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a b s t r a c t

We establish the algebraic reflexivity of three isometry groups of operator structures: the
group of all surjective isometries on the unitary group, the group of all surjective isometries
on the set of all positive invertible operators equipped with the Thompson metric, and
the group of all surjective isometries on the general linear group of B(H), the operator
algebra over a complex infinite dimensional separable Hilbert space H . We show that
those isometry groups coincide with certain groups of automorphisms of corresponding
structures and hence we also obtain the reflexivity of some automorphism groups.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction and statement of the main result

In the past few decades considerable work has been done related to local maps on operator algebras. The main problem
in this area of research is to answer the question whether the local actions of important classes of transformations
(e.g., derivations, or automorphisms, or isometries, etc.) on a given operator algebra completely determines the class under
consideration.

The originators of investigations of this kind are Kadison, Larson and Sourour [16–18]. Motivated by certain problems
concerning the Hochschild cohomology of operator algebras, in [16] Kadison studied local derivations on a von Neumann
algebra R. A linear map δ : R → R is called a local derivation if at each point in the algebra δ coincides with a derivation
(that may vary from point to point). More precisely, the assumption is that for every a ∈ R there exists a derivation
δa : R → R such that δ(a) = δa(a). It was proved in [16] that in the above setting, every continuous local derivation
is a (global) derivation (in fact, the result in [16] was deduced in a more general context). Larson and Sourour proved in [18]
that similar conclusion holds for local derivations of the full operator algebra B(X) on a Banach space X (even without
assuming continuity).

Beside derivations, there are other important classes of transformations on operator algebras which also deserve
attention from the point of view described above. We mention automorphism groups and isometry groups. The former
groups reflect the algebraic properties of the underlying algebras while the latter ones reflect their geometrical features. In
[17, Some concluding Remark 5, p. 298] Larson initiated the study of local automorphisms of Banach algebras. The definition
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is straightforward: a local automorphism is a linear map φ on a given Banach algebra A with the property that for every
x ∈ A there exists an (algebra) automorphism φx of A such that φ(x) = φx(x). In the paper [18], Larson and Sourour
proved that if X is an infinite dimensional Banach space, then every surjective local automorphism of the algebra B(X) is
an automorphism. In [6], Brešar and Šemrl showed that in the case of an infinite dimensional separable Hilbert space H the
assumption of surjectivity can be relaxed, i.e. every local automorphism of B(H) is an automorphism.

The above mentioned results concern local maps on linear structures and can be put into a general common frame as
follows. Given a linear algebraic structure V (e.g., an operator algebra) and a collection E of its linear transformations, the
local maps φ above are transformations on V which are linear and belong locally to E . This means that for every x ∈ V there
exists a transformation φx ∈ E such that φ(x) = φx(x). The presented results show that in some important cases, for several
particular classes of transformations the corresponding local maps are all ‘global’, i.e. they in fact belong to the given class
of transformations. A number of related papers on this area of research are listed on page 23 in [22].

It has been a natural question how those investigations could be extended to non-linear structures. Probably the most
useful idea is due to Šemrl [25] and it is connected to the concepts of 2-locality and 2-local maps. LetA be anymathematical
structure and E a given class of transformations on A. We say that a map φ : A → A belongs 2-locally to E if for any pair
x, y ∈ A there is an element φ(x,y) of E for which φ(x) = φ(x,y)(x) and φ(y) = φ(x,y)(y). Adopting the notion of algebraic
reflexivity for the present setting that has previously been used in the literature in relation with linear (1-)local maps, we
call the class E algebraically reflexive if for every map φ that belongs 2-locally to E we necessarily have φ ∈ E . Observe that
here we do not assume any sort of linearity.

If, for example,E is the group of certain automorphisms ofA, themapswhich belong 2-locally toE are naturally termed as
2-local automorphisms. In a similar way one can speak of 2-local isometries, 2-local derivations, etc. The main result in [25]
says that if H is an infinite dimensional separable Hilbert space, then every 2-local automorphism of B(H) (more precisely,
every map which belongs 2-locally to the group of all algebra automorphisms of B(H)) is an (algebra) automorphism. This
nice and surprising observation has motivated further investigations. One can find corresponding results and references in
the book [22, Sections 3.4, 3.5 and see also p. 24 in the Introduction]. Formore recent results we refer to the papers [1,4,9,14].
In fact, although one of the main advantages of the concept of 2-locality is that the reflexivity of classes of transformations
can be investigated in non-linear settings, in all the latter four papers the authors considered 2-local isometries, 2-local
automorphisms, etc. on linear structures. Unlike those investigations, in the present paper we study reflexivity problems on
structures of linear operators which are definitely non-linear. These structures are groups or certain substructures of groups
of operators acting on a Hilbert space. Our main aim is to explore the reflexivity of isometry and automorphism groups of
those structures.

Given a metric space G, by an isometry of G we mean a distance preserving self-map of G. The set of all surjective
isometries of G forms a group, it is called the isometry group of G and is denoted by I(G). A 2-local isometry on G is a
mapping φ : G → G such that for every pair a, b ∈ G there exists a surjective isometryΦ(a,b) : G → G such that

φ(a) = Φ(a,b)(a) and φ(b) = Φ(a,b)(b).

The algebraic reflexivity question for the isometry group I(G) that we are considering in this paper asks whether every
2-local isometry on G is a surjective isometry, i.e. if every map that belongs 2-locally to I(G) necessarily belongs (globally)
to I(G).

Let H be a complex infinite dimensional separable Hilbert space and B(H) the algebra of all bounded operators on H .
Below we establish the algebraic reflexivity of the isometry groups of three important substructures of B(H):

(a) The unitary group U(H) of B(H)with the metric induced by the operator norm;
(b) The set B(H)−1

+ of all positive invertible operators on H with the Thompson metric; and
(c) The general linear group GL(H) of B(H)with the metric induced by the operator norm.

(Observe that by the polar decomposition theorem, the last group is in a sense generated by the previous two structures.)
The first and the third metric groups are widely studied in detail, they need no further explanation. As for the second one,
we note that the importance of the Thompson metric on B(H)−1

+ arises from the fact that it coincides with the geodesic
distance induced by the natural Finsler geometrical structure on B(H)−1

+ . In this metric the distance between the elements

A, B ∈ B(H)−1
+ is equal to

log√
A

−1
B
√
A

−1
. The Thompson metric has a wide range of applications in different areas of

mathematics (for more information we refer the reader to [23] and the references therein).
Our main theorem can be formulated in short as follows.

Theorem 1.1. Let H be a complex infinite dimensional separable Hilbert space and let G be either U(H), B(H)−1
+ , or GL(H).

The isometry group of G is algebraically reflexive.

A fundamental requirement for addressing the algebraic reflexivity of those isometry groups is the following
characterization of the surjective isometries supported on each setting.

Theorem 1.2 (See [11, Theorem 8], [23, Theorem 1] and [12, Corollary 2.3]). Let H be a complex Hilbert space.
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(a) A map Φ : U(H) → U(H) is a surjective isometry if and only if there exist V and W both unitary operators or both anti-
unitary operators on H such that

(⋆)Φ(A) = VAW , ∀ A ∈ U(H) or Φ(A) = VA∗W , ∀ A ∈ U(H).

(b) A map Φ : B(H)−1
+ → B(H)−1

+ is a surjective (Thompson) isometry if and only if there exists T a linear or conjugate linear
bounded and invertible operator on H such that

(⋆⋆)Φ(A) = TAT ∗, ∀ A ∈ B(H)−1
+

or Φ(A) = TA−1T ∗, ∀ A ∈ B(H)−1
+
.

(c) A map Φ : GL(H) → GL(H) is a surjective isometry if and only if there exist V and W both unitary operators or both
anti-unitary operators on H such that

(⋆ ⋆ ⋆)Φ(A) = VAW , ∀ A ∈ GL(H) or Φ(A) = VA∗W , ∀ A ∈ GL(H).

It is obviously true that any 2-local isometry of a metric space is an isometry, so one may think that in order to show
the algebraic reflexivity of the isometry group we only need to check the surjectivity of all 2-local isometries. However, a
short consideration can justify that this is not the proper way to prove such results. First, we remark that the isometry group
need not to be reflexive even in such particular cases as represented by general C∗-algebras. In [10] Györy showed that for
a non-countable discrete topological space X , the commutative C∗-algebra C0(X) of all continuous complex functions on X
that vanish at infinity has an even linear 2-local isometry which is not a surjective isometry. As we shall see below, the real
content of the reflexivity result in Theorem 1.1 is that if a map belongs 2-locally to any of the above described collections
(⋆), or (⋆⋆), or (⋆ ⋆ ⋆) of transformations, then it necessarily belongs globally to that collection. Let us go a bit further in
explanation. We show that the above collections of transformations (hence also the corresponding isometry groups) are
in fact groups of automorphisms of certain topological algebraic structures. To see this, first observe that the assignment
(A, B) → AB−1A defines an operation both on U(H) and on B(H)−1

+ and the correspondence (A, B) → AB∗A makes GL(H)
an algebraic structure. The next result shows that the groups of all continuous, resp. uniformly continuous automorphisms,
coincide with the considered isometry groups of U(H), B(H)−1

+ , resp. GL(H). Observe that it is not true in general that
2-local morphisms of a (binary) algebraic structure are all morphisms.

Theorem 1.3. Let H be a complex infinite dimensional separable Hilbert space.

Let Φ : U(H) → U(H) be a transformation. ThenΦ is a continuous bijective map satisfying

(i)Φ(AB−1A) = Φ(A)Φ(B)−1Φ(A), ∀ A, B ∈ U(H)

if and only if there exist V and W both unitary operators or both anti-unitary operators on H such that

Φ(A) = VAW , ∀ A ∈ U(H) or Φ(A) = VA−1W , ∀ A ∈ U(H).

The transformation Ψ : B(H)−1
+ → B(H)−1

+ is a continuous (in the operator norm) bijection for which

(ii) Ψ (AB−1A) = Ψ (A)Ψ (B)−1Ψ (A), ∀ A, B ∈ B(H)−1
+

if and only if there exists T a linear or conjugate linear bounded and invertible operator on H such that

Ψ (A) = TAT ∗, ∀ A ∈ B(H)−1
+

or Ψ (A) = TA−1T ∗, ∀ A ∈ B(H)−1
+
.

The mapΦ : GL(H) → GL(H) is a uniformly continuous bijection satisfying

(iii)Φ(AB∗A) = Φ(A)Φ(B)∗Φ(A), ∀ A, B ∈ GL(H)

if and only if there exist V and W both unitary operators or both anti-unitary operators on H such that

Φ(A) = VAW , ∀ A ∈ GL(H) or Φ(A) = VA∗W , ∀ A ∈ GL(H).

It is now obvious that our reflexivity results in Theorem 1.1 originally stated for isometry groups can also be viewed as
statements on the algebraic reflexivity of the above described isomorphism groups.

The following sections are devoted to the proofs of our results. Before going into the details we present the notation,
some concepts and basic observations we shall use in the rest of the paper. An anti-unitary operator on a Hilbert space H
is a surjective conjugate linear isometry. By a projection on H we mean a self-adjoint idempotent operator P ∈ B(H). We
denote by P(H) the set of all projections on H and by P1(H) the set of all rank-1 elements of P(H). For any pair x, y ∈ H
of vectors the symbol x ⊗ y stands for the rank at most one operator defined by (x ⊗ y)z = ⟨z, y⟩x, z ∈ H . The self-adjoint
elements of U(H) are called symmetries. We denote this collection by S(H), i.e. S(H) = {T ∈ U(H) : T ∗

= T }. It is clear
that a unitary operator U is a symmetry if and only if it can be written as U = I − 2P with some projection P ∈ P(H). The
spectrum of any operator A ∈ B(H) is denoted by σ(A) and tr stands for the usual trace functional.

Observe that the composition of a 2-local isometrywith a surjective isometry is also a 2-local isometry. Therefore,without
loss of generality, one may assume that a 2-local isometry φ fixes any two given elements of the underlying space.
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2. The algebraic reflexivity of the isometry group of U(H)

In this section we prove the following statement.

Theorem 2.1. Let H be a complex infinite dimensional separable Hilbert space. The isometry group of U(H) is algebraically
reflexive.

According to the basic observation given above, a 2-local isometry of U(H) can be assumed to fix any two given elements
of U(H). Throughout this section, φ represents a 2-local isometry on U(H) such that φ(I) = I.

We first claim that φ preservers symmetries.

Lemma 2.2. We have φ(S(H)) ⊆ S(H).

Proof. Let T be a symmetry. The 2-local condition onφ applied to the pair (I, T ) implies the existence of a surjective isometry
Φ(I,T ) such that Φ(I,T )(I) = φ(I) = I and Φ(I,T )(T ) = φ(T ). An application of Theorem 1.2-(a) assures the existence of a
unitary or an anti-unitary operator V such that φ(T ) = VTV ∗. Therefore φ(T ) ∈ S(H). �

It follows from the Lemma 2.2 that φ induces a natural map Ψ : P(H) → P(H) given by

Ψ (P) =
I − φ(I − 2P)

2
, ∀ P ∈ P(H).

The next lemma states some properties of Ψ that will be employed in forthcoming steps. In particular, it asserts that the
restriction ψ of Ψ onto P1(H) is a Wigner transformation meaning that ψ : P1(H) → P1(H) and tr(PQ ) = tr(ψ(P)ψ(Q ))
for any P,Q ∈ P1(H).

By a variant of Wigner’s famous theorem on quantum mechanical symmetry transformations (see, e.g., [22, Theorem
2.1.4]) we have the following result.

Theorem 2.3. Every Wigner transformation ϕ : P1(H) → P1(H) is of the form

ϕ(P) = UPU∗, ∀ P ∈ P1(H)

with some linear or conjugate linear isometry U on H .

We now have the following

Lemma 2.4. If P ∈ P(H) is a projection of finite rank, thenΨ (P) is a projection of equal rank. If P and Q are projections of rank
one, then tr(PQ ) = tr(ψ(P)ψ(Q )). Therefore, ψ is a Wigner transformation and hence there exists a linear or conjugate linear
isometry U on H such that

ψ(P) = UPU∗, ∀P ∈ P1(H).

Proof. If P is a projection then the 2-local condition on φ applied to the pair (I, I − 2P) implies the existence of a unitary or
an anti-unitary operator V such that φ(I − 2P) = V (I − 2P)V ∗. Therefore Ψ (P) = VPV ∗ which has the same rank as P . It
clearly follows that ψ : P1(H) → P1(H).

Since φ is a 2-local isometry, it is an isometry. This easily implies that both Ψ and ψ are isometries (with respect to the
operator norm). We refer the reader to an argument in [22, p. 127] that shows that ∥P − Q∥ =

√
1 − tr(PQ ), where P and

Q are arbitrary projections of rank one. This implies that ψ preserves the quantity tr(PQ ) between projections of rank one,
i.e. we have tr(PQ ) = tr(ψ(P)ψ(Q )). Hence ψ is a Wigner transformation and the last statement follows from the above
mentioned variant of Wigner’s theorem. �

We shall make use of the following simple auxiliary result concerning rank-1 projections.

Lemma 2.5. Let P0, P1 and P2 be projections on H of rank one, and let α, β, γ , and η be complex numbers such that α · β ≠ 0.
If

αP0 + βP1 + γ P0P1 = ηP2, (1)

then P0 = P1.

Proof. There exist unit vectors u, v and w in H such that P0 = u ⊗ u, P1 = v ⊗ v and P2 = w ⊗ w.We observe that if u
and v are linearly dependent then P0 = P1. If u and v are linearly independent we choose z, a vector orthogonal to v and
not orthogonal to u. Then the equation displayed in (1), applied to z, yields

α⟨z, u⟩u = η⟨z, w⟩w.

Since α ≠ 0 we conclude that u is in the range of P2 and then P0 = P2. Therefore (1) reduces to

βP1 + γ P0P1 = (η − α)P0.
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If α ≠ η, every nonzero vector z orthogonal to the range of P1 is also orthogonal to the range of P0. This implies that P0 = P1,
since P0 and P1 are projections of rank one. If α = η then βP1 + γ P0P1 = 0 and β · γ ≠ 0. Hence every vector in the range
of P1 is also in the range of P0 implying P0 = P1 again. This completes the proof. �

For an easier exposition we shall need the following notation. For any operator A we write A(∗) to denote either A or A∗.
Similarly, for an invertible A we write A(−1) to denote either A or A−1. We use similar notation for complex numbers, λ(∗)
represents either λ or λ, likewise, if λ ≠ 0, then λ(−1) represents either λ or 1

λ
.

The next lemma establishes the form of the 2-local isometry φ on the most simple elements of U(H).

Lemma 2.6. If P is a projection of rank one and λ is a modulus one complex number, then

φ(P⊥
+ λP) = I + (λ− 1)(∗)ψ(P).

Proof. The statement is clearly true for λ = 1 since φ(I) = I . Assume λ ≠ 1. The 2-local condition on φ applied to the pairs
(P⊥

+ λP, P⊥
− P) and (P⊥

+ λP, I) of unitary operators implies the existence of:

V0 andW0 both unitary operators or both anti-unitary operators on H such that

φ(P⊥
+ λP) = V0(P⊥

+ λP)(∗)W0 and φ(P⊥
− P) = V0(P⊥

− P)W0; (2)

V1 unitary or anti-unitary operator on H such that

φ(P⊥
+ λP) = V1(P⊥

+ λP)(∗)V ∗

1 . (3)

Thus, from the equations displayed in (2) we get

φ(P⊥
+ λP)φ(P⊥

− P)∗ = V0(P⊥
+ λ(∗)P)(P⊥

− P)V ∗

0

= V0(P⊥
− λ(∗)P)V ∗

0

= V0(I − (λ(∗) + 1)P)V ∗

0

= I − (λ(∗) + 1)P2,

with P2 = V0PV ∗

0 . On the other hand, since P⊥
− P is a symmetry, from (3) we get

φ(P⊥
+ λP)φ(P⊥

− P)∗ =

V1(P⊥

+ λP)(∗)V ∗

1


[I − 2ψ(P)]

=

I + (λ− 1)(∗)V1PV ∗

1


[I − 2ψ(P)]

= I − 2ψ(P)+ (λ− 1)(∗)V1PV ∗

1 − 2(λ− 1)(∗)V1PV ∗

1 ψ(P)

= I − 2P1 + (λ− 1)(∗)P0 − 2(λ− 1)(∗)P0 P1,

with P1 = ψ(P) and P0 = V1PV ∗

1 . Therefore

2P1 − (λ− 1)(∗)P0 + 2(λ− 1)(∗)P0 P1 = (λ(∗) + 1)P2.

Lemma 2.5 implies that P0 = P1 and we have

φ(P⊥
+ λP) = V1(P⊥

+ λP)(∗)V ∗

1 = I + (λ− 1)(∗)V1PV ∗

1 = I + (λ− 1)(∗)ψ(P).

This completes the proof. �

The following lemma will be employed in the proofs of forthcoming statements.

Lemma 2.7. Let X be an invertible operator in B(H) and let u, v be vectors in H . Then Y = X + u ⊗ v is invertible if and only
if ⟨X−1u, v⟩ + 1 ≠ 0.

Proof. In the first version of the manuscript the assertion was borrowed from [13, see Lemma 2.7 there]. The referee has
kindly pointed out that the above statement can be deduced very easily as follows. The operator Y is invertible if and only
if I + X−1u ⊗ v is invertible. This is equivalent to −1 ∉ σ(X−1u ⊗ v)which is the case if and only if −1 ≠ ⟨X−1u, v⟩. �

In the sequel we shall need a particular class of unitary operators with diagonal structure relative to a family of pairwise
orthogonal projections of rank one with sum equal to I . The construction of this class is as follows.

We first observe that the spectral theorem implies that the set Uf of all finite spectrum operators in U(H) is uniformly
dense. Let us now consider the set of all elements W of Uf with the property that λ ∈ σ(W ) implies λ ∉ σ(W ) (this set is
obviously dense inUf ). For any suchW we canwrite σ(W ) = {c1, c2, . . . , ck}where 0 < |1−c1| < |1−c2| < · · · < |1−ck|.
Clearly, W has the form

W =

k
i=1

ci Pi
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with {Pi}i=1, ..., k representing a family of pairwise orthogonal projections with sum equal to the identity, i.e.
k

i=1 Pi = I .
The range of each Pi is a closed subspace of H , hence it has an orthonormal basis. We associate with each basis vector the
rank-one projection onto the one-dimensional subspace it spans in H . We enumerate these projections via an index set Ni
with cardinality equal to the rank of Pi and obtain


j∈Ni

P i
j = Pi. We now attach to each P i

j a modulus one complex number
λij (close enough to cj) in the following way: For every i < i′, and k1, k2 ∈ Ni with k1 < k2 and l1, l2 ∈ Ni′ with l1 < l2 we
have

0 < |1 − λik1 | < |1 − λik2 | < |1 − ci| < |1 − λi
′

l1 | < |1 − λi
′

l2 | < |1 − ci′ |.

Finally, we define the operator A ∈ U(H) by

A =

k
i=1


j∈Ni

λijP
i
j


.

We denote the class of all unitary operators A obtained in that way by D(H). It is apparent that D(H) is dense in U(H).
In the main step that follows we describe the action of φ on the collection D(H).

Lemma 2.8. The linear or conjugate linear isometry U that appears in Lemma 2.4 is either a unitary or an anti-unitary operator
on H and φ(A) = UA(∗)U∗, for every A in D(H).

Proof. Select an operator A from D(H)which is of the form

A =

k
i=1


j∈Ni

λijP
i
j


,

where {P i
j } and {λij} are as described above.

For the sake of simplicity assume k = 2 and index sets N1 and N2 are countably infinite. The general case would follow
similar steps. So we can write

A =

∞
n=1

λnPn +

∞
n=1

µnQn,

where {Pn,Qm}(n,m)∈N×N is a family of pairwise orthogonal rank one projections with sum equal to I, {λn}n and {µn}n are
sequences of scalars of modulus 1 close enough to certain c1 and c2, respectively. In addition, the following inequalities also
hold:

0 < |λ1 − 1| < |λ2 − 1| < · · · < |c1 − 1| < |µ1 − 1| < |µ2 − 1| < · · · < |c2 − 1|.

We represent Pn by en ⊗ en and Qn by e′
n ⊗ e′

n, with en and e′
n denoting unit vectors in the range of Pn and in the range of Qn,

respectively.
We set A1 = I + (λ1 − 1)P1. Lemma 2.6 says that

φ(A1) = I + (λ1 − 1)(∗)ψ(P1).

The 2-local condition onφ applied to the pair (A, A1) implies the existence of V1 andW1, both unitary or both anti-unitary
operators, such that

φ(A) = V1A(∗)W1 and φ(A1) = V1A
(∗)
1 W1.

We recall that the superscript (∗) over an operator represents either the operator or its adjoint. Moreover, the 2-local
condition on φ in the above displayed two formulas implies that either A(∗) = A in both places or A(∗) = A∗ in both places.
We conclude that

φ(A)− φ(A1) = V1[A − A1]
(∗)W1.

Clearly, A − A1 is not invertible which implies that V1[A − A1]
(∗)W1 is also not invertible.

We now apply the 2-local property of φ to the pair (A, I) and obtain

φ(A) = V0A(∗)V ∗

0 , (4)

with V0 a unitary or an anti-unitary operator on H .
From (2) and (4), using Lemma 2.6 we get

V1[A − A1]
(∗)W1 = φ(A)− φ(A1) = V0[A(∗) − I]V ∗

0 − (λ1 − 1)(∗)ψ(P1).

Since V1[A − A1]
(∗)W1 is not invertible and V0[A(∗) − I]V ∗

0 is invertible, Lemma 2.7 implies that

(λ1 − 1)(∗)⟨[V0[A(∗) − I]V ∗

0 ]
−1v1, v1⟩ = 1,
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with v1 a unit vector such that ψ(P1) = v1 ⊗ v1. Equivalently, we write
∞
n=1

1
(λn − 1)(∗)

P ′

nv1 +

∞
n=1

1
(µn − 1)(∗)

Q ′

nv1, v1


=

1
(λ1 − 1)(∗)

,

with P ′
n = V0PnV ∗

0 and Q ′
n = V0QnV ∗

0 . Therefore

∞
n=1

1
(λn − 1)(∗)

∥P ′

n v1∥
2
+

∞
n=1

1
(µn − 1)(∗)

∥Q ′

nv1∥
2

=
1

(λ1 − 1)(∗)
. (5)

Since ∥v1∥ = 1,


∞

n=1 ∥P ′
n v1∥

2
+


∞

n=1 ∥Q ′
nv1∥

2
= 1, |λ1 −1| < |λn −1| for all n ≥ 2 and |λ1 −1| < |µm −1| for allm ≥ 1,

the equation displayed in (5) implies that P ′
nv1 = 0 for all n > 1,Q ′

nv1 = 0 for all n ≥ 1, and hence we have P ′

1v1 = αv1,
with α a scalar of modulus 1. Therefore ψ(P1) = P ′

1.
We now consider A2 = I + (λ2 − 1)P2. Lemma 2.6 implies that

φ(A2) = I + (λ2 − 1)(∗)ψ(P2).

We setψ(P2) = v2 ⊗ v2, with v2 a unit vector in the range ofψ(P2). Lemma 2.4 implies thatψ(P1) andψ(P2) are mutually
orthogonal and hence ψ(P1)v2 = 0. The proof proceeds as before. The 2-local condition on φ applied to (A, A2) implies the
existence of V2 andW2, both unitary or both anti-unitary operators, such that

V2[A − A2]
(∗)W2 = φ(A)− φ(A2) = (φ(A)− I)− (λ2 − 1)(∗)ψ(P2).

Since A − A2 is not invertible and φ(A)− I = V0[A(∗) − I]V ∗

0 is invertible, Lemma 2.7 implies

(λ2 − 1)(∗)⟨[V0[A(∗) − I]V ∗

0 ]
−1v2, v2⟩ = 1,

equivalently
∞
n=1

1
(λn − 1)(∗)

P ′

nv2 +

∞
n=1

1
(µn − 1)(∗)

Q ′

nv2, v2


=

1
(λ2 − 1)(∗)

.

Since P ′

1v2 = ψ(P1)v2 = 0, the same reasoning applied in the previous step shows that we necessarily have ψ(P2) = P ′

2.
Inductively we prove that ψ(Pn) = P ′

n, for all n ∈ N. Next, let B1 = I + (µ1 − 1)Q1 and ψ(Q1) = u1 ⊗ u1. Lemma 2.4
implies that ψ(Pn)u1 = 0, for all n, and from Lemma 2.6 we get φ(B1) = I + (µ1 − 1)(∗)ψ(Q1). As before we conclude that
ψ(Q1) = Q ′

1 and inductively we prove thatψ(Qn) = Q ′
n holds for all n ≥ 1. By its definition the family {P ′

n,Q
′
m} of pairwise

orthogonal rank-one projections is complete, i.e., its sum is equal to I . Therefore {ψ(Pn), ψ(Qm)} = {UPnU∗, UQmU∗
} is also

complete implying that U is a unitary or an anti-unitary operator on H .
Finally, since A =


∞

n=1 λnPn +


∞

n=1 µnQn, the equation displayed in (4) becomes

φ(A) =

∞
n=1

λ(∗)n V0PnV ∗

0 +

∞
n=1

µ(∗)n V0QnV ∗

0

=

∞
n=1

λ(∗)n P ′

n +

∞
n=1

µ(∗)n Q ′

n

=

∞
n=1

λ(∗)n ψ(Pn)+

∞
n=1

µ(∗)n ψ(Qn)

=

∞
n=1

λ(∗)n UPnU∗
+

∞
n=1

µ(∗)n UQnU∗

= U


∞
n=1

λnPn +

∞
n=1

µnQn

(∗)
U∗.

Then φ(A) = UA(∗)U∗, which completes the proof. �

We can now easily complete the proof of the theorem in this section.

Proof of Theorem 2.1. Since φ is an isometry and D(H) is dense in U(H), it easily follows from Lemma 2.8 that for every
B ∈ U(H), we have either φ(B) = UBU∗ or φ(B) = UB∗U∗. It remains to show that the appearance of the adjoint does not
depend on B. To see this first observe that by the 2-local condition on φ, for every T ∈ U(H) we have φ(iT ) = ±iφ(T ).
The connectedness of the metric space U(H) implies that either φ(iT ) = iφ(T ) for every T ∈ U(H), or φ(iT ) = −iφ(T ) for
every T ∈ U(H).We claim that for every B ∈ U(H)we have φ(B) = UBU∗ or, for every B ∈ U(H)we have φ(B) = UB∗U∗.
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The proof would consist of several cases. We present the details for U unitary and φ(iT ) = iφ(T ), for every T ∈ U(H).
Given B ∈ U(H) which is non skew-symmetric (B∗

≠ −B) we show that φ(B) = UBU∗. To see this, we recall that
φ(iB) = U(iB)(∗)U∗, and also that φ(iB) = iφ(B). If φ(iB) = U(iB)∗U∗

= −iUB∗U∗ then φ(B) = −UB∗U∗ which contradicts
both possibilities φ(B) = UBU∗ and φ(B) = UB∗U∗. Therefore φ(iB) = U(iB)U∗, and hence φ(B) = UBU∗. Since the set of all
non skew-symmetric B’s is dense in U(H) and φ is an isometry, we are done in the present case. The remaining cases are:
U is unitary and φ(iT ) = −iφ(T ) for every T ∈ U(H);U is anti-unitary and φ(iT ) = iφ(T ) for every T ∈ U(H); and U is
anti-unitary and φ(iT ) = −iφ(T ) for every T ∈ U(H). A similar analysis leads to φ(B) = UB∗U∗, for every B ∈ U(H) in the
first two cases and φ(B) = UBU∗, for every B ∈ U(H) in the last case. �

3. The algebraic reflexivity of the Thompson isometry group

In this section we establish the algebraic reflexivity of the group of all Thompson isometries of the space B(H)−1
+ of

invertible positive operators on the complex infinite dimensional separable Hilbert space H . The Thompson metric (also
called Thompson part metric) can be defined in a rather general setting involving normed linear spaces and certain closed
cones, see [26]. This metric has a wide range of applications from non-linear integral equations, linear operator equations,
ordinary differential equations to optimal filtering and beyond. Following that general approach, the definition of the
Thompson metric dT for the cone B(H)−1

+ would read

dT (A, B) = logmax{M(A/B),M(B/A)}, A, B ∈ B(H)−1
+
,

whereM(X/Y ) = inf{t > 0 : X ≤ tY } for any X, Y ∈ B(H)−1
+ . It is not difficult to see that dT (A, B) can be rewritten as

dT (A, B) =

log √A
−1

B
√
A

−1 , A, B ∈ B(H)−1
+

(see, e.g., [23]).
In the case of B(H)−1

+ , the Thompsonmetric has important differential geometrical connections. To see this, observe that
B(H)−1

+ is an open subset of the Banach space B(H)s of all self-adjoint operators H . Therefore it is a differentiable manifold
that carries a natural Finsler geometrical structure as follows (for more details and for further reading, see e.g., [2]). At any
point A ∈ B(H)−1

+ , the tangent space is identified with the linear space B(H)s in which the norm of a vector X is defined as√A
−1

X
√
A

−1
. It turns out that in the so-obtained Finsler space the geodesic distance d(A, B) between A and B ∈ B(H)−1

+

can be computed as

d(A, B) =

log √A
−1

B
√
A

−1
which clearly coincides with the Thompson distance dT (A, B).

We point out that the differential geometry of the positive cone in operator algebras is an active research area withmany
applications. Indeed, even in the finite dimensional case, the differential geometry of the space of n × n positive definite
matrices has important applications among others in linear systems, statistics, filters, Lagrangian geometry and quantum
systems (see, e.g., [8]).

In this section we prove the following statement.

Theorem 3.1. Let H be a complex infinite dimensional separable Hilbert space. The Thompson isometry group of B(H)−1
+ is

algebraically reflexive.

Recall that the composition of a 2-local isometry with a surjective isometry is a 2-local isometry. Hence without loss of
generality we may assume that it fixes any two given elements of the underlying space. Throughout this section φ denotes
a 2-local isometry on B(H)−1

+ such that φ(I) = I and φ(2I) = 2I.
We now proceed with the details for the proof of Theorem 3.1.

Lemma 3.2. If A is an operator in B(H)−1
+ , then one of the following holds:

(a) φ(B) ≥ φ(A), ∀ B ∈ B(H)−1
+ s.t. B ≥ A or

(b) φ(B) ≤ φ(A), ∀ B ∈ B(H)−1
+ s.t. B ≥ A.

Proof. Let B be an operator in B(H)−1
+ such that B ≥ A. The 2-local condition of φ applied to the pair (A, B) implies the

existence of a surjective Thompson isometryΦ(A,B) such that

Φ(A,B)(A) = φ(A) and Φ(A,B)(B) = φ(B).

The form for the surjective isometries described in Theorem 1.2-(b) leads to the following two cases:

1. Φ(A,B)(A) = TAT ∗ andΦ(A,B)(B) = TBT ∗ which implies φ(A) ≤ φ(B), and
2. Φ(A,B)(A) = TA−1T ∗ andΦ(A,B)(B) = TB−1T ∗ which implies φ(A) ≥ φ(B).
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Here T is either linear or conjugate linear bounded and invertible operator on H and we use the well known fact that
A ≤ B implies B−1

≤ A−1. (On referee’s request here is a simple proof: A ≤ B implies B−1/2AB−1/2
≤ I which gives us that

I ≤ (B−1/2AB−1/2)−1
= B1/2A−1B1/2 resulting in B−1

≤ A−1.)
This shows that for every B ≥ A we have either φ(B) ≥ φ(A) or φ(B) ≤ φ(A). Let B0, B1 be in B(H)−1

+ such that Bi ≥ A
and Bi ≠ A, for i = 0, 1, and φ(B0) ≥ φ(A) and φ(B1) ≤ φ(A). For t ∈ [0, 1] we define Bt = tB1 + (1− t)B0. It is easy to see
that Bt ∈ B(H)−1

+ , Bt ≥ A and Bt ≠ A. We clearly have φ(Bt) ≠ φ(A). The sets

{t ∈ [0, 1] : φ(Bt) ≥ φ(A)} and {t ∈ [0, 1] : φ(Bt) ≤ φ(A)}

are nonempty, disjoint and their union is [0, 1]. Moreover,φ is an isometrywith respect to the Thompsonmetric. Thismetric
is known to generate the same topology on B(H)−1

+ as the operator norm (cf. p. 3854 in [23]), hence φ is continuous relative
to bothmetrics. It follows that the above sets are closed too. But this contradicts the connectedness of the interval [0, 1] and
proves the lemma. �

Lemma 3.3. For any A ∈ B(H)−1
+ we have σ(φ(A)) = σ(A). This means that φ is spectrum preserving.

Proof. To see this, apply the 2-local property of φ to the pairs (A, I) and (A, 2I). We have linear or conjugate linear bounded
and invertible operators T , S on H such that

φ(A) = TA(−1)T ∗, I = φ(I) = TI(−1)T ∗ (6)

and

φ(A) = SA(−1)S∗, 2I = φ(2I) = S(2I)(−1)S∗. (7)

If the inverse does not appear in the equalities displayed in (6), thenwe are done since T is a unitary or anti-unitary operator.
The case is similar if the inverse does not appear in the equalities displayed in (7). Thenwe assume that φ(A) = TA−1T ∗, I =

TT ∗, φ(A) = SA−1S∗, and 2I = S(2I)−1S∗. From the last equality we infer that 1
2S is a unitary or anti-unitary operator

and then the first and third equalities imply σ(φ(A)) = σ(A−1), σ (φ(A)) = 4σ(A−1) which is an obvious contradiction.
Therefore φ preserves the spectrum of operators in B(H)−1

+ . �

Lemma 3.4. The transformation φ is monotone increasing, i.e., for any A, B ∈ B(H)−1
+ with A ≤ B we have φ(A) ≤ φ(B). It

follows that φ is positive homogeneous, too.

Proof. Pick A, B ∈ B(H)−1
+ with A ≤ B. Referring to Lemma 3.2, assume that we have case (b), i.e. φ(C) ≤ φ(A) holds

for every C ∈ B(H)−1
+ with A ≤ C . Choosing any positive scalar operator C , by the spectrum preserving property of φ we

have φ(C) = C . Therefore, we obtain C ≤ φ(A) for every positive scalar operator C for which A ≤ C . This is an obvious
contradiction, so by Lemma 3.2 we conclude that φ(A) ≤ φ(B).

Let A ∈ B(H)−1
+ and λ a positive number different from 1. Clearly, by the 2-local condition on φ we have either

φ(λA) = λφ(A) or φ(λA) =
1
λ
φ(A). For λ > 1, using the monotonicity of φ, in the latter case we would have

φ(A) ≤ φ(λA) =
1
λ
φ(A),

a clear contradiction. If λ < 1 the proof is similar. Therefore we have φ(λA) = λφ(A) and the proof is complete. �

As previously stated we are assuming that φ(I) = I (and also that φ(2I) = 2I). Given a nontrivial projection P ∈ P(H),
the 2-local property of φ applied to (I, I + P) implies the existence of T a unitary or anti-unitary operator such that either
φ(I + P) = T (I + P)T ∗ or φ(I + P) = T (I + P)−1T ∗. By the spectrum preserving property of φ this latter possibility is ruled
out. So we have φ(I + P) = T (I + P)T ∗

= I + TPT ∗. Therefore φ induces a map on P(H) given by:

Ψ : P(H) → P(H)
P → φ(I + P)− I.

We observe that Ψ preserves the rank of projections. We denote by ψ : P1(H) → P1(H) the restriction of Ψ to the set
P1(H) of all rank-1 projections on H .

Lemma 3.5. The mapψ : P1(H) → P1(H) defined byψ(P) = φ(I + P)− I, P ∈ P1(H) is a Wigner transformation and hence
there exists a linear or conjugate linear isometry U on H such that

ψ(P) = UPU∗,

for every P ∈ P1(H).
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Proof. We show that for every P and Q in P1(H), we have tr(ψ(P)ψ(Q )) = tr(PQ ). We consider the pair (I + P, I + Q ),
Theorem 1.2-(b) implies the existence of a linear or conjugate linear bounded and invertible operator T on H such that

φ(I + P) = T (I + P)(−1)T ∗ and φ(I + Q ) = T (I + Q )(−1)T ∗.

Here in the two appearances of (−1) we either both have −1 or both have 1. In the case where φ(I + P) = T (I + P)T ∗ and
φ(I + Q ) = T (I + Q )T ∗ we compute

φ(I + P)φ(I + Q )−1
= T (I + P)(I + Q )−1T−1

= T (I + P)

I −

1
2
Q

T−1

= T

I + P −

1
2
Q −

1
2
PQ

T−1

= I + TPT−1
−

1
2
TQT−1

−
1
2
TPQT−1.

If φ(I + P) = T (I + P)−1T ∗ and φ(I + Q ) = T (I + Q )−1T ∗ we similarly have

φ(I + P)φ(I + Q )−1
= I −

1
2
TPT−1

+ TQT−1
−

1
2
TPQT−1.

On the other hand, we also have

φ(I + P)φ(I + Q )−1
= (I + ψ(P))


I −

1
2
ψ(Q )


= I + ψ(P)−

1
2
ψ(Q )−

1
2
ψ(P)ψ(Q ).

Hence

ψ(P)−
1
2
ψ(Q )−

1
2
ψ(P)ψ(Q ) = TPT−1

−
1
2
TQT−1

−
1
2
TPQT−1

or

ψ(P)−
1
2
ψ(Q )−

1
2
ψ(P)ψ(Q ) = −

1
2
TPT−1

+ TQT−1
−

1
2
TPQT−1

holds. In either case, taking trace we have tr(ψ(P)ψ(Q )) = tr(PQ ). The existence of a linear or conjugate linear isometry U
on H such that ψ(P) = UPU∗ holds for every P ∈ P1(H) follows from Theorem 2.3. �

Lemma 3.6. If λ > 0 and P is a projection of rank one, then φ(I + λP) = I + λψ(P).

Proof. The statement is trivial forλ = 1.We assumeλ ≠ 1, 3 andwe apply the 2-local condition onφ to the pair (I+λP, 2I).
We have two cases. Either there exists T , a unitary or anti-unitary operator on H , such that

φ(I + λP) = T (I + λP)T ∗
= I + λTPT ∗

or there exists a linear or conjugate linear bounded and invertible operator S on H such that

φ(I + λP) = S(I + λP)−1S∗, 2I = φ(2I) = S(2I)−1S∗.

In the latter case it follows that 1
2S is a unitary or anti-unitary operator on H and we obtain

σ(φ(I + λP)) = 4

1,

1
1 + λ


.

On the other hand, by the spectrum preserving property of φ we have σ(φ(I + λP)) = {1, 1 + λ} and we arrive at λ = 3,
a contradiction. So the first case remains to be addressed. Since λP and P are comparable, it follows from Lemma 3.2 that
φ(I + λP) = I + λTPT ∗ and φ(I + P) = I + ψ(P) are also comparable. This implies that λTPT ∗ and ψ(P) are comparable
from which we deduce TPT ∗

= ψ(P) and hence φ(I + λP) = I + λψ(P). This completes the proof for λ ≠ 3. To obtain the
conclusion for λ = 3 one can simply refer to the continuity of φ. �

Lemma 3.7. If 0 < ϵ < λ and P is a projection of rank one, then φ(ϵP⊥
+ λP) = ϵψ(P)⊥ + λψ(P).
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Proof. Lemmas 3.4 and 3.6 imply that

φ(ϵP⊥
+ λP) = ϵφ


I +

λ− ϵ

ϵ
P


= ϵ


I +

λ− ϵ

ϵ
ψ(P)


= ϵψ(P)⊥ + λψ(P).

This completes the proof. �

Similarly to the previous sectionwenowdescribe a class of positive invertible operatorswith a diagonal structure relative
to a family of pairwise orthogonal projections of rank one with sum equal to I .

The spectral theorem implies that the set Pf of finite spectrum operators in B(H)−1
+ is dense in B(H)−1

+ relative to the
metric induced by the operator norm. Select any element C ∈ Pf and write σ(C) = {c1, . . . , ck} where c1 > · · · > ck. Then
C has the representation

C =

k
i=1

ci Pi

with {Pi}i=1, ..., k a family of pairwise orthogonal projections such that
k

i=1 Pi = I . The range of each Pi is a closed subspace
of H , hence it has an orthonormal basis. We associate with each basis vector the orthogonal projection onto its linear span.
We denote the so-obtained projections by {P i

j }j∈Ni , the index set Ni has cardinality equal to the rank of Pi. We now attach to
each P i

j a positive number λij (close enough to ci) in the following way: If i < i′, and k1, k2 ∈ Ni with k1 < k2 and l1, l2 ∈ Ni′

with l1 < l2, then

λik1 > λik2 > ci > λi
′

l1 > λi
′

l2 > ci′ > 0.

We define the positive invertible operator A by

A =

k
i=1


j∈Ni

λijP
i
j


.

Denote by D(H)+
−1 the class of all operators A obtained in that way. It follows from the construction that D(H)+

−1 is dense
in B(H)−1

+ relative to the operator norm topology. As we have already referred to it at the end of the proof of Lemma 3.2,
that topology on B(H)−1

+ coincides with the Thompson topology. Therefore, the set D(H)+
−1 is dense in B(H)−1

+ with respect
to Thompson metric.

In the main step we describe the action of φ on the set D(H)+
−1.

Lemma 3.8. The operator U in Lemma 3.5 is a unitary or anti-unitary operator on H and we have φ(A) = UAU∗ for every A in
D(H)+

−1.

Proof. Let A be an operator in D(H)+
−1 of the above displayed form with scalars λij and projections P i

j having all properties
listed above.

We continue the proof assuming that k = 2 and that the corresponding index sets N1 and N2 are countably infinite. The
general case follows similar steps. So let

A =

∞
n=1

λnPn +

∞
n=1

µnQn,

where {Pn,Qm}(n,m)∈N×N is a family of pairwise orthogonal projections with sum equal to I , and for k < lwe have

λk > λl > c1 > µk > µl > c2 > 1,

where c1, c2 are some given positive numbers. By the homogeneity of φ wemay further suppose that c2 > 1 and can choose
ϵ such that c2 > ϵ > 1. The 2-local condition on φ applied to the pair (A, I) implies the existence of a unitary or anti-unitary
operator T such that φ(A) = TAT ∗ or φ(A) = TA−1T ∗. Since A ≥ ϵI and φ preserves the spectrum of A, this second possibility
cannot occur. So we have φ(A) = TAT ∗ and

φ(A) = T


∞
n=1

λnPn +

∞
n=1

µnQn


T ∗

=

∞
n=1

λnP ′

n +

∞
n=1

µnQ ′

n, (8)

where P ′
n = TPnT ∗ and Q ′

n = TQnT ∗.We observe that {P ′
n,Q

′
m}(n,m)∈N×N is a family of pairwise orthogonal rank-1 projections

with sum equal to I .
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We now apply the 2-local condition on φ to the pair (A, ϵP⊥

1 + λ1P1). Theorem 1.2 implies the existence of a linear or
conjugate linear and invertible operator T1 such that

φ(A) = T1A(−1)T ∗

1 and φ(ϵP⊥

1 + λ1P1) = T1(ϵP⊥

1 + λ1P1)(−1)T ∗

1 .

Since ϵP⊥

1 + λ1P1 ≤ A, these two operators are different and φ preserves the order, it follows that we necessarily have
φ(A) = T1AT ∗

1 and φ(ϵP⊥

1 + λ1P1) = T1(ϵP⊥

1 + λ1P1)T ∗

1 .

We observe that A − (ϵP⊥

1 + λ1P1) has nontrivial kernel, hence

φ(A)− φ(ϵP⊥

1 + λ1P1) = T1

A − (ϵP⊥

1 + λ1P1)

T ∗

1

is not invertible. From Lemma 3.7 and the equation displayed in (8) we have

φ(A)− φ(ϵP⊥

1 + λ1P1) =

∞
n=1

λnP ′

n +

∞
n=1

µnQ ′

n − ϵψ(P1)⊥ − λ1ψ(P1)

=

∞
n=1

(λn − ϵ)P ′

n +

∞
n=1

(µn − ϵ)Q ′

n − (λ1 − ϵ)ψ(P1).

Since ψ(P1) is a projection of rank one, we write ψ(P1) = u1 ⊗ u1 with u1 a unit vector in the range of ψ(P1). Lemma 2.7
yields

(λ1 − ϵ)⟨X−1u1, u1⟩ = 1,

with X =


∞

n=1(λn − ϵ)P ′
n +


∞

n=1(µn − ϵ)Q ′
n. Therefore

1 = (λ1 − ϵ)⟨X−1u1, u1⟩ = (λ1 − ϵ)


∞
n=1

1
λn − ϵ

⟨P ′

nu1, u1⟩ +

∞
n=1

1
µn − ϵ

⟨Q ′

nu1, u1⟩



= (λ1 − ϵ)


∞
n=1

1
λn − ϵ

∥P ′

nu1∥
2
+

∞
n=1

1
µn − ϵ

∥Q ′

nu1∥
2


.

Since


∞

n=1 ∥P ′
nu1∥

2
+


∞

n=1 ∥Q ′
nu1∥

2
= 1 and λ1 − ϵ > λk − ϵ > c1 − ϵ > µl − ϵ > c2 − ϵ > 0 for all k > 1 and l ≥ 1,

we must have P ′
nu1 = 0 for all n > 1 and Q ′

nu1 = 0 for all n ≥ 1. Therefore we obtain ψ(P1) = P ′

1 and

φ(A) = λ1ψ(P1)+

∞
n=2

λnP ′

n +

∞
n=1

µnQ ′

n.

We now apply the same analysis to A and ϵP⊥

2 +λ2P2. Writeψ(P2) = u2 ⊗u2 with u2 a unit vector in the range ofψ(P2).
It follows from Lemma 3.5 that ψ(P1) and ψ(P2) are orthogonal projections. Thus ψ(P1)u2 = 0. The same reasoning as
followed before implies thatψ(P2) = P ′

2. Inductively we derive thatψ(Pn) = P ′
n holds for every n and then thatψ(Qn) = Q ′

n
holds for every n.

By Lemma 3.5 we have ψ(Pn) = UPnU∗ and ψ(Qn) = UQnU∗ for all n, where U represents a linear or conjugate linear
isometry on H . Therefore {P ′

n, Q
′
m} = {UPnU∗, UQmU∗

} is a family of pairwise orthogonal projections of rank one with sum
equal to I . This entails that U is either a unitary or an anti-unitary operator on H . We derive the form of φ(A) as follows:

φ(A) =

∞
n=1

λnP ′

n +

∞
n=1

µnQ ′

n

=

∞
n=1

λnψ(Pn)+

∞
n=1

µnψ(Qn)

=

∞
n=1

λnUPnU∗
+

∞
n=1

µnUQnU∗

= UAU∗.

This completes the proof. �

Now, the proof of Theorem 3.1 follows easily.

Proof of Theorem 3.1. Since φ is a Thompson isometry and, as we have already remarked in the preamble before
Lemma 3.8, D(H)+

−1 is dense in B(H)−1
+ with respect to the Thompson metric, it follows that φ(A) = UAU∗ holds for every

A ∈ B(H)−1
+ . This shows that the group of all surjective Thompson isometries of B(H)−1

+ is algebraically reflexive. �
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4. Algebraic reflexivity of the isometry group of the general linear group

We now consider the general linear group GL(H) on H , the group that consists of all bounded invertible operators on
H . In this section we address the algebraic reflexivity question for the isometry group on GL(H). We prove the following
theorem.

Theorem 4.1. Let H be a complex infinite dimensional separable Hilbert space. The group of isometries onGL(H) is algebraically
reflexive.

Let φ : GL(H) → GL(H) be a 2-local isometry, i.e. a mapping such that given a pair (A, B) of operators in GL(H) there
exists a surjective isometryΦ(A,B) on GL(H) such that

φ(A) = Φ(A,B)(A) and φ(B) = Φ(A,B)(B).

As already mentioned, we can assume that φ fixes any given pair of elements of the underlying metric space GL(H). So let
us suppose that φ(I) = I .

The structure of all surjective isometries of GL(H) is described in Theorem 1.2-(c). Therefore the 2-local condition on φ
applied to (A, I) implies the existence of a unitary or anti-unitary operator V on H such that

φ(A) = VA(∗)V ∗.

Thus if A is a unitary operator then φ(A) is also unitary. Consequently, the restriction of φ to the unitary group is a 2-local
isometry of U(H). Theorem 2.1 implies that it is necessarily a surjective isometry and hence there is a unitary or anti-unitary
operator U on H such that

φ(A) = UAU∗, ∀ A ∈ U(H) or φ(A) = UA∗U∗, ∀ A ∈ U(H).

In the first case considering the map U∗φ(·)U on GL(H)while in the second case considering the transformation U∗φ(·)∗U ,
we have a 2-local isometry of GL(H) that acts as the identity on U(H).

Therefore without loss of generality we may and do assume throughout this section that φ represents a 2-local isometry
onGL(H) such that φ(A) = A for every A ∈ U(H). In what followswe prove that φ is the identity on thewhole group GL(H).

We first establish some useful properties of φ.

Lemma 4.2. Let λ be a nonzero real number and A an operator in GL(H). Then φ(λA) = λφ(A).

Proof. Given λ a real number, we apply the 2-local condition to the pair (A, λA). There exist V andW both unitary operators
or both anti-unitary operators on H such that φ(λA) = V (λA)(∗)W and φ(A) = VA(∗)W . Therefore φ(λA) = λφ(A). �

Lemma 4.3. Let P be a projection of rank one and let λ and ϵ be nonzero real numbers. Then φ(ϵP⊥
+ λP) = ϵP⊥

+ λP.

Proof. By the real homogeneity of φ we can clearly assume that ϵ = 1. Let λ ≠ 1.We apply the 2-local condition on φ to
the pair (I, P⊥

+ λP). This implies the existence of V0 a unitary operator or anti-unitary operator on H such that

φ(P⊥
+ λP) = V0(P⊥

+ λP)V ∗

0 .

Thus

φ(P⊥
+ λP) = I + (λ− 1)P1, (9)

with P1 = V0PV ∗

0 . Since P⊥
− P is unitary we have that

φ(P⊥
− P) = P⊥

− P. (10)

The 2-local condition on φ applied to the pair (P⊥
+ λP, P⊥

− P) implies the existence of V1 andW1 both unitary operators
or both anti-unitary operators on H such that

φ(P⊥
+ λP) = V1(P⊥

+ λP)W1 and φ(P⊥
− P) = V1(P⊥

− P)W1.

Therefore

φ(P⊥
+ λP)φ(P⊥

− P)∗ = V1(P⊥
+ λP)(P⊥

− P)V ∗

1

= V1(P⊥
− λP)V ∗

1 = I − (λ+ 1)P2,

with P2 = V1PV ∗

1 . The equations displayed in (9) and (10) now lead to [I + (λ − 1)P1][P⊥
− P] = I − (λ + 1)P2. A

straightforward computation yields

2P − (λ− 1)P1 + 2(λ− 1)P1P = (λ+ 1)P2.

Lemma 2.5 implies that P = P1. Therefore, by (9) we have φ(P⊥
+ λP) = P⊥

+ λP . An application of Lemma 4.2 completes
the proof. �
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We next show that φ fixes every operator in D+

−1(H) (definition is given in Section 3), the proof follows a similar
approach to the proof provided for the Lemma 3.8.

Lemma 4.4. For every A ∈ D(H)+
−1 we have φ(A) = A. It follows that φ is the identity on B(H)−1

+ .

Proof. We present the proof for an operator of the form A =


∞

n=1 λnPn +


∞

n=1 µnQn, where {Pn,Qm} is a family
of pairwise orthogonal projections of rank one with sum equal to the identity and such that for any k < l we have
λk > λl > λ > µk > µl > µ > 0, where λ,µ are given positive real numbers. We choose ϵ such that 0 < ϵ < µ
and set A1 = ϵP⊥

1 +λ1P1. The 2-local condition on φ applied to (A, A1) implies the existence of V ,W unitary or anti-unitary
operators such that φ(A) = VAW and φ(A1) = VA1W . Hence φ(A)− φ(A1) = V [A − A1]W is not invertible since A − A1 is
not invertible. The 2-local condition on φ applied to the pair (A, I) implies the existence of a unitary or anti-unitary operator
V0 such that φ(A) = V0AV ∗

0 and thus, using Lemma 4.3,

φ(A)− φ(A1) = V0AV ∗

0 − ϵP⊥

1 − λ1P1
= V0[A − ϵI]V ∗

0 − (λ1 − ϵ)P1

=

∞
n=1

(λn − ϵ) V0PnV ∗

0 +

∞
n=1

(µn − ϵ) V0QnV ∗

0 − (λ1 − ϵ)P1.

Let u1 be a unit vector such that P1 = u1 ⊗ u1. We set P ′
n = V0PnV ∗

0 and Q ′
n = V0QnV ∗

0 . Since V0[A − ϵI]V ∗

0 is invertible, an
application of Lemma 2.7 yields

(λ1 − ϵ)


n

1
λn − ϵ

⟨P ′

nu1, u1⟩ +


n

1
µn − ϵ

⟨Q ′

nu1, u1⟩


= 1.

A similar reasoning as presented for the proof of Lemma3.8 implies that P ′

1 = P1. Thenφ(A) = λ1P1+


∞

n=2 λnP
′
n+


n µnQ ′
n.

Now, let A2 = ϵP⊥

2 + λ2P2. A similar reasoning gives that P ′

2 = P2. Inductively we prove that φ(A) = A.
Since φ is an isometry and, as we have seen already, D(H)+

−1 is dense in B(H)−1
+ , it follows that φ fixes all positive

invertible operators. �

In the next step we show that φ also fixes the self-adjoint elements of GL(H).

Lemma 4.5. For every self-adjoint invertible operator H on H we have φ(H) = H.

Proof. LetH be a self-adjoint invertible operator and let B be a positive invertible operator. The 2-local property ofφ applied
to the pair (H, B) implies the existence of V and W unitary or anti-unitary operators on H such that φ(H) = VHW and
φ(B) = VBW . Thus φ(H)B = φ(H)φ(B)∗ = VHBV ∗. Observe that the spectrum of HB is real. Indeed, since the spectrum
of the product of invertible elements is independent of the order of the product, we have σ(HB) = σ

√
BH

√
B

and this

latter spectrum is clearly real since
√
BH

√
B is self-adjoint. Therefore σ(VHBV ∗) = σ(HB) holds even if V is anti-unitary.

We conclude σ(φ(H)B) = σ(HB) or equivalently

σ
√

Bφ(H)
√
B


= σ
√

BH
√
B

. (11)

Since a rank one projection can be uniformly approximated by positive invertible operators and the spectrum for normal
operators is a continuous set-valued function relative to the Hausdorff distance on the compact subsets of C (cf. [3, Theorem
6.2.1]), it follows from (11) that σ(Pφ(H)P) = σ(PHP) holds for every rank-1 projection P . This easily implies that

⟨φ(H)x, x⟩ = ⟨Hx, x⟩, ∀x ∈ H .

Therefore φ(H) = H as claimed in the lemma. �

Lemma 4.6. If u and v are vectors in H such that ⟨u, v⟩ ≠ −1, then φ(I + u ⊗ v) = I + u ⊗ v.

Proof. Observe that I + u ⊗ v is an element of GL(H). We first assume that u and v are such that ⟨u, v⟩ ∉ R. We apply the
2-local condition on φ to the pair (I, I + u ⊗ v), then there exists V0 a unitary or an anti-unitary operator such that

φ(I + u ⊗ v) = V0(I + u ⊗ v)(∗)V ∗

0 .

We have two cases to consider: φ(I + u ⊗ v) = I + V0(u ⊗ v)V ∗

0 and φ(I + u ⊗ v) = I + V0(v ⊗ u)V ∗

0 . For simplicity of
notation we use I + a ⊗ b representing either case. In what follows we show that a ⊗ b = (u ⊗ v)(∗).

We choose a finite rank self-adjoint operator H such that −1 ∉ σ(H) (i.e. I + H is invertible). We apply the 2-local
condition on φ to the pair (I + u ⊗ v, I + H). There exist V1 and W1, both unitary or anti-unitary operators, such that

φ(I + u ⊗ v) = V1(I + u ⊗ v)(∗)W1 and φ(I + H) = V1(I + H)W1.
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Therefore

φ(I + u ⊗ v)φ(I + H)∗ = V1(I + u ⊗ v)(∗)(I + H)V ∗

1

= V1[I + (u ⊗ v)(∗)](I + H)V ∗

1

= I + V1[(u ⊗ v)(∗) + H + (u ⊗ v)(∗)H]V ∗

1 .

On the other hand, since φ fixes the self-adjoint elements of GL(H), we also have

φ(I + u ⊗ v)φ(I + H)∗ = (I + a ⊗ b)(I + H)
= I + a ⊗ b + H + (a ⊗ b)H.

Therefore

a ⊗ b + H + a ⊗ bH = V1[(u ⊗ v)(∗) + H + (u ⊗ v)(∗)H]V ∗

1 .

Applying the trace functional we get

tr[a ⊗ b + H + a ⊗ bH] = tr[V1[(u ⊗ v)(∗) + H + (u ⊗ v)(∗)H]V ∗

1 ].

If V1 is unitary, then we have tr(V1CV ∗

1 ) = tr C for every operator C ∈ B(H), while if V1 is anti-unitary, then we have
tr(V1CV ∗

1 ) = tr C , for every C . Therefore, from the above displayed formula we deduce either

⟨a, b⟩ + ⟨a,Hb⟩ = ⟨u, v⟩ + ⟨u,Hv⟩

or

⟨a, b⟩ + ⟨a,Hb⟩ = ⟨u, v⟩ + ⟨u,Hv⟩.

Therefore

⟨a, b⟩ + ⟨a,Hb⟩ = (⟨u, v⟩ + ⟨u,Hv⟩)(∗) (12)

holds for every finite rank self-adjoint operator H such that −1 ∉ σ(H). The appearance of the conjugation on the right
hand side of the Eq. (12) may vary as H changes.

We set ⟨a, b⟩ = s1 + is2, ⟨u, v⟩ = t1 + it2, and write ⟨a,Hb⟩ = f1(H) + if2(H) and ⟨u,Hv⟩ = g1(H) + ig2(H) where
f1, f2, g1, g2 are continuous real valued and real linear functionals on the space of all finite-rank self-adjoint operators (they
are the real and purely complex parts of the functionals H → ⟨a,Hb⟩ and H → ⟨u,Hv⟩, respectively). Then (12) becomes

[s1 + f1(H)] + i[s2 + f2(H)] = [t1 + g1(H)] ± i[t2 + g2(H)].

This implies that

s1 + f1(H) = t1 + g1(H) and s2 + f2(H) = ±(t2 + g2(H)), (13)

for every finite rank self-adjoint operator H such that −1 ∉ σ(H) and by the continuity of f1, f2, g1, g2, the same statement
also holds for all finite rank self-adjoint operators. In particular for H = 0, (13) yields s1 = t1 and s2 = ±t2. Furthermore,
s1 = t1 implies f1(H) = g1(H), for every finite rank self-adjoint operator H . There are two cases to consider: s2 = t2
and s2 = −t2. The details are very similar so we present the analysis for s2 = t2. If f2(H) = 0 then either g2(H) = 0 or
g2(H) = −2s2. Therefore f −1

2 {0} ⊆ g−1
2 {0}


g−1
2 {−2s2}. The linear subspace and the linear manifold that appear on the

right hand side of this inclusion are either equal or disjoint. Therefore we necessarily have f −1
2 {0} ⊆ g−1

2 {0}. An elementary
linear algebraic result implies that we then have g2 = λf2, for some λ real number. We claim that λ = ±1. If f2 = 0 then
g2 = 0. If f2 ≠ 0 then there exists H such that f2(H) = 1. Therefore s2 + 1 = ±(s2 + λ) and hence we have λ = 1 or
λ = −1− 2s2. If λ = −1− 2s2 and s2 ≠ 0 then let H0 be such that f2(H0) = 2. This leads to s2 + 2 = ±(s2 + 2λ) and λ = 1
or λ = −1 − s2. The latter equality would contradict λ = −1 − 2s2. Consequently, we obtain λ = ±1 and hence f2 = ±g2.
Similarly, for s2 = −t2 we also conclude that λ = ±1 and f2 = ±g2.

Therefore we either have ⟨a, Hb⟩ = ⟨u,Hv⟩ for all finite rank self-adjoint operators H , or we have ⟨a, Hb⟩ = ⟨u,Hv⟩
for all finite rank self-adjoint operators H . Inserting any rank-1 projection P in the place of H , in the first case we deduce
a ⊗ b = u ⊗ v while in the second case we obtain a ⊗ b = v ⊗ u = (u ⊗ v)∗. Let us assume that we have the second case,
that is φ(I + u ⊗ v) = I + v ⊗ u. We show that this leads to a contradiction.

Let ϵ = −
1
2 + i

√
3
2 , then, since φ is an isometry, we have

∥φ(I + u ⊗ v)− φ(I + ϵu ⊗ u)∥ = ∥u ⊗ v − ϵu ⊗ u∥.

On the other hand, I + ϵu ⊗ u is unitary and hence φ(I + ϵu ⊗ u) = I + ϵu ⊗ u. This, together with the assumption
φ(I + u ⊗ v) = I + v ⊗ u imply that

∥φ(I + u ⊗ v)− φ(I + ϵu ⊗ u)∥ = ∥v ⊗ u − ϵu ⊗ u∥.
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Therefore, we obtain

∥v ⊗ u − ϵu ⊗ u∥ = ∥u ⊗ v − ϵu ⊗ u∥.

This equation can be written as ∥(v − ϵu) ⊗ u∥ = ∥u ⊗ (v − ϵu)∥. Therefore ∥v − ϵu∥ = ∥v − ϵu∥. Straightforward
computation gives that 2ℜϵ⟨u, v⟩ = 2ℜϵ⟨u, v⟩ fromwhichwe deduce that ⟨u, v⟩ = ⟨v, u⟩. This contradicts our assumption
that ⟨u, v⟩ ∉ R, consequently we have φ(I + u ⊗ v) = I + u ⊗ v for any u, v ∈ H with ⟨u, v⟩ ∉ R.

If u and v are such that ⟨u, v⟩ ∈ R, we choose a sequence of vectors {vn} converging to v such that ⟨u, vn⟩ ∉ R

for

example, consider vn = v+
1
n iu

. Since φ is continuous, we conclude φ(I+u⊗v) = I+u⊗v. This completes the proof. �

We are now in a position to prove the theorem of this section.

Proof of Theorem 4.1. LetA be an operator inGL(H) such that−1 ∉ σ(A), i.e. I+A ∈ GL(H).We show thatφ(I+A) = I+A.
We apply the 2-local condition on φ to the pair (I + A, I) to derive the following:

φ(I + A) = V (I + A)(∗)V ∗,

with V a unitary or anti-unitary operator on H . This implies that σ(φ(I + A)) = σ(I + A)(∗) = 1 + σ(A)(∗) (we use the
notationσ(X)(∗) to represent either the setσ(X) or its complex conjugate). SinceA is invertible,we conclude 1 ∉ σ(φ(I+A)).
Therefore φ(I + A)− I ∈ GL(H).

We select u and v in H such that ⟨u, v⟩ ≠ −1. Then I + u ⊗ v is invertible and the 2-local condition on φ applied to the
pair (I + A, I + u ⊗ v) implies the existence of V andW both either unitary or anti-unitary operators on H such that

φ(I + A)− φ(I + u ⊗ v) = V [A − u ⊗ v](∗)W .

Lemma 4.6 applies and we have φ(I + A) − I − u ⊗ v = V [A − u ⊗ v](∗)W . We set B = φ(I + A) − I . Hence B − u ⊗ v is
invertible if and only if A − u ⊗ v is invertible.

We now consider the following set

R = {(u, v) ∈ H × H : ⟨A−1u, v⟩ ≠ 0}.

Let (u, v) ∈ R then ⟨A−1u, v⟩ = α ≠ 0. This implies that

A−1 u

α
, v

= 1. Lemma 2.7 implies that A −

u
α

⊗ v is not invertible.
Therefore B −

u
α

⊗ v is also not invertible. Lemma 2.7 yields

B−1 u

α
, v

= 1. Therefore, we have

⟨A−1u, v⟩ = ⟨B−1u, v⟩, ∀(u, v) ∈ R. (14)

It is easy to see that the set R is dense in H × H and, by continuity, we have ⟨A−1u, v⟩ = ⟨B−1u, v⟩ for all (u, v) ∈ H × H .
Consequently, A = B and we obtain φ(I + A) = I + A, for all A ∈ GL(H) such that −1 ∉ σ(A). This implies that φ(X) = X
holds whenever 1, 0 ∉ σ(X). If X ∈ GL(H) then there is a nonzero real number λ such that 0, λ ∉ σ(X). Considering
the operator (1/λ)X and using the real homogeneity of φ we plainly obtain φ(X) = X . The proof of the theorem is now
complete. �

5. Automorphisms corresponding to isometries

This section is devoted to the proof of Theorem1.3which identifies the isometry groups under considerationwith certain
groups of automorphisms.

Proof of Theorem 1.3. Observe that the statements in the theorem are all ‘‘if and only if’’ assertions and in all the cases the
‘‘if’’ part is very simple to check. Therefore, in what follows we deal only with the necessity parts of the three statements.

The first assertion is proved in [24, Theorem 2.1].
As for the second one, consider the map Ψ ′(·) =

√
Ψ (I)−1

Ψ (·)
√
Ψ (I)−1. It is easy to see that this transformation is a

continuous (in the operator norm) bijection of B(H)−1
+ which satisfies the equation (ii) in Theorem 1.3 and, in addition, it is

unital,Ψ ′(I) = I . It follows thatΨ ′(B−1) = Ψ ′(B)−1 and next thatΨ ′(ABA) = Ψ ′(A)Ψ ′(B)Ψ ′(A) holds for all A, B ∈ B(H)−1
+ .

The continuous bijections of B(H)−1
+ satisfying this equality have been determined in [21, Theorem 1]. Applying that result

to Ψ ′ one can trivially complete the proof of the second statement. It remains to verify the third one.
LetΦ : GL(H) → GL(H) be a uniformly continuous bijection satisfying the equation (iii) in Theorem 1.3. It is apparent

that A ∈ GL(H) is unitary if and only if AA∗A = A. It follows that the restriction Φ|U(H) : U(H) → U(H) is a continuous
bijective map for which the first statement of the theorem applies. Therefore, we have V and W both unitary operators
or both anti-unitary operators on H such that either Φ|U(H)(A) = VAW holds for all A ∈ U(H) or Φ|U(H)(A) = VA∗W
holds for all A ∈ U(H). In the first case consider the map V ∗Φ(·)W ∗ while in the second case consider the transformation
V ∗Φ(·)∗W ∗. In either case we have a uniformly continuous bijection of GL(H) that still satisfies the equation (iii) and acts
as the identity on U(H). In what follows let us assume that already Φ has these properties. What we need to show is that
Φ is then the identity on the whole group GL(H). We haveΦ(I) = I implyingΦ(B∗) = Φ(B)∗ and alsoΦ(A2) = Φ(A)2 for
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all A, B ∈ GL(H). Since the elements of B(H)−1
+ can be characterized as elements of GL(H) which are of the form B = A2

for some A ∈ GL(H)with A∗
= A, it follows that the restrictionΦ

|B(H)−1
+

is a continuous bijection of B(H)−1
+ satisfying

Φ
|B(H)−1

+

(ABA) = Φ
|B(H)−1

+

(A)Φ
|B(H)−1

+

(B)Φ
|B(H)−1

+

(A)

for all A, B ∈ B(H)−1
+ . Therefore, [21, Theorem 1] applies again and there exists a unitary or anti-unitary operatorW ′ on H

such that either Φ
|B(H)−1

+

(A) = W ′AW ′∗ holds for all A ∈ B(H)−1
+ or Φ

|B(H)−1
+

(A) = W ′A−1W ′∗ holds for all A ∈ B(H)−1
+ .

However, by the uniform continuity of Φ this second possibility is ruled out. So, we have Φ(A) = W ′AW ′∗ for every
A ∈ B(H)−1

+ . Let S be any symmetry (self-adjoint unitary) and A an arbitrary element of B(H)−1
+ . Clearly, S, A commute if

and only if SAS = Awhich is equivalent toΦ(S)Φ(A)Φ(S) = Φ(A). SinceΦ acts as the identity on U(H), this is equivalent
to SΦ(A)S = Φ(A), i.e. to SΦ(A) = Φ(A)S. Since the symmetries are exactly the operators of the form S = I − 2P with P
being a projection, it follows that A and Φ(A) = W ′AW ′∗ commute with the same projections and hence the commutants
and then the second commutants of A andΦ(A) = W ′AW ′∗ coincide. Choosing any projection P and considering A = I + P ,
it follows that the second commutants of P and W ′PW ′∗ coincide. In particular W ′PW ′∗ belongs to the second commutant
of P which consists of operators of the form λP + µ(I − P), λ, µ are scalars. If P is of finite rank, we easily deduce that in
the equality λP + µ(I − P) = W ′PW ′∗ we necessarily have λ = 1, µ = 0. Therefore W ′PW ′∗

= P holds for any finite-
rank projection P . This easily implies the same equality for all projections and then by the spectral theorem we obtain that
W ′AW ′∗

= A holds also for every A ∈ B(H)−1
+ . Therefore we have Φ(A) = A for any A ∈ B(H)−1

+ . Consequently, Φ acts as
the identity on U(H) and also on B(H)−1

+ . We need to show thatΦ is the identity on the whole group GL(H). If A ∈ GL(H)
is normal, then in the polar decomposition A = U|A| we have that U, |A| are commuting. Hence we infer A =

√
|A|U

√
|A|

and it follows that

Φ(A) = Φ


|A|U∗∗


|A|


= Φ


|A|


Φ(U∗)∗Φ


|A|


=


|A|U∗∗


|A| = A.

Since Φ : GL(H) → GL(H) is uniformly continuous, it has a unique extension to a uniformly continuous transformation
Φ ′

: GL(H) → GL(H)which clearly satisfies the same equation (iii) in the theorem. Obviously, every projection P belongs
to GL(H) (for a nice general characterization of the elements of this closure we refer to [5]). Pick an arbitrary element
A ∈ GL(H). For any rank-one projection P we have that PA∗P is a normal operator and using the continuity ofΦ ′ we obtain
Φ ′(PA∗P) = PA∗P ,Φ ′(P) = P . Therefore

PA∗P = Φ ′(PA∗P) = Φ ′(P)Φ(A)∗Φ ′(P) = PΦ(A)∗P

is valid for every rank-one projection P . This easily implies thatΦ(A) = A and the proof of the theorem is complete. �

6. Remarks, further reflexivity results

We conclude the paperwith a few remarks. First of all observe that abovewe considered infinite dimensional spaces. One
may naturally ask what happens in finite dimension. As for our reflexivity results, they remain true also in that case. This
can be verified either following the proofs presented before (with elementary, rather trivial modifications) or using other
techniques. For example, since in finite dimension the unitary group is compact and we have the strong property that every
isometry of a compact metric space into itself is automatically surjective [7, Exercise 2.4.1], the corresponding reflexivity
result follows immediately. (Observe that automatic surjectivity result fails trivially in noncompact spaces.) Concerning
Thompson isometries, a similar approach can be followed: Assuming that φ : B(H)−1

+ → B(H)−1
+ is a 2-local isometry with

respect to the Thompson metric and supposing φ(I) = I and φ(2I) = 2I , by Lemma 3.4 we see that φ preserves the order
and φ is positive homogeneous. Therefore, for any λ,µ positive numbers with λ < µwe have that φ is an isometry from the
operator interval [λI, µI] into itself. This interval is compact in the normmetric, so it is compact also in the Thompsonmetric
(recall that the topologies induced by those two metrics coincide on B(H)−1

+ ). Therefore, we again can apply [7, Exercise
2.4.1] and deduce that φ maps [λI, µI] onto itself. Since this holds for all scalars 0 < λ < µ, we easily obtain that φ maps
B(H)−1

+ onto itself.
Concerning automorphisms,we do not have the first proposition in Theorem1.3 for the finite dimensional case (see [24]).

The proof of the third proposition is based on the first one, hence neither we have it in finite dimension. Nevertheless we
conjecture that both statements are true also in that case. Finally, the second statement in Theorem 1.3 is simply not true in
finite dimension since the determinant may show up (see [21, Theorem 1]).

Finally,wemention that using the reflexivity results above one could obtain some additional ones relating to other groups
of transformations. To demonstrate this, we present the following result on the algebraic reflexivity of the group of order
automorphisms and that of the group of surjective isometries of the space of all positive semi-definite operators.

Denote by B(H)+ the cone of all positive semi-definite operators on H . In the paper [20] we determined the structure
of its order automorphisms. We proved that a bijective map Φ : B(H)+ → B(H)+ is an order automorphism, (i.e. for any
A, B ∈ B(H)+, A ≤ B ⇔ Φ(A) ≤ Φ(B)) if and only if there exists T a linear or conjugate linear bounded and invertible
operator on H such thatΦ(A) = TAT ∗ holds for all A ∈ B(H)+.



194 F. Botelho et al. / J. Math. Anal. Appl. 408 (2013) 177–195

Concerning the surjective isometries of B(H)+ relative to the metric induced by the operator norm, we recall a nice
result of Mankiewicz, namely, [19, Theorem 5] and the follow-up remark which states that if we have a surjective isometry
between convex sets in normed real linear spaceswith nonempty interiors, then this isometry can be uniquely extended to a
surjective affine isometry between thewhole spaces. Clearly, the result applies to B(H)+. Therefore, ifΦ : B(H)+ → B(H)+
is a surjective isometry, then it can be extended to a surjective affine isometry Φ̃ : B(H)s → B(H)s (recall that B(H)s stands
for the space of all self-adjoint operators onH). By affinity,Φ sends the unique extremal point 0 of B(H)+ to itself. It follows
that Φ̃ is in fact a real linear isometry and then the result [15, Theorem 2] can be used to verify that the unique complex
linear extension of Φ̃ to B(H) is a Jordan *-isomorphism. This implies thatΦ is of the formΦ(A) = UAU∗, A ∈ B(H)+ with
some unitary or anti-unitary operator U on H .

The last result of the paper reads as follows.

Theorem 6.1. Let H be a complex infinite dimensional separable Hilbert space. The group of all order automorphisms and the
group of all surjective isometries of B(H)+ are both algebraically reflexive.

Proof. We begin with the group of order automorphisms.
Let φ : B(H)+ → B(H)+ be a map such that for every pair (A, B) of elements of B(H)+ we have T(A,B) a linear or

conjugate linear bounded and invertible operator on H such that

φ(A) = T(A,B)AT ∗

(A,B) and φ(B) = T(A,B)BT ∗

(A,B).

Clearly (see Theorem 1.2) the restriction φ
|B(H)−1

+

is a 2-local Thompson isometry of B(H)−1
+ . By Theorem 3.1 it is a surjective

Thompson isometry and hence there exists T a linear or conjugate linear bounded and invertible operator on H such that
either φ(A) = TAT ∗ for all A ∈ B(H)−1

+ or φ(A) = TA−1T ∗ for all A ∈ B(H)−1
+ . By the local form of φ, for any A, B ∈ B(H)+

we have φ(A) ≤ φ(B) if and only if A ≤ B. Therefore the second possibility above is ruled out and we have φ(A) = TAT ∗ for
all A ∈ B(H)−1

+ . Moreover, for any A ∈ B(H)+ and B ∈ B(H)−1
+ we have

T−1φ(A)T ∗−1
≤ B ⇔ φ(A) ≤ TBT ∗

= φ(B) ⇔ A ≤ B.

It is easy to conclude that for every A ∈ B(H)+ this implies T−1φ(A)T ∗−1
= A which yields φ(A) = TAT ∗. Consequently, φ

is an order automorphism of B(H)+.
As for the isometry group, observe that it is a subgroup of the group of order automorphisms. Therefore, if φ : B(H)+ →

B(H)+ is a 2-local isometry, then it is a 2-local order automorphism. It follows thatφ is an order automorphism, in particular,
φ is surjective. On the other hand, φ is an isometry, so φ is a surjective isometry of B(H)+ and this completes the proof. �
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