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We consider a generalized Gause prey–predator model with T -periodic continuous
coefficients. In the case where the Poincaré map P over time T is well defined, the
result of the paper can be explained as follows: we locate a subset U of R

2 such that
the topological degree d(I −P, U ) equals to +1. The novelty of the paper is that the later
is done under only continuity and (some) monotonicity assumptions for the coefficients
of the model. A suitable integral operator is used in place of the Poincaré map to cope
with possible nonuniqueness of solutions. The paper, therefore, provides a new framework
for studying the generalized Gause model with functional differential perturbations and
multi-valued ingredients.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The generalized Gause prey–predator model with time-dependent coefficients reads as

ẋ = xa(t, x) − yb(t, x),

ẏ = y
(
c(t, x) − d(t)

)
, (1)

where a(t, x) is the specific growth rate of the prey in the absence of any predators, b(t, x) is the predator response function,
c(t, x) is the proportion as to how the presence of prey enhances the growth of predator, d(t) is the rate of how the predator
population declines in the absence of prey. The generalized autonomous Gause model has been introduced by Freedman in
[10, Ch. 4] and system (1) comes from accounting for periodic changes of the environment in that autonomous model.
A fundamental dynamical property of prey–predator models, known as permanence, is that their solutions are often trapped
within a positive rectangular region R∞ .1 Sufficient conditions for system (1) to be permanent are proposed in Teng, Li
and Jiang [35] and Luo [23], where the interested reader can also learn the biological relevance of this property. One of
the consequences of permanence is the existence of a periodic solution in R which persists under functional differential
perturbations of system (1), useful for incorporating delays, neutral and impulsive terms into (1). In this paper we are
interested in a weaker (as proved in Zanolin [37]) property of system (1) which still ensures the presence of a periodic
solution with the same stability properties, but requires just basic assumptions for the coefficients. Specifically, let W be
the set of all continuous functions acting from [0, T ] to the interior of a rectangular subset R of R∞ that contains all
positive T -periodic solutions of (1) and let d(I − Φ, W R) be the topological degree (see [20]) of the integral operator
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(
Φ(x, y)

)
(t) =

(
x(T )

y(T )

)
+

t∫
0

(
x(τ )a(τ , x(τ )) − y(τ )b(τ , x(τ ))

y(τ )(c(τ , x(τ )) − d(τ ))

)
dτ

with respect to W R . We prove that R is bounded and that

d(I − Φ, W R) = 1 (2)

under the following assumptions:

(A) a(t,0) > 0 for all t ∈ [0, T ], for every t ∈ [0, T ] there exists a unique xa(t) such that a(t, xa(t)) = 0 and a(t, x) < 0 for all
x > xa(t).

(B) b(t, x) > 0 for all t ∈ [0, T ] and x > 0, b(t,0) ≡ 0, for any x0 > 0 there exists B(x0) > 0 such that b(t, x) � B(x0) for all
x � x0 and t ∈ [0, T ], lim x→0

x
b(t,x) > 0 for any t ∈ [0, T ].

(C ) c(t, x) > 0, d(t) > 0 for all t ∈ [0, T ] and x > 0, c(t,0) ≡ 0, c(t, x) doesn’t decrease in x � 0 for each fixed t ∈ [0, T ], given
any t ∈ [0, T ] there exists a unique xc(t) such that c(t, xc(t)) = d(t).

(X) supt∈[0,T ] xc(t) < inft∈[0,T ] xa(t), supt∈[0,T ] xa(t) < ∞.

Assumptions (A), (B), (C ) are weaker than those currently available in the literature on permanence of (1) (that would
imply (2)) and the existence of positive periodic solutions to (1) (that (2) implies). As the amount of references is huge we
review only those whose assumptions do not contradict (A), (B), (C ), which can be deemed standard according to Freedman
[10, Ch. 4]. While studying a particular form of (1) the paper by Hu, Liu and Yan [16] requires that the partial derivative
b′

x exists and is strictly positive everywhere and that limx→∞ b(t, x) exists and is finite. Applying the result of Teng, Li and
Jiang [35] one would need to assume that the y component of all positive solutions of (1) are uniformly bounded as t → ∞.
A sufficient condition that this paper provides requires that a certain time-integral of c(t, x) − d(t) is negative for large x,
which is not the case for (1). The paper Wolkowicz and Zhao [36] considers a particular form of (1) while still requires
b(t, x) to be strictly increasing in x. A Gause model of similar to (1) (but with a particular form of a(t, x)) is considered in
Moghadas and Alexander [28] and Liu and Lou [21] where b′

x(t, x) > 0 and b′′
xx(t, x) < 0 for all x > 0, t ∈ R. The paper Luo

[23] considers a more general form of (1), but requires that a′
x(t, x) � 0 for all x � 0, t ∈ R and assumes boundedness of

b(t, x) and c(t, x) when applied to (1). The fundamental assumptions in Ding, Su and Hao [5] and Ding and Jiang [6] are
comparable with ours, however these authors assume x �→ b(t, x) sub-linear for all x � 0 and we need the later at x = 0
only. The condition (X) plays a similar role as the requirements for time-integrals of the coefficients of (1), that literally all
of the papers [16,5,36,28,21,23,6,35] assume (paper [28] doesn’t impose any conditions for time-integrals because it deals
with nearly constant T -periodic solutions only). Detailed comparison of (X) with the respective assumptions in these papers
is outside the scope of this introduction.

Somewhat stronger assumptions in the above mentioned papers are often used to get stronger results compared to the
goal (2) of this paper. We understand that the assumptions of some of these papers can be relaxed (in particular, the proofs
in Ding, Su and Hao [5] and Ding and Jiang [6] obtained for more complex versions of (1) can possibly be adjusted to
our settings). Our introduction doesn’t aim to document that we got stronger results, but rather wants to emphasize that
our new technique leads to the assumptions, which are different from those used in the relevant literature. Moreover, our
technique may appear simpler (for some readers) than those used in papers [16,5,36,28,21,23,6,35].

We stress that assumptions (A), (B), (C ) do not assume any differentiability or Lipschitz continuity for the coefficients
of (1). This is important if we were to implement the group defense phenomenon (see Freedman and Wolkowicz [11]) or
to incorporate complicate variants of the Rosenzweig law of the growth of the prey population in the absence of predators
(see Bravo, Fernandez, Gamez, Granados and Tineo [2]). In particular, in contrast with the mentioned papers, we neither
need c′

x(t, x) > 0, nor c′
x(t, x) � 0 for any of x > 0. Relaxed regularity is also a necessary step towards considering switch-

like interactions between the species, that would lead to Filippov-type differential inclusions versus ordinary differential
equations in (1) (see Gouze and Sari [13]). Along similar lines, our approach may provide useful information in studying
stochastic versions of model (1) where the known conditions (see Lv and Wang [24] and references therein) for stochastic
permanence do not hold.

As for the monotonicity assumption in (C ), it is not vital for the proofs. However, it is important for the proof of
Lemma 2.1 that c(t, x) > d(t) for large values of x > 0. In particular, our result cannot be immediately extended to Gause
models with non-monotonic functional responses from Hu [16], Ding and Jiang [4], or Fan and Wang [8]. At the same time
the results can be extended to account for more complex functional responses, where the coefficients b and c depend on y.
In this way our ideas may complement the existence results in Liu and Yan [22], Fan, Li and Wang [9] and Dai, Su and Hu
[3].

Let us now briefly look through the idea and the layout of the paper. The most initial consideration is that (2) holds,
if we were successful to locate a region R ⊂ R

2 such that the vector field of (1) is pointed towards the interior of R on
the boundary of R at any time. Rectangular regions R are most convenient to verify this property. Fig. 1(left) suggests little
chances to locate such a rectangular region for the vector field of (1), however in Section 2 we propose an ε-perturbation
(3) of (1) that raises bifurcation of a rectangular region Rε with the required properties from infinity (see Lemma 2.1).
The rest of Section 2 (Lemma 2.3) is devoted to showing that the T -periodic solutions of the perturbed system (3) lie in a



O. Makarenkov / J. Math. Anal. Appl. 410 (2014) 525–540 527
Fig. 1. Schematic picture of isoclines and the respective directions of the vector field of the Gause model (1) (left figure) and its perturbation (3) (right
figure). The set where Fε(t, x, y) < 0 (dotted white and dotted dark fillings) is separated from the set where Fε(t, x, y) > 0 (diagonal white and diagonal
dark fillings) by a curved strip (not black one) where Fε(t, x, y) = 0 for some t ∈ [0, T ]. Similarly, the set where Gε(t, x, y) < 0 (dark dotted and dark
diagonal fillings) is separated from the set where Gε(t, x, y) > 0 (white dotted and white diagonal filling) by a black strip where Gε(t, x, y) = 0 for some
t ∈ [0, T ]. The figure also illustrates the crucial difference between the original and the perturbed models: the right figure admits a rectangular region Rε

that is strictly invariant under the flow of (3) with ε > 0.

smaller rectangle R that doesn’t depend on ε. This property is used in Section 3 to prove the coincidence of d(I − Φε, W Rε )

and d(I − Φ0, W R) in Theorem 3.1, which is the main result of the paper in the case where the uniqueness of solutions
of (1) holds. For Guase models (1) with negative divergence (see (21) for the definition) our result implies the existence of
an asymptotically stable T -periodic solution in R provided that the period T is not too big. This result is proved in Theo-
rem 4.1 of Section 4. Theorem 4.1 is then applied in Section 5 to derive conditions for the existence of an asymptotically
stable T -periodic solution to the Lotka–Volterra model with Holling type-II predator response function. A short introduction
precedes the statement of the main result (Theorem 5.1) there. The requirement for the uniqueness of solutions of (1) is re-
moved in Section 6 (Theorem 6.1) by providing a relevant version (Lemma 6.1) of the Krasnoselskii’s T -irreversibility lemma.
Theorem 6.1 is the main result of this paper, it proves (2) under assumptions (A), (B), (C ) and (X) only. A formulation of
Theorem 6.1 in terms of the Mawhin’s coincidence degree (typical for the literature on prey–predator models) appears as
Theorem 6.2. An acknowledgments section concludes the paper.

2. A perturbation that unfolds a rectangular trapping region

As outlined in the introduction, the presence of a set R such that the vector field of (1) is pointed to the interior of R
on the boundary ∂ R of R would be sufficient to prove the property (2). The reason for this paper is that we cannot locate
such a set for the original system (1) (see Fig. 1(left) for the phase portrait), but can do that for the following perturbation

ẋ = xa(t, x) − yb(t, x) + ε =: Fε(t, x, y),

ẏ = y
(
c(t, x) − d(t)yε

) =: Gε(t, x, y), (3)

that we discovered. Specifically, we can prove that rectangular strictly invariant regions Rε ⊂ R
2 bifurcate in system (3)

from infinity as ε crosses zero (see Fig. 1). The whole text of the paper is basically a proof of the convergence of T -periodic
solutions of (3) that strict invariance of Rε implies (Brouwer theorem, see [19, Theorem 3.1]) to a T -periodic solution of (1).
The focus on the topological degree doesn’t make proofs longer, but opens a potential room for further applications and
generalizations, thus our topological settings.

A simple intuition as for why the perturbation in (3) helps us so much can be gained from studying x- and y isoclines
of (3), i.e. the curves of the phase plane where the vector fields (x, y) �→ Fε(t, x, y) and (x, y) �→ Gε(t, x, y) take zero values.
For ε > 0 these isoclines are found as

Fε

(
t, x, fε(t, x)

) = 0, where fε(t, x) = xa(t, x)

b(t, x)
+ ε

b(t, x)
, x > 0,

Gε

(
t, x, gε(t, x)

) = 0, where gε(t, ε) =
(

c(t, x)

d(t)

)1/ε

, x > 0

and we have

Fε(t, x, y) < 0
(

Fε(t, x, y) > 0
)
, if y > fε(t, x)

(
0 < y < fε(t, x)

)
, (4)

Gε(t, x, y) < 0
(
Gε(t, x, y) > 0

)
, if y > gε(t, x)

(
0 < y < gε(t, x)

)
. (5)

Fig. 1(right) explains how the strictly invariant rectangular region Rε of (3) needs to be built. Next lemma is the proof of
this pictorial observation.
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Lemma 2.1. Let a, b, c, d be continuous functions satisfying (A), (B), (C) and (X). Fix an arbitrary � > 0. Then there exists ε0 > 0
such that given any ε ∈ (0, ε0] and M > 0 there exist

xε ∈ (0, ε), yε ∈ (0, ε), ȳε > M

such that the vector field (x, y) �→ ( Fε(t,x,y)

Gε(t,x,y)

)
points strictly inward the set

Rε =
{
(x, y) ∈R

2: xε < x < sup
t∈[0,T ]

xa(t) + �, yε < y < ȳε

}
on its boundary ∂ Rε at any t ∈ [0, T ].

Proof. Put x̄ = supt∈[0,T ] xa(t) + � and choose such an ε0 > 0 that Fε(t, x, y) < 0 for all t ∈ [0, T ], y > 0. Fix ε ∈ (0, ε0] and
M > 0. We define ȳε , xε , yε one by one as any constants that satisfy the respective condition:

ȳε: ȳε > M and yε > maxt∈[0,T ] gε(t, x̄),
xε: xε ∈ (0, ε) and mint∈[0,T ] fε(t, xε) > ȳε

(such a choice is possible because fε(t, x) � ε
b(t,x) � l2

ε
x and b(t,0) = 0),

yε: yε ∈ (0, ε) and yε < mint∈[0,T ] gε(t, xε).

From (4)–(5) we conclude that

Fε(t, xε, y) > 0, for any y ∈ [yε, ȳε],
Fε(t, x̄, y) < 0, for any y ∈ [yε, ȳε], (provided that ε0 > 0 is small enough)

Gε(t, x, yε) > 0, for any x ∈ [xε, x̄],
Gε(t, x, ȳε) < 0, for any x ∈ [xε, x̄]

by construction, which is the statement of the lemma. �
The isoclines for system (3) with ε = 0 are given in Fig. 1(left) and the interested reader can check that the trick of

Lemma 2.1 cannot be applied for the unperturbed Gause model. As we will prove in Theorem 6.1, Lemma 2.1 implies
that d(I − Φε, W Rε ) = 1, whose disadvantage is that Rε blows up as ε converges to 0, so that we cannot yet pass to the
limit as ε → 0. However, next lemma allows to see that we don’t miss any T -periodic solutions, if transform sets Rε to a
smaller rectangular region R that doesn’t depend on ε. This will allow us making the above mentioned passage to the limit.
Introduce

xmax = sup
s∈[0,T ]

xa(s), ymax = max
t∈[0,T ], x∈[0,xmax]

x · max{0,a(t, x)}
b(t, x)

exp

( T∫
0

c(s, xmax)ds

)
. (6)

Lemma 2.2. Let a, b, c, d be continuous functions satisfying (A), (B), (C) and (X). Fix � > 0. Then there exists ε0 > 0 such that given
any ε ∈ [0, ε0] system (3) does not have T -periodic solutions (x, y) with initial conditions (x(0), y(0)) in

⋃
μ∈(0,ε0] ∂ R0

μ , where ∂ R0
μ

is the boundary of the set

R0
μ =

{
(x, y): μ < x < xmax + �, μ < y < (ymax + �)

ε0

μ

}
.

The following lemma is a part of the proof of Lemma 2.2, but it may also be of independent interest as an estimate for
the location of T -periodic solutions in the original model (1).

Lemma 2.3. Let a, b, c and d be continuous functions satisfying (A), (B) and (C). Assume that

xmax < ∞
and consider � > 0. Then there exist ε0 > 0 and L ∈ (0,�] such that given any ε ∈ [0, ε0] the following properties hold for any
solution (x, y) of (3) that has a point in (0,∞) × (0,∞) and verifies (x(0), y(0)) = (x(T ), y(T )):

1) positiveness of x and y: 0 < x(t) and 0 < y(t), for all t ∈ [0, T ], boundedness of x from above: x(t) < xmax + �, for all t ∈ [0, T ],
2) an estimate for the lowermost points of x: x([0, T ]) ∩ (0, supt∈[0,T ] xc(t) + �) 
= ∅,
3) an estimate for the uppermost points of x: x([0, T ]) ∩ [L,∞) 
= ∅,
4) boundedness of y from above: y(t) < ymax + �, t ∈ [0, T ].
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The solutions (x, y) of (3) that satisfy (x(0), y(0)) = (x(T ), y(T )) will be loosely called T -periodic solutions. Next brief
result on the uniqueness of solution of a specific Cauchy problem associated to the equations of (1) is required for the proof
of Lemma 2.3.

Lemma 2.4. Assume that φ ∈ C0(R×R,R). Then the Cauchy problem

ẋ = xφ(t, x),

x(t0) = 0

has a unique solution for any t0 ∈ R. This solution is given by x(t) ≡ 0.

Proof. Let x∗ be any solution of the Cauchy problem under consideration. Then x∗ is a solution to the Cauchy problem

ẋ = xφ
(
t, x∗(t)

)
,

x(t0) = 0,

which is given by the formula x(t) = x(t0)exp(
∫ t

t0
φ(τ , x∗(τ ))dτ ) ≡ 0. Thus the assertion. �

Proof of Lemma 2.3. In what follows we prove the 4 statements of the lemma one by one.
1) The estimate 0 < x(t) holds for ε > 0 because Fε(t,0, y) > 0 for any ε > 0 and y � 0. To justify this estimate for ε = 0

one has to notice that due to Lemma 2.4 the equation ẋ = F0(t, x, y(t)) cannot have non-trivial T -periodic solutions that
touch x = 0. If the estimate for y doesn’t hold for some ε ∈ (0, ε0] then we have the existence of τ ∈R and δ > 0 such that

y(τ ) = 0, 0 < y(t) < min
s∈[0,T ] gε

(
s, x(t)

)
, t ∈ [τ − δ, τ ).

But according to (5) this implies that t �→ y(t) increases on [τ − δ, τ ] and cannot reach 0 at t = τ . We have y(t) > 0 in
the case where ε = 0 too. Indeed, similar to the arguments for x(t) the later statement follows from Lemma 2.4, i.e. from
the fact that ẏ = G0(t, x(t), y) cannot have non-trivial T -periodic solutions that touch y = 0. The upper estimate for x now
follows from the fact that F0(t, x, y) < 0 for all x > supt∈[0,T ] xa(t) and y � 0.

2) Introduce

U−
ε =

⋃
t∈[0,T ]

{
(x, y) ∈ (0,∞) × (0,∞): Fε(t, x, y) = 0, Gε(t, x, y) � 0

}
,

see Fig. 1(right). One always has the existence of t− ∈ [0, T ] such that (x(t−), y(t−)) ∈ Uε . This follows from the fact that
either (ẋ(t), ẏ(t)) = 0 at some t ∈ [0, T ] or the vector (ẋ(t), ẏ(t))

‖(ẋ(t), ẏ(t))‖ fills in a complete unit circle when t varies from 0 to T .
Therefore, to achieve the statement of part 2 it is sufficient to show that there exists ε0 > 0 such that for any ε ∈ [0, ε0]
one has

x < sup
t∈[0,T ]

xc(t) + �, for all (x, y) ∈ U−
ε . (7)

Since G0(t, x, y) � 0 for any x � xc(t) and any y > 0, property (7) holds for ε = 0 automatically. We, therefore, focus on
considering ε > 0. In this case

U−
ε =

⋃
(t,x)∈[0,T ]×[0,∞): fε(t,x)�gε(t,x), fε(t,x)>0

{(
x, fε(t, x)

)}
.

If supt∈[0,T ] xc(t) = ∞ the estimate (7) holds straight away and we need to focus on the case supt∈[0,T ] xc(t) < ∞ only.
Observe that there exists l > 0 such that

c(t, x)

d(t)
� 1 + l, for all x � sup

t∈[0,T ]
xc(t) + �, t ∈ [0, T ]. (8)

Indeed, assume that (8) doesn’t hold, i.e. for any l > 0 one can find t∗ ∈ [0, T ] and x∗ � supt∈[0,T ] xc(t) + � such that

c(t∗, supt∈[0,T ] xc(t) + �)

d(t∗)
� c(t∗, x∗)

d(t∗)
< 1 + l

(where non-decreasing of c has been used). By passing to the limit as l → 0 one gets the existence of t∗ ∈ [0, T ] such

that
c(t∗,supt∈[0,T ] xc(t)+L)

d(t∗)
� 1. But c(t∗,xc(t∗))

d(t∗)
= 1 by the definition of xc and one can conclude that

c(t∗,supt∈[0,T ] xc(t)+L)

d(t∗)
< 1 by

the uniqueness property of xc , see (C). This contradicts non-decreasing of x �→ c(t∗, x) on [xc(t∗), supt∈[0,T ] xc(t) + �] and
completes the proof of (8).
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We use (8) to show the existence of ε0 > 0 such that (7) holds for ε ∈ (0, ε0]. Indeed, arguing by contradiction we obtain
the existence of εn → 0 as n → ∞ and (xn, yn) ∈ U−

εn
, n ∈N, such that xn � supt∈[0,T ] xc(t) + �. We conclude from (8) that

c(t, xn)

d(t)
� 1 + l, for all t ∈ [0, T ], n ∈N,

and, therefore,

gεn(t, xn) =
(

c(t, xn)

d(t)

)1/εn

→ ∞ as n → ∞.

By using the definition of U−
ε we now have

fεn (t, xn) → ∞ as n → ∞ uniformly in t ∈ [0, T ].
But since x � supt∈[0,T ] xa(t) + � for any (x, y) ∈ U−

ε , we have

fεn (t, x) �
maxt∈[0,T ],x∈[0,supt∈[0,T ] xa(t)+�] xa(t, x) + ε

B(supt∈[0,T ] xc(t) + �)
, for all x � sup

t
xc(t) + �.

This contradiction completes the proof of part 2.
3) Similar to part 2, each T -periodic solution that is addresses in the statement of the lemma must pass through the

region

U+
ε =

⋃
t∈[0,T ]

{
(x, y) ∈ (0,∞) × (0,∞): Fε(t, x, y) = 0, Gε(t, x, y) � 0

}
,

see Fig. 1(right). The goal of part 3 is to show that L > 0 and ε0 > 0 can be diminished in such a way that

L � x, for any (x, y) ∈ U+
ε and ε ∈ [0, ε0]. (9)

Observe that there exists l > 0 such that c(t,0)
d(t) < 1− l for all t ∈R (one would have c(t0,0)

d(t0)
� 1 for some t0 ∈ [0, T ] otherwise,

that contradicts (C)). We now take a sufficiently small L > 0 (and within [0,�] as lemma requires) to have

c(t, x)

d(t)
< 1 − l

2
, for all x ∈ [0, L], t ∈ [0, T ].

This property, in particular, implies that G0(t, x, y) < 0 for any t ∈ [0, T ], x ∈ [0, L] and y > 0. Therefore, (9) holds for ε = 0
and it remains to prove that (9) holds for ε ∈ (0, ε0], where ε0 > 0 is sufficiently small. Assuming the contrary, we get the
existence of εn and (xn, yn) ∈ Uεn , such that L � xn for n ∈ N. Therefore,

c(t, xn)

d(t)
< 1 − l

2
, for all t ∈ [0, T ], n ∈N,

and

gεn(t, xn) =
(

c(t, xn)

d(t)

)1/εn

→ 0 as n → ∞.

As in the proof of part 2, we observe, that for ε > 0 the set U+
ε takes the form

U+
ε =

⋃
(t,x)∈[0,T ]×[0,∞): 0< fε(t,x)<gε(t,x)

{(
x, fε(t, x)

)}
,

and, therefore,

fεn (t, xn) → 0 as n → ∞ uniformly in t ∈ [0, T ].
At the same time assumption (B) implies that L > 0 can be diminished so that

fεn (t, x) � δamin, where δ > 0 is a suitable constant, amin = min
t∈[0,T ], x∈[0,L]a(t, x).

We now diminish L > 0 again and achieve amin > 0, which is possible because of (A). This raises a contradiction with the
convergence of fεn (t, xn) and completes the proof of (9).

4) To achieve the statement of part 4 we first use part 1 to sharp the estimate for the set U+
ε that we obtained earlier.

By combining (9) with part 1 we conclude that ε0 > 0 can be diminished so that

L � x < sup xa(t) + �, for any (x, y) ∈ U+
ε and ε ∈ [0, ε0].
t∈[0,T ]
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Secondly, letting fmax = maxt∈[0,T ],x∈[L,supt∈[0,T ] xa(t)+�] max{0, f0(t, x)} we diminish ε0 > 0 further, so that

L � x < sup
t∈[0,T ]

xa(t) + � and 0 < y < fmax + � for any (x, y) ∈ U+
ε and ε ∈ [0, ε0]. (10)

The estimate (10) along with monotonicity of c allow to use the differential inequalities techniques (see [19, §1.4]) to
prove the boundedness of y from above. Let ε ∈ [0, ε0] and let (x, y) be a T -periodic solution to (3) that has a point
in (0,∞) × (0,∞). As in the proof of part 3 we utilize the existence of t+ ∈ [0, T ] such that (x(t+), y(t+)) ∈ U+

ε . Since
y(c(t, x) − d(t)yε) < yc(t, supt∈[0,T ] xa(t) + �) for all t ∈ [0, T ], 0 � x � supt∈[0,T ] xa(t) + �, and y > 0 we have that

y(t) � ym(t),

where ym is the solution of the Cauchy problem

ẏ∗ = y∗c
(

t, sup
t∈[0,T ]

xa(t) + �
)
,

y∗
(
t+) = fmax + �. (11)

Since the general solution of the scalar differential equation ẏ = A(t)y is given by y(t) = y(τ )exp(
∫ t
τ A(s)ds), then any

solution y∗ of (11) whose initial condition doesn’t exceed fmax + � must satisfy

y∗(t) < ymax + M(�), t ∈ [0, T ],
for the constant ymax > 0 given by (6) and for some M(�) → 0 as � → 0, which doesn’t depend on the choice of ε and y∗ .
Since the whole analysis can be carried out for some �̃ ∈ (0,�) playing the role of � and such that M1(�̃) < �, we can
formulate the lemma with M(�) replaced by �.

The proof of the lemma is complete. �
Proof of Lemma 2.2. The proof is by assuming the contrary. We therefore have a sequence {(xn, yn)}∞n=1 of T -periodic
functions and sequences (εn,μn) → 0 as n → ∞ such that (xn, yn) solves (3) with ε = εn and (xn(0), yn(0)) ∈ ∂R0

μn
for all

n ∈ N. Uniform boundedness of {(xn, yn)}∞n=1 given by Lemma 2.3 allows us to consider this sequence convergent. Let

(x0, y0) = lim
n→∞(xn, yn).

The choice of the rectangles R0
μn

is such that Lemma 2.3 (parts 1 and 4) ensures that (xn, yn) neither touches the right

(x = supt∈[0,T ] xa(t)+�) nor touches the top (y = (ymax +�)
ε0
μn

) sides of R0
μn

. This implies that either x0(t) ≡ 0 or y0(t) ≡ 0.
The first case is impossible because of part 3 of Lemma 2.3 and we must conclude that x0 is a T -periodic solution of the
equation

ẋ = xg(t, x). (12)

Part 3 of Lemma 2.3 ensures that x0 is non-trivial. At the same time assumption (X) allows us to consider � > 0 such that
supt∈[0,T ] xc(t) + � < inft∈[0,T ] xa(t), so that

xg(t, x) > 0 for any t ∈ [0, T ], x ∈
(

0, sup
t∈[0,T ]

xc(t) + �
)
.

Therefore, none of the elements of (0, supt∈[0,T ] xc(t) + �) can be initial conditions of T -periodic solutions to (12), that
contradicts part 2 of Lemma 2.3. The proof of the lemma is complete. �
3. Evaluation of the topological degree in the case of smooth coefficients

In this section we prove our main result for the class of smooth systems (3). Such an assumption allows to consider the
Poincaré map Pε (over the period T ) of (3), which may be more familiar to some readers than the integral operator Φε we
use in Section 6.2 (where the uniqueness of solutions is not required).

Remark 3.1. In order for Pε to be defined we also use the continuability of each solution of the unperturbed model (1)
originating at t = 0 in (0,∞)× (0,∞) on the whole [0, T ]. Let us briefly verify that the later is granted under the conditions
(A), (B) and (C). Consider (x0, y0) ∈ (0,∞) × (0,∞) and the solution (x, y) of (1) with the initial condition (x, y)(0) =
(x0, y0). Consider the set

R̂ = {
(x, y) ∈R

2: 0 < x < r1, 0 < y < r2
}
,

such that
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r1 > max
{

x0, sup
t∈[0,T ]

xa(t)
}
, r2 > y∗(T ),

where y∗ is the solution of

ẏ∗ = y∗c(t, r1),

y∗(0) = y0.

We have that r2 > y0. According to the solutions extension theorem (see Hartman [14, Theorem 3.1]) the solution (x, y)

must leave R̂ through the boundary ∂ R̂ , if this solution doesn’t stay in R̂ for the whole time-interval [0, T ]. But (x, y)

cannot cross ∂ R and leave R due to our choice of r1 and r2 (x doesn’t reach r1 because F0(t, r1, y) < 0 for all t ∈ [0, T ],
y > 0 (see the proof of Lemma 2.1) and y doesn’t reach r2 since y(t) � y∗(t) due to the differential inequalities lemma (see
the proof of Lemma 2.3, part 3)).

We briefly recall that if the uniqueness and continuability (from t = 0 to t = T ) of solutions hold, then the Poincaré map
Pε is defined as

Pε

(
(x0, y0)

) = (
x(T ), y(T )

)
,

where (x, y) is the solution of (3) with the initial condition (x(0), y(0)) = (x0, y0). We are now in the position to prove the
analogue of (2) for the Gause model (1) with smooth coefficients.

Theorem 3.1. Let a, b, c, d be C1-functions that satisfy (A), (B), (C) and (X). Then given any � > 0 there exists ε0 > 0 such that

d(I −P0, R) = 1,

where

R = {
(x, y) ∈R

2: ε0 < x < xmax + �, ε0 < y < ymax + �
}

and xmax, ymax are the constants given by (6).

Proof. Let ε0 > 0 and {Rε}ε∈(0,ε0] be those given by Lemma 2.1. The conclusion of Lemma 2.1 implies that, for ε ∈ (0, ε0],

1) each solution (x, y) of (3) that starts at t = 0 at ∂ Rε doesn’t pass through (x(0), y(0)) during (0, T ] (the property
termed T -irreversibility in [19]);

2) d(
( Fε

Gε

)
, Rε) = 1.

Therefore, by Krasnoselskii’s T -irreversibility lemma (see [19, Lemma 6.1]) one gets

d(I −Pε, Rε) = 1, for any ε ∈ (0, ε0]. (13)

Let us now diminish ε0 > 0 so that the conclusion of Lemma 2.2 holds, thus ensuring that

Pεx 
= x for any x ∈ Rε\R and any ε ∈ (0, ε0]. (14)

This allows to apply the additivity (excision) property of the topological degree to conclude that

d(I −Pε, R) = d(I −Pε, Rε) = 1, for any ε ∈ (0, ε0],
while using that d(I − Pε, Rε\R) = 0, which comes from (14). Lemma 2.2 implies that d(I − P0, R) is defined and so
d(I −P0, R) = d(I −Pε, R) for ε > 0 sufficiently small, that completes the proof. �
4. The Gause model with negative divergence

In this section we show that property (2) of the topological degree implies the existence of an asymptotically stable
periodic solution to real-analytic Gause models (1) provided that the divergence of (1) is strictly negative in (0,∞)× (0,∞)

and that a suitable estimate holds for the period of the right-hand side of (1). The later condition is used to ensure that the
Floquet multiplicators of any T -periodic solution of (1) are real and positive. The sign of the divergence further restricts the
value of one of these multiplicators and the topological degree restricts the value of the another one. The real analyticity of
a time-periodic function (t, ξ) �→ ψ(t, ξ) of period T here means the following: for each ξ∗ ∈ (0,∞) there exists r > 0 such
that

ψ(t, ξ) =
∑

ψα(t)(ξ − ξ∗)α, t ∈R,
∥∥ξ − ξ∗

∥∥ < r,

α∈N
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where the coefficients ψα are continuous and T -periodic in t and the convergence of the series is uniform in t . Real-
analyticity is assumed in order to have isolateness of T -periodic solutions of (1).

The results of this section, Lemma 4.1 and Theorem 4.1, have several common points with the work of Amine and Ortega
[1] and Ortega and Tineo [32], who investigated the finiteness of the number of T -periodic solutions and the connection of
the topological degree and asymptotic stability in prey–predator models of Lotka–Volterra type. In particular, to not allow
negative multipliers of T -periodic solutions of (1) to exist we use assumption (18) (see below) earlier discovered in [1].
The presentation in this section is split in two parts. We first establish asymptotic stability for a general planar system in
Lemma 4.1 and then apply Lemma 4.1 to the Gause model (1) in Theorem 4.1. Some remarks towards alternative ways of
avoiding negative multipliers (i.e. towards relaxing (18)) that we attempted to pursue conclude the section.

4.1. Topological index and the existence of asymptotically stable periodic solutions in planar differential equations with negative
divergence

Consider a planar system of T -periodic in time C1-smooth differential equations

u̇ = ψ(t, u), (15)

whose solutions are continuable on [0, T ], and denote by P the respective Poincaré map over period T . In this subsection we
discuss the asymptotic stability of a T -periodic solution u0 of (15) under the assumption ind(u0(0),P) = 1. Here ind(v,P)

stays for the topological index of a fixed point v of map P , i.e. for the value of d(I −P, V ) where V is any neighborhood
of v that don’t have other fixed points of P . The fundamental result that we are going to utilize follows from Ortega
[31] and Kolesov [18]: if the eigenvalues ρ1 and ρ2 of P ′(u0(0)) satisfy ρ1 � 0 and ρ2 ∈ (0,1) then u0 is asymptotically stable.
Negative divergence assumption often ensures ρ1 � 0 and ρ2 ∈ (0,1) for systems (15) where the time-dependent part is
small (see Makarenkov and Ortega [26], Makarenkov and Martynova [25]), but an additional hypothesis is needed otherwise.
The condition (18) that we use below can be viewed as a restriction of the influence of the time-dependent part too.

Lemma 4.1. Let (t, u) �→ ψ(t, u), u ∈ R
2 , be a real-analytic T -periodic in time function. Assume that the following conditions are

satisfied for a T -periodic solution u0 of (15):

ind
(
u0(0),P

) = 1, (16)

negative divergence: Spψ ′
u

(
t, u0(t)

) = [
ψ ′

u

(
t, u0(t)

)]
11 + [

ψ ′
u

(
t, u0(t)

)]
22 < 0, t ∈ [0, T ], (17)

T < π/

(
max

{∣∣[ψ ′
u

(
t, u0(t)

)]
12

∣∣, ∣∣[ψ ′
u

(
t, u0(t)

)]
21

∣∣} + 1

2

∣∣[ψ ′
u

(
t, u0(t)

)]
11 − [

ψ ′
u

(
t, u0(t)

)]
22

∣∣), t ∈ [0, T ]. (18)

Then u0 is asymptotically stable.

For a 2 × 2-matrix A, we write [A]i j to denote the element of the i-th raw and j-th column.

Proof. Let ρ1, ρ2 be the eigenvalues of P ′(u0(0)). By using the Lioville formula [14, Theorem 1.2] and negative divergence
assumption (17) one obtains

ρ1ρ2 = det
∥∥(P)′

(
u0(0)

)∥∥ = exp

T∫
0

Spψ ′
u

(
τ , u0(τ )

)
dτ ∈ (0,1).

The statement of the lemma is, therefore, immediate, if ρ1 and ρ2 are complex conjugated. We assume that ρ1 < ρ2 are
real from now on. Since ρ1ρ2 ∈ (0,1), one of the following two situations must take place:

a) ρ1 ∈ (0,1), ρ2 > 0,
b) ρ1 < 0, ρ2 < 0.

Asymptotic stability of u0 that satisfies (16) and a) follows from Ortega result [31]. It turns out that assumption (18) rules
out option b). This statement is proved in Amine and Ortega [1, §4], but we give an independent proof for the purpose of
completeness. It is sufficient to prove that the linearized system

v̇ = ψ ′
u

(
t, u0(t)

)
v (19)

cannot have non-trivial solutions v such that

sign v1(T ) = − sign v1(0), sign v2(T ) = − sign v2(0). (20)
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Indeed, let ṽ be a solution of (19) that satisfies (20). Consider r̃, φ̃ ∈ C1(R,R) verifying

ṽ1(t) = r̃(t) cos φ̃(t), ṽ2(t) = r̃(t) sin φ̃(t).

Then φ̃ is a solution to

φ̇ = (ψ21)
′
u

(
t, u0(t)

)
cos2 φ + 1

2

[
(ψ22)

′
u

(
t, u0(t)

) − (ψ11)
′
u

(
t, u0(t)

)]
sin 2φ − (ψ12)

′
u

(
t, u0(t)

)
sin2 φ.

Assumption (18) ensures that |φ̃(t)− φ̃(0)| doesn’t reach π whenever t ∈ [0, T ], i.e. (20) cannot occur to ṽ . This contradiction
completes the proof. �
Remark 4.1. The ideas of Amine and Ortega [1, §4] can be used in order to relax (18) based on introducing an auxiliary
parameter. The relaxed assumption takes form (18) for the value 1 of the auxiliary parameter.

4.2. Application to the Gause model with negative divergence

We are now in the position to state the main result of this section, some remarks will follow afterwards.

Theorem 4.1. Let a, b, c, d be real-analytic T -periodic in time functions and let the assumptions (A), (B), (C), (X) be satisfied. If the
negative divergence condition

a(t, x) + xa′
x(t, x) − yb′

x(t, x) + c(t, x) − d(t) < 0, for any t ∈R, x > 0, y > 0 (21)

holds, then (1) has at most a finite number of strictly positive T -periodic solutions and all these solutions are located in (0, xmax] ×
(0, ymax], where xmax, ymax are the constants given by (6). If, in addition,

T < π/

[
max

t∈[0,T ], x∈[0,xmax], y∈[0,ymax]

(
max

{
c′

x(t, x)ymax,b(t, x)
}

+ 1

2

(
a(t, x) + xa′

x(t, x) − yb′
x(t, x) − c(t, x) + d(t)

))]
(22)

then (1) has at least one asymptotically stable T -periodic solution lying in (0, xmax] × (0, ymax].

Proof. From Lemma 2.3 we have that each strictly positive T -periodic solution of (1) belongs to (0, xmax] × (0, ymax]. The
finiteness of the number of T -periodic solutions follows from the Nakajima–Seifert theorem [30] upon the following ob-
servation. The result [30, Theorem, p. 431] formally assumes that the system under consideration is dissipative, that is not
granted in our case. However, the only fact that is used in the proof in [30] out of dissipativity is that the set of T -periodic
solutions is bounded.2

Following Section 3 we denote by P0 the Poincaré map over period T of the Gause model (1). Let {vi}n
i=1 be the set of

all fixed points of the Poincaré map P0 in R . By the additivity of the topological degree

n∑
i=1

ind(vi,P0) = d(I −P0, R) = 1.

Therefore, P0 has a fixed point v∗ ∈ R with

ind(v∗,P0) = 1 (23)

and the conclusion follows from Lemma 4.1. �
Remark 4.2. A possible way to avoid requirement (22) is by proving the existence of v∗ ∈ R such that

ind(v∗,P0P0) = 1 and v∗ = P(v∗). (24)

This would imply that both the eigenvalues of (P0)
′(v∗) are positive. Unfortunately,

ind(v∗,P0P0) 
= ind(v∗,P0) (25)

2 Indeed, the top line at p. 438 of [30] says: “Since system (2) is dissipative, 0(F ) is bounded”. And 0(F ) in [30] is the set of fixed points of the Poincaré
map over the period.
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in general (see [20, Theorem 31.1] for the respective result) and (24) doesn’t follow from (23). However, a v∗ satisfying (24)
can be found for the Gause model (1), if we a priory know that each 2T -periodic solution of (1) is T -periodic. Such a prop-
erty is known as nonexistence of second-order subharmonic solutions, see Amine and Ortega [1]. Assumption (22) is a simplest
way to avoid the existence of second-order subharmonic solutions. In particular, a more general criterion is offered in [1],
see Remark 4.1. There is a wide class of prey–predator models, known as monotone systems, whose Poincaré map respects
a partial order on the cone R

2+ and where second-order subharmonic solutions do not exist, see Mottoni and Schiaffino
[29] for a study of a particular class of monotone competitive systems and Hirsch and Smith [15] for a general theory of
monotone systems. As a matter of fact, Gause model (1) is never monotone under assumptions (A), (B) and (C), even if
all the coefficients are assumed monotone. Another way to avoid the existence of second-order subharmonic solutions is by
assuming that the dynamics of (1) is one-dimensional, see Smith [34] and references therein for the respective conditions.
This way of linking topological degree and asymptotic stability is pursued in Ortega [33] and is applied to a second-order
differential equation of pendulum type. We don’t know whether or not this approach carries over to the Gause model (1).

Remark 4.3. It is possible to prove the following alternative, provided that R is positively invariant under the flow of (1):
either there exist v∗ ∈ R and m ∈ N such that

ind
(

v∗, (P0)
2m) = 1 and v∗ = (P0)

2m−1
(v∗) (26)

or there exists v∗∗ ∈ R that accumulates initial conditions of periodic solutions of arbitrary large least periods. Property
(26) would imply the existence of an asymptotically stable solution of period mT , if the existence of v∗∗ is ruled out.
Unfortunately, we didn’t succeed to design conditions that prevent accumulation of periodic solutions of arbitrary large
periods in the Gause model (1). An example of Gause model (1) whose flow keeps R positively invariant is studied in
Wolkowicz and Zhao [36].

5. The Lotka–Volterra model with Holling type-II predator response function

Theorem 4.1 suggests conditions for the existence of asymptotically stable T -periodic solutions in Lotka–Volterra models
with Holling type-II predator response function:

ẋ = x
(
a1(t) − a2(t)x

) − y
b1(t)x

b2(t) + x
, (27)

ẏ = y

(
c1(t)x

c2(t) + x
− d(t)

)
. (28)

The global asymptotic stability of a periodic solution in a model of form (27)–(28) with ratio-dependent Holling type-II
predator response, i.e. with b2(t) and c2(t) multiplied by y, is established in Fan, Wang and Zou [7]. However, the ratio-
dependence in the above mentioned result seems to be vital (if one goes through the lines of the proof in [7]). We are
not aware of any paper that leads to the existence of a stable periodic solution in the ratio-independent system under con-
sideration. The particular form of the coefficients a(t, x), b(t, x) and c(t, x) of (1) that is implemented in (27)–(28) implies
that

• a′
x , b′

x , b′′
xx , c′

x exist and a′
x(t, x) � 0, b′

x(t, x) > 0, b′′
xx(t, x) < 0, c′

x(t, x) > 0 for all t ∈R, x > 0,
• limt→∞ b(t, x) and limt→∞ c(t, x) exist and are finite,

i.e. the settings of the results [16,35,36,28,21,23] mentioned in the introduction hold (it can be noticed that the result of
[16] makes [35] applicable). However, none of these results mention anything about asymptotic stability with the exception
of Moghadas and Alexander [28] which deals with nearly constant periodic solutions only. We refer the reader to the
paper [12] by Garulli, Mocenni, Vicino and Tesi for numerical results (received with LOCBIF and WINPP software) about
stable periodic solutions to (27)–(28) with a1(t) = M + N sin(2πt/12 + 1) and constant other coefficients. To summarize, the
following corollary of Theorem 4.1 might be a useful addition within the literature on periodic solutions of (27)–(28).

Theorem 5.1. Assume that a1 , a2 , b1 , b2 , c1 , c2 , d are continuous, T -periodic and strictly positive functions. Define

xmax = max
t∈[0,T ]

a1(t)

a2(t)
, ymax = max

t∈[0,T ]
a1(t)(b2(t) + xmax)

b1(t)
.

If

1) a1(t) < d(t) < c1(t) < 2a2(t)c2(t), for any t ∈ [0, T ],
2) max

d(t)c2(t)
< min

a1(t)
,

t∈[0,T ] c1(t) − d(t) t∈[0,T ] a2(t)
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3) T < π/

[
max

t∈[0,T ], x∈[0,xmax], y∈[0,ymax]

(
max

{
c1(t)

c2(t)
ymax,

b1(t)

b2(t)
xmax

}
+ 1

2

(
a1(t) − 2a2(t)x − b1(t)b2(t)y

(b2(t) + x)2
− c1(t)x

c2(t) + x
+ d(t)

))]
then system (27)–(28) has at least one asymptotically stable T -periodic solution in (0, xmax] × (0, ymax].

Proof. The negative divergence condition (21) takes the form

a1(t) − 2a2(t)x − b1(t)b2(t)y

(b2(t) + x)2
+ c1(t)x

c2(t) + x
− d(t) < 0, t ∈ [0, T ],

that uses the first and the last inequalities in 1) in order to hold. Furthermore, we have

xa(t) = a1(t)

a2(t)
, xc(t) = d(t)c2(t)

c1(t) − d(t)
,

that leads to the middle inequality in 1) (that ensures that xc is strictly positive) and to 2) (that ensures that (X) holds).
Strict positivity of each of the coefficients in (27)–(28) is required to have the positivity assumptions in (A), (B) and (C)

fulfilled. The statement is, therefore, a direct consequence of Theorem 4.1. �
Remark 5.1. The paper Wolkowicz and Zhao [36] discovers a class of systems (27)–(28) that possesses a rectangular trapping
region in R

2+ , but these authors don’t evaluate the bounds of this region explicitly. Making the later step could help deriving
conditions for the existence of a globally stable periodic solution to (27)–(28) along the lines of Fan, Wang and Zou [7].

6. Evaluation of the topological degree in the general case

This section is devoted to the proof of the main result of this paper in the most general settings, the formula (2).
In combination with the continuity of the topological degree, formula (2) allows to incorporate delays (see Krasnoselskii
[19, Appendix II, §3], Krasnoselskii and Zabreyko [20, §41.5]) and other functionals (see [20]) into Gause model (1), with
potential bearings towards complementing the results in [16,5,21,6] (see introduction). Formula (2) also allows incorporating
time-periodic impulses that can be viewed as perturbations of the integral operator Φ . In this way formula (2) may, for
instance, extend the results of Ding, Su and Hao [5].

Though formula (2) can be received as a consequence of Theorem 3.1 over the duality principle between Poincaré map
P0 and integral operator Φ (see [19, Appendix II.2]), we suggest a proof that doesn’t employ uniqueness of solutions. The
reasons for that are twofold. Firstly, allowing nonuniqueness creates a wider room to account for the phenomenon of group
defence. An autonomous Gause model with group defense has been analysed by Freedman in [11], where nonuniqueness
took place along the x-axis only. A modification of this phenomenon may shift nonsmoothness to the (0,∞)×(0,∞) region.
Secondly, our level of generality enables a simple extension of the main result to Gause models with multi-valued terms,
e.g. to account for switch-like interactions between species (see Gouze and Sari [13]). The functions xa and xc will naturally
be multi-valued in such a case, that can be accommodated by all the proofs.

As the main tool of the proof in Theorem 3.1 is the T -irreversibility lemma by Krasnoselski, we need its version that
doesn’t employ uniqueness of solutions. Such a lemma is proposed in the next subsection of the paper.

6.1. T -irreversibility lemma for periodic differential equations with continuous right-hand terms

Consider a differential equation

u̇ = ψ(t, u), (29)

where ψ ∈ C0(R×R
n,Rn), and introduce the integral operator

(Ψ u)(t) = u(T ) +
t∫

0

ψ
(
τ , u(τ )

)
dτ ,

associated to the T -periodic problem. Our result will assume the following stronger version of the Krasnoselskii’s
T -irreversibility condition.

Definition 6.1. We call a point ξ ∈R
n a point of strong T -irreversibility of the solutions of (29), if given any t0 ∈ [0, T ] and any

solution u of (29) with the initial condition u(t0) = ξ , the trajectory t �→ u(t) doesn’t have self-interactions on any interval
t0 ∈ [s1, s2] ⊂ [0, T ] where this trajectory is defined.
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Lemma 6.1. Consider ψ ∈ C0(R×R
n,Rn) and let U ⊂ R

n be an open bounded set. Assume that ψ(0, ·) doesn’t vanish on ∂U . Assume
that all points of ∂U are points of strong T -irreversibility of the solutions of (29). Then d(I − Ψ, W U ) is defined and

d(I − Ψ, W U ) = d
(−ψ(0, ·), U

)
. (30)

Proof. Observe that the integral operator

(Ψλu)(t) = u(T ) + λ

t∫
0

ψ
(
λτ , u(τ )

)
dτ

doesn’t have fixed points on ∂W for any λ ∈ (0,1]. Indeed, if Ψλu = u then v(t) = u(t/λ) is a solution of (29) with v(0) =
v(λT ) and v([0, λT ]) ∩ ∂U 
= ∅, that contradicts the strong T -irreversibility assumption. We claim that for λ > 0 sufficiently
small Ψλ is homotopic to

(Ψ λu)(t) = u(T ) + λ

T∫
0

ψ
(
0, u(τ )

)
dτ

on W U . To show this we prove that the deformation

(Ψλ,αu)(t) = u(T ) + λ

αt+(1−α)T∫
0

ψ
(
λατ , u(τ )

)
dτ , α ∈ [0,1]

doesn’t have fixed points on ∂W for all λ > 0 sufficiently small. We prove by contradiction, i.e. we assume the existence of
λk → 0, αk → α0, uk → u0, uk ∈ ∂W U , as k → ∞, such that

uk(t) = uk(T ) + λk

αkt+(1−αk)T∫
0

ψ
(
λkαkτ , uk(τ )

)
dτ . (31)

Since u̇k → 0 as k → ∞ we conclude that u0(t) = u∗ , where u∗ ∈ ∂U . By plugging t = T in (31), dividing by λk and passing
to the limit as k → ∞ we obtain

T∫
0

ψ(0, u∗)dτ = T ψ(0, u∗) = 0

which contradicts nonsingularity of ψ(0, ·) on ∂U . Therefore

d(I − Ψ1, W U ) = d(I − Ψ λ, W U )

for λ > 0 sufficiently small. Since Ψ λC([0, T ],Rn) ⊂ C([0, T ],Rn) ∩ R
n , the reduction theorem [20, Theorem 27.1] implies

that

d(I − Ψ λ, W U ) = d
(

I − Ψ λ, W U ∩R
n) = dRn (I − ψλ, U ),

where ψλ(ξ) = ξ + λ
∫ T

0 ψ(0, ξ)dτ = ξ + λT ψ(0, ξ), ξ ∈ R
n . Since the linear deformation between I − ψλ and I − ψ1/T is

nonsingular on ∂U , we finally conclude

d(I − Ψ1, W U ) = d(I − ψλ, U ) = d(I − ψ1/T , U ) = d
(−ψ(0, ·), U

)
. �

Remark 6.1. Our definition of strong T -irreversibility takes the form of the T -irreversibility by Krasnoselskii (see the proof
of Theorem 3.1 for the Krasnoselskii’s definition), if t0 is set as 0. That could be possible to prove Lemma 6.1 under the
later T -irreversibility assumption. However, that won’t be the set W U in (30) in such a case, but the integral funnel of (29)
emanating from U over time T . We note that is the set W U which is considered in Zanolin [37].
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6.2. The main result

We are finally ready to prove formula (2).

Theorem 6.1. Let a, b, c, d be continuous functions that satisfy (A), (B), (C) and (X). Then given any � > 0 there exists ε0 > 0 such
that

d(I − Φ, W R) = 1,

where

W R = {
(x, y) ∈ C0([0, T ],R2): ε0 < x(t) < xmax + �, ε0 < y(t) < ymax + �, t ∈ [0, T ]} (32)

and xmax, ymax are the constants given by (6).

The proof just follows the lines of the proof of Theorem 3.1 with the following natural amendments:

1) The integral operator

Φε

(
x
y

)
(t) = x(T ) +

t∫
0

(
Fε(τ , x(τ ), y(τ ))

Gε(τ , x(τ ), y(τ ))

)
dτ

will replace the Poincaré map Pε and the set

W Rε = {
(x, y) ∈ C0([0, T ],R2):

(
x(t), y(t)

) ∈ Rε, t ∈ [0, T ]}
will replace Rε .

2) Lemma 6.1 has to be used instead of the T -irreversibility lemma by Krasnoselskii (one needs to observe that Lemma 2.1
implies not only T -irreversibility of solutions, but also the strong T -irreversibility), to have d(I − Φε, W Rε ) = 1 in
analogy with (13).

Because a considerable part of the literature on the competitive biological model has been achieved over the so-called
coincidence degree (see Mawhin [27, p. 19]), we express our main result in terms of this degree too. We wish this makes
our work useful for a wider audience.

6.3. A corollary for the coincidence degree

Let Z = {(x, y) ∈ C([0, T ],R2): x(0) = x(T ), y(0) = y(T )} and let L : dom L ⊂ Z → L1([0, T ],Rn) be the linear opera-
tor defined by (L(x, y))(·) = (ẋ(·), ẏ(·)) with dom L = {(x, y) ∈ Z : x and y are absolutely continuous}. The operator L is a
Fredholm operator of index zero, see e.g. Mawhin [27]. Let N : Z → L1([0, T ],R2) be the Nemitcky operator defined by the
right-hand sides of Gause model (1) as follows(

N(x, y)
)
(t) =

(
F0(t, x(t), y(t))
G0(t, x(t), y(t))

)
.

Thus the existence of T -periodic solutions for system (2) is equivalent to the solvability of the equation

L(x, y) = N(x, y), (x, y) ∈ dom L. (33)

The next theorem is a version of formula (2) in terms of the coincidence degree D L(L − N, W ∩ Z) of L and N (see [27,
p. 19] for a detailed definition).

Theorem 6.2. Let a, b, c, d be continuous functions that satisfy (A), (B), (C) and (X). Then given � > 0 there exist ε0, M > 0 such
that

D L(L − N, W�,ε0,M ∩ Z) = 1,

where W�,ε0,M is given by (32).

The proof follows from the duality principle (see Mawhin [27, Ch. 3]) between the coincidence degree and the one we
used in (2) (Leray–Schauder degree). We refer the reader to [17, Corollary 2.6] for details.
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