pw(x) dx

≤
C
2n

2n
i=1


[0,1]

M2n [M(f ◦ φn)(x)](i)
pw(x) dx

=
C
2n


[0,1]


2n
i=1

M2n [M(f ◦ φn)(x)](i)
pw(x) dx

≤
C
2n


[0,1]


2n
i=1

M(f ◦ φn
i )(x)

pw(x) dx
=

C
2n

2n
i=1


[0,1]

M(f ◦ φn
i )(x)

pw(x) dx
≤

C
2n

2n
i=1


[0,1]

(f ◦ φn
i )(x)

pw(x) dx
= C


[0,1]

|f |p dνn.

The constant C may change from line to line. The absolute continuity of νn and the uniform Muckenhoupt condition for its
Radon–Nikodym derivative follows from Muckenhoupt’s theorem and the fact that the constant C in the above inequality
does not depend on n and f . �

We shall obtain Theorem 1 as a consequence of the more general result contained in Theorem 3 which we state and
prove, after some notation, in Section 1. In Section 2 we generalize Corollary 2, and in Section 3 we exhibit examples of the
general results applied to some classical situations.

1. The main result

We shall describe the general setting from a somehow axiomatic point of view. The approach allows us to state and prove
the main result in a concise and quite general form containing many classical situations.

(A) The underlying space (X, d, µ). Let (X, d) be a compact metric space with diameter 1. Let µ be a Borel probability on X
such that the functions of r ∈ (0, 1] defined by µx(r) = µ(B(x, r)), x ∈ X , are uniformly equivalent to a positive power
of r . Precisely, there exist constants K1, K2 and γ > 0 such that the inequalities

K1rγ ≤ µx(r) ≤ K2rγ

hold for every x ∈ X and r ∈ (0, 1]. Sometimes this property is called Ahlfors condition or is described by saying that
(X, d, µ) is a normal space of dimension γ . In fact γ is the Hausdorff dimension of each ball in X . It is easy to see that if
(X, d, µ) is a normal space, then (X, d, µ) is a space of homogeneous type. This means that there exists a constant A ≥ 1
(called doubling constant) such that 0 < µx(2r) ≤ Aµx(r) < ∞ for every x ∈ X and every r > 0.
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(B) The family Φ of similitudes. A finite set Φ = {φi : X → X, i = 1, 2, . . . ,H} of contractive similitudes with the same
contraction rate is given. Precisely, each φi satisfies

d(φi(x), φi(y)) = βd(x, y)

for every x, y ∈ X and some constant 0 < β < 1. For n ∈ N, set In
= {1, 2, . . . ,H}

n. Given i = (i1, i2, . . . , in) ∈ In,
we denote with φn

i the composition φin ◦ φin−1 ◦ · · · ◦ φi2 ◦ φi1 . Then for any subset E of X we have φn
i (E) =

φin ◦ φin−1 ◦ · · · ◦ φi2 ◦ φi1


(E). Set Xn

i = φn
i (X) and Xn

=


i∈In X
n
i . We shall assume thatΦ satisfies:

(B1) Open Set Condition (OSC). There exists a non-empty open set U ⊂ X such that
H
i=1

φi(U) ⊆ U,

and φi(U) ∩ φj(U) = ∅ if i ≠ j. We shall say that U is a set for the OSC forΦ .
(B2) Adjacency. There exists a positive constant c such that the inclusion

B(φn
i (z), r) ∩ Xn

j ⊆ B(φn
j (z), cr) ∩ Xn

j
holds for every n ∈ N, every i, j ∈ In, every r > 0 and every z ∈ X .

To avoid dilations for the statement of the general result, we only remark at this point that the setting X = [0, 1]with the
usual distance and length, andΦ =


φ1(x) =

x
2 , φ2(x) = 1 −

x
2


presented in the introduction satisfies all these properties.

Notice also that the systemΨ =

ψ1(x) =

x
2 , ψ2(x) =

1
2 +

x
2


satisfies all the above properties except (B2), which does not

hold if n = 1 with i = 1, j = 2, z = 1 and r small. That is why we call it the ‘‘adjacency’’ property of the system.
We proceed to define precisely the three maximal operators involved. Let h be an integrable real function defined on X .

The Hardy–Littlewood centered maximal function associated to h is given by

Mh(x) = sup
r>0

1
µ(B(x, r))


B(x,r)

|h(y)| dµ(y).

To define a discrete version of the Hardy–Littlewood maximal operator, let us fix x0 ∈ U and for i, j ∈ In define
d̃(i, j) = d(φn

i (x0),φ
n
j (x0)). For n ∈ N, i ∈ In and r > 0, set B(i, r) to denote the d̃-ball of radius r in (In, d̃). More

precisely, B(i, r) = {j ∈ In
: d(φn

i (x0),φ
n
j (x0)) < r}. As our second operator, we shall consider a Hardy–Littlewood type

maximal function defined using the family B(i, r). Precisely, given a real function g defined on In,

Mng(i) = sup
r>0

1
card(B(i, r))


j∈B(i,r)

|g(j)|.

We have to point out that d̃ and hence the Mn’s depend on x0 ∈ U , but we shall fix it from now on.
To introduce the third Hardy–Littlewood maximal operator considered in this note, we shall make use of the natural

‘‘uniformly distributed’’ probability measure induced by µ on Xn given by

µn(E) =
1
Hn


j∈In

µ

(φn

j )
−1(E)


for E a Borel set in Xn. In other words, µn

= H−n
j∈In µ

n
j , with µn

j (E) = µ

(φn

j )
−1(E)


. The third maximal operator

involved in our main result is the Hardy–Littlewood operator on the space (Xn, d, µn). Precisely, for a Borel measurable
function f on Xn we define, for v ∈ Xn,

Mnf (v) = sup
r>0

1
µn(B(v, r))


B(v,r)

|f (y)| dµn(y).

Here B(v, r) is the d-ball in Xn. Notice thatM0 = M under the standard assumption X0
= X and µ0

= µ.

Theorem 3. There exists a geometric constant C such that the inequality

Mnf

φn

i (z)


≤ CMn

M(f ◦ φn)(z)


(i)

holds for every f ∈ L1(Xn, µn), z ∈ X, i ∈ In and n ∈ N, where M(f ◦ φn)(z) denotes the function g on In defined by
g(j) = M(f ◦ φn

j )(z).

Before proving Theorem 3 we shall collect in the next lemma some elementary properties of a system ((X, d, µ),Φ)
satisfying (A) and (B) above. Item (1) in Lemma 4 is contained in [4, Theorem 2.1(III)], and Item (2b) is contained in [5,
Lemma 2.4]. The proofs of (2a), (3)–(5) are given after the proof of Theorem 3.

Lemma 4. (1) The sequence {(Xn, d, µn) : n ∈ N} is a uniform family of spaces of homogeneous type. In other words, there
exists a constant Ã such that

0 < µn(B(x, 2r)) ≤ Ãµn(B(x, r))

for every r > 0, x ∈ Xn and n ∈ N.
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(2) Let x0 ∈ U be fixed, and for each n ∈ N we consider the set ∆n =

φn

j (x0) : j ∈ In

. Then

(a) for every n ∈ N we have that ∆n is a δβn-disperse set, with δ = dist(x0, ∂U). This means that d(φn
j (x0),φ

n
i (x0)) ≥ δβn

for every i ≠ j in In;
(b) {(∆n, d, card) : n ∈ N} is a sequence of spaces of homogeneous type with a uniform doubling constant A.

(3) Given a > 0, there exists a constant N = N(a) such that card(B(i, aβn)) ≤ N for every i ∈ In and every n ∈ N.
(4) For each n ∈ N we have that

µn(B(y, r)) ≥
K1

Hn

rγ

βγ n
,

for every 0 < r ≤ βn/2 and every y ∈ Xn.
(5) If h is an integrable real function on (X, µ) then for each n ∈ N and j ∈ In the function h ◦ φn

j is integrable on (X
n
j , µ

n
j ) and

X
h ◦ φn

j dµ =


Xn
j

h dµn
j .

Proof of Theorem 3. Fix n ∈ N, z ∈ X and i ∈ In. Notice that since φn
i (z) ∈ Xn,Mnf (φn

i (z)) is well defined for any
measurable function f on Xn. We shall estimate a general mean of the form

1
µn(B(φn

i (z), r))


B(φn

i (z),r)
|f (y)| dµn(y),

for 0 < r ≤ 1. Recall the fact that B(φn
i (z), r) is to be understood as the d-ball on Xn, or in an equivalent way one may think

that is the d-ball on X since µn is supported on Xn
⊆ X . Let us divide our analysis in two cases depending on the relative

sizes of r and βn.
Assume first that r ≤ 3βn. Let us start by estimating µn(B(φn

i (z), r)). Notice that

c1
Hn

rγ

βγ n
≤ µn(B(φn

i (z), r)),

for some constant c1. In fact, to estimate µn(B(φn
i (z), r)) we use property (4) in Lemma 4 when r ≤

βn

2 . If β
n

2 < r ≤ 3βn,
the estimates are trivial since

K1

Hn

rγ

6γβγ n
≤ µn(B(φn

i (z), r/6)) ≤ µn(B(φn
i (z), r)).

Then the desired inequality holds with c1 = min

K1,

K1
6γ


.

To estimate

B(φn

i (z),r)
|f (y)| dµn(y)we shall use the adjacency property forΦ . If In

(i,z,r) denotes the set of those j in In for
which Xn

j intersects B(φn
i (z), r), we have that

B(φn
i (z),r)

|f (y)| dµn(y) =
1
Hn


j∈In

(i,z,r)


B(φn

i (z),r)
|f (y)| dµn

j (y)

=
1
Hn


j∈In

(i,z,r)


B(φn

i (z),r)∩Xn
j

|f (y)| dµn
j (y).

Using the adjacency property (B2) ofΦ for the domain of integration in the above integral, we get that
B(φn

i (z),r)
|f (y)| dµn(y) ≤

1
Hn


j∈In

(i,z,r)


B(φn

j (z),cr)∩Xn
j

|f (y)| dµn
j (y).

Let us estimate any of the integrals in the last sum by ‘‘changing variables’’ in the sense of property (5) in Lemma 4. For
j ∈ In

(i,z,r) we have that
B(φn

j (z),cr)∩Xn
j

|f (y)| dµn
j (y) =


Xn
j

XB(φn
j (z),cr)

(y)|f (y)| dµn
j (y)

=


X

XB(φn
j (z),cr)


φn

j (u)
 f ◦ φn

j

(u)
 dµ(u)

=


B(z,crβ−n)

f ◦ φn
j
 dµ.
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Hence

1
µn(B(φn

i (z), r))


B(φn

i (z),r)
|f (y)| dµn(y) ≤

1
c1


j∈In

(i,z,r)

βγ n

rγ


B

z, cr
βn

 f ◦ φn
j
 dµ

≤
cγ K2

c1


j∈In

(i,z,r)

M(f ◦ φn
j )(z).

Notice now that In
(i,z,r) ⊆ B(i, 5βn). In fact, if j ∈ In is such that B(φn

i (z), r) ∩ Xn
j ≠ ∅, then there exists y ∈ Xn

j such that
d(φn

i (z), y) < r . Hence

d(φn
i (x0),φ

n
j (x0)) ≤ d(φn

i (x0),φ
n
i (z))+ d(φn

i (z), y)+ d(y,φn
j (x0))

< βn
+ r + βn

≤ 5βn.

From property (3) in Lemma 4 we also have that card(B(i, 5βn)) ≤ N for some constant N . So that

1
µn(B(φn

i (z), r))


B(φn

i (z),r)
|f (y)| dµn(y) ≤

Ncγ K2

c1card(B(i, 5βn))


j∈B(i,5βn)

M(f ◦ φn
j )(z)

≤ c−1
1 cγ K2NMn


M(f ◦ φn)(z)


(i).

Assume next that r > 3βn. Again we have to provide an adequate estimate for the mean value

1
µn(B(φn

i (z), r))


B(φn

i (z),r)
|f (y)| dµn(y).

Let us first get a lower bound for µn(B(φn
i (z), r)). From the definition of µn we see that

µn(B(φn
i (z), r)) =

1
Hn


j∈In

µ

(φn

j )
−1(B(φn

i (z), r))


≥
1
Hn

card

{j ∈ In

: Xn
j ⊆ B(φn

i (z), r)}

.

Let us observe that the dispersion property given in (2a) in Lemma 4 allows to regard the uniform homogeneity contained
in (2b) of this lemma, as equivalent to the uniform homogeneity of the sequence (In, d̃, card). Now, since in this case
B(i, r/3) ⊆ {j ∈ In

: Xn
j ⊆ B(φn

i (z), r)}, we get that

µn(B(φn
i (z), r)) ≥

1
Hn

card(B(i, r/3)) ≥
1

A3Hn
card(B(i, 2r)).

On the other hand
B(φn

i (z),r)
|f (y)| dµn(y) =

1
Hn


j∈In

(i,z,r)


B(φn

j (z),r)∩Xn
j

|f (y)| dµn
j (y)

≤
1
Hn


j∈In

(i,z,r)


Xn
j

|f (y)| dµn
j (y)

=
1
Hn


j∈In

(i,z,r)


X
|f ◦ φn

j | dµ

≤
1
Hn


j∈In

(i,z,r)

M(f ◦ φn
j )(z).

So that, since In
(i,z,r) ⊆ B(i, 2r), we have

1
µn(B(φn

i (z), r))


B(φn

i (z),r)
|f (y)| dµn(y) ≤

A3

card(B(i, 2r))


j∈B(i,2r)

M(f ◦ φn
j )(z)

≤ A3Mn

M(f ◦ φn)(z)


(i). �
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Proof of Lemma 4. As we already said the proof of (1) is contained in [4], and the proof of (2b) in [5].
Let us prove that the OSC implies (2a). In fact, take j, i ∈ {1, . . . ,H}

n with j ≠ i, and set xnj = φn
j (x0) and xni = φn

i (x0).
Since U is an open set, we have that B(x0, δ) ⊆ U , with δ = d(x0, ∂U). Then

B(xnj , δβ
n) = φn

j (B(x0, δ)) ⊆ φn
j (U),

B(xni , δβ
n) = φn

i (B(x0, δ)) ⊆ φn
i (U),

and since φn
j (U) and φn

i (U) are disjoint, we have B(xnj , δβ
n) ∩ B(xni , δβ

n) = ∅. This implies that d(xnj , x
n
i ) ≥ δβn.

The estimate in (3) is an immediate consequence of the results in [6]. Since the spaces (∆n, d, card) are uniformly of
homogeneous type and the set∆n is δβn-disperse, every d-ball of radius bounded above by a constant times βn has at most
N elements of ∆n, where N is independent of n and of the center of the given ball. In other words, there exists a constant
N = N(a) such that

card(B(i, aβn)) ≤ N

uniformly in n and i ∈ In.
To prove (4), fix n ∈ N and take y ∈ Xn. Let i ∈ In be such that y ∈ Xn

i . Since (φ
n
i )

−1(B(y, r)) = B

(φn

i )
−1(y), r

βn


, we

have that

µn(B(y, r)) =
1
Hn


j∈In

µ

(φn

j )
−1(B(y, r))


≥

1
Hn
µ


B

(φn

i )
−1(y),

r
βn


≥

K1

Hn

rγ

βγ n
.

The identity in (5) is a consequence of the fact that when h is the indicator function of a measurable set E, we have
X

XE

φn

j

dµ(x) = µ


(φn

j )
−1(E)


= µn

j (E) =


Xn
j

XE dµn
j . �

2. On the stability of Muckenhoupt classes

In the next result our setting is as in Section 1, in other words (X, d, µ) satisfies (A) andΦ = {φn
i : i ∈ In, n ∈ N} satisfies

(B). Given a Borel measure ν on X , we define for each n ∈ N

SnΦ(ν)(E) =
1
Hn


i∈In

ν


φn
i
−1

(E)

.

Theorem 5. If w ∈ Ap(X, d, µ) and dν = w dµ, then there exists a constant C such that
Xn

|Mnf |p dνn ≤ C

Xn

|f |p dνn, (2.1)

for every n ∈ N and every measurable function f in Xn, where νn = SnΦ(ν). Hence ν
n is absolutely continuous with respect to µn

and its Radon–Nikodym derivative belongs uniformly to Ap(Xn, d, µn).

Proof. Notice first that

νn(E) =
1
Hn


i∈In


X
(XE ◦ φn

i )(z)w(z) dµ(z).

Hence
Xn

g dνn =
1
Hn


i∈In


X
g(φn

i (z))w(z) dµ(z).

Then, using the above remark, Theorem 3, the uniform Lp boundedness of M2n with the counting measure and the Lp(wdµ)
boundedness ofM we obtain

Xn
|Mnf |p dνn =

1
Hn


i∈In


X

Mnf (φn
i (z))

pw(z) dµ(z)
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≤
C
Hn


i∈In


X

Mn

M(f ◦ φn)(z)


(i)
pw(z) dµ(z)

≤
C
Hn


X


i∈In

|M(f ◦ φn
i )|

pw(z) dµ(z)

≤
C
Hn


X


i∈In

|f ◦ φn
i |

pw(z) dµ(z)

= C

Xn

|f |p dνn.

Since from (1) in Lemma 4 we have that the spaces (Xn, d, µn) are uniformly spaces of homogeneous type, we can
conclude that νn is absolutely continuous with respect to µn and its Radon–Nikodym derivative belongs uniformly to
Ap(Xn, d, µn). �

3. Some examples

In this section we show how some classical fractals can be obtained through somehow non-standard IFSs satisfying the
adjacency property (B2).

The classical Sierpinski IFSs can be slightly modified in order to preserve the adjacency. For the Sierpinski gasket, the
usual IFS is Ψ = {ψ1, ψ2, ψ3}, with

ψ1(x, y) =
1
2
(x, y) , ψ2(x, y) =

1
2
(x + 1, y) , ψ3(x, y) =

1
2


x +

1
2
, y +

√
3
2


,

defined on the triangle X with vertices at a = (0, 0), b =


1/2,

√
3/2


and c = (1, 0).

If ρθ denotes the rotation of θ radians about the origin of R2 in the positive sense, we have that the IFS given by
Φ = {φ1, φ2, φ3}, where

φ1(x, y) =
1
2
(x, y) ,

φ2(x, y) =
1
2
(ρ4π/3(x, y))+ v,

φ3(x, y) =
1
2
(ρ2π/3(x, y))+ v,

with v =


3
4 ,

√
3
4


, satisfies the adjacency property, the OSC and gives rise to the standard Sierpinski triangle (see Fig. 4).

Property (B2) forΦ follows from the following lemma,which can be applied also to some other fractals like the Sierpinski
carpet after a redefinition of the IFS preserving adjacency.

Lemma 6. Let Φ = {φ1, . . . , φH} be a finite family of contractive similitudes on X with the same contraction rate β . Let us
assume that Φ satisfies the following properties:
(1) if x ∈ Xi ∩ Xj then d(x, φi(z)) = d(x, φj(z)) for every z ∈ X and every i, j ∈ {1, . . . ,H};
(2) for every z ∈ X and every r ≤ βn such that B(φn

i (z), r) ∩ Xn
j ≠ ∅, we have that Xn

i ∩ Xn
j ∩ B(φn

i (z), r) ≠ ∅.

Then for every i, j ∈ In and every n ∈ N, we have that
(i) if x ∈ Xn

i ∩ Xn
j then there exists x0 ∈ X such that x = φn

i (x0) = φn
j (x0);

(ii) if x ∈ Xn
i ∩ Xn

j then d(x,φn
i (z)) = d(x,φn

j (z)) for every z ∈ X;
(iii) B(φn

i (z), r) ∩ Xn
j ⊆ B(φn

j (z), 3r) ∩ Xn
j for every z ∈ X.

Proof. Let us prove (i) by induction on n. For n = 1, let us assume that x = φi(x0) = φj(x1) for some x0, x1 ∈ X . Applying
hypothesis (1) with z = x1 we have that d(x, φi(x1)) = d(x, φj(x1)) = 0. Then x = φi(x1), and we have φi(x1) = x = φi(x0).
Since φi is one to one we conclude that x0 = x1. Let us now show that if (i) holds for n then also holds for n + 1. In fact,
take x ∈ Xn+1

k ∩ Xn+1
ℓ . Then there exist i, j ∈ In, k, ℓ ∈ {1, . . . ,H} and x1, x2 ∈ X such that x = φn

i (φk(x1)) = φn
j (φℓ(x2)).

Since we are assuming (i) for n, there exists x0 ∈ X such that x = φn
i (x0) = φn

j (x0). Since φn
i and φn

j are one to one, we
have that x0 = φk(x1) = φℓ(x2). Then x0 ∈ Xk ∩ Xℓ, so that there existsx ∈ X such that x0 = φk(x ) = φℓ(x ). Hence
x = φn

i (φk(x )) = φn
j (φℓ(x )), which proves (i).

To prove (ii) we shall use (i) and the similarity condition of the IFS. Let us fix z ∈ X and x ∈ Xn
i ∩ Xn

j . Let x0 ∈ X such that
x = φn

i (x0) = φn
j (x0). Then

d(x,φn
i (z)) = d(φn

i (x0),φ
n
i (z)) = βnd(x0, z),
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Fig. 4. X1
=
3

i=1 φi(X) =
3

i=1 ψi(X).

and

d(x,φn
j (z)) = d(φn

j (x0),φ
n
j (z)) = βnd(x0, z),

so that d(x,φn
i (z)) = d(x,φn

j (z)), and we prove (ii).
To prove (iii), let us assume that B(φn

i (z), r) ∩ Xn
j ≠ ∅. If r > β−n the inclusion holds since diam(Xn

j ) = β−n

implies B(φn
j (z), 3r) ∩ Xn

j = Xn
j , so that we can assume r ≤ β−n. Fix y ∈ B(φn

i (z), r) ∩ Xn
j . From (2) there exists

x ∈ Xn
i ∩ Xn

j ∩ B(φn
i (z), r), and from (ii) we have that d(φn

i (z), x) = d(x,φn
j (z)). Then

d(y,φn
j (z)) ≤ d(y,φn

i (z))+ d(φn
i (z), x)+ d(x,φn

j (z))

= d(y,φn
i (z))+ d(φn

i (z), x)+ d(x,φn
i (z))

< r + r + r
= 3r. �

With this lemma, in order to prove thatΦ satisfies the required properties to apply Theorem3 to the Sierpinski gasket, we
only need to check (1) and (2). Property (1) follows immediately. To verify (2) we only have to observe that for r ≤ 2−n, if a
ball intersects two components of Xn and it is centered in one of them, then these two components share a vertex belonging
to that ball.

Let us finally observe and depict an illustration of Theorem 5 for the Sierpinski carpet. Let Φ be the classical IFS for the
Sierpinski carpet, and letΦ = {φi : 1 ≤ i ≤ 8} be given by

φ1(x, y) =
1
3
(x, y) , φ2(x, y) = T 2

3 ,0
(S2(φ1(x, y))),

φ3(x, y) = T 2
3 ,0
(φ1(x, y)), φ4(x, y) = T0, 23 (S1(φ1(x, y))),

φ5(x, y) = T 2
3 ,

2
3
(S1(φ1(x, y))), φ6(x, y) = T0, 23 (φ1(x, y)),

φ7(x, y) = T 2
3 ,

2
3
(S2(φ1(x, y))), φ8(x, y) = T 2

3 ,
2
3
(φ1(x, y)),

defined on the unit square X of R2 with vertices (0, 0), (1, 0), (1, 1) and (0, 1), where Ta,b(x, y) = (x + a, y + b),
S1(x, y) = (x,−y) and S2(x, y) = (−x, y). The basic weight function considered is w(x, y) = (x2 + y2)−1/4 and the basic
measure is dµ = dxdy. The following figure illustrate the Radon–Nikodym derivativesw1

Ψ andw1
Φ of ν1Ψ and ν1Φ .
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