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The main result of the article is the rate of convergence to the Rosenblatt-type 
distributions in non-central limit theorems. Specifications of the main theorem are 
discussed for several scenarios. In particular, special attention is paid to the Cauchy, 
generalized Linnik’s, and local–global distinguisher random processes and fields. 
Direct analytical methods are used to investigate the rate of convergence in the 
uniform metric.
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1. Introduction

This paper studies local functionals of homogeneous random fields with long-range dependence, which 
appear in various applications in signal processing, geophysics, telecommunications, hydrology, etc. The 
reader can find more details about long-range dependent processes and fields in [7,10,12,16,37] and the 
references therein. In particular, [7] discusses different definitions of long-range dependence in terms of the 
autocorrelation function (the integral of the correlation function diverges) or the spectrum (the spectral 
density has a singularity at zero). The case when the summands/integrands are functionals of a long-range 
dependent Gaussian process is of great importance in the theory of limit theorems for sums/integrals of de-
pendent random variables. It was shown by Taqqu [32,33] and Dobrushin and Major [6] that, comparing with 
the central limit theorem, long-range dependent summands can produce different normalizing coefficients 
and non-Gaussian limits. The volumes [7] and [28] give excellent surveys of the field. For multidimensional 
results of this type see [12,15,16]. Some most recent results can be found in [13,19,27].
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Despite recent progress in the non-central limit theory there has been remarkably little fundamental 
theoretical study on rates of convergence in non-central limit theorems. The rate of convergence to the 
Gaussian distribution for a local functional of Gaussian random fields with long-range dependence was first 
obtained in [15]. This result was applied to investigate the convergence of random solutions of the multi-
dimensional Burgers equation in [21]. The only publications, which are known to the authors, on the rate 
of convergence to non-Gaussian distributions in the non-central limit theorem are [4,17]. These publica-
tions investigate particular cases of stochastic processes. The Hermite power variations of a discrete-time 
fractional Brownian motion were studied in [4]. The article [17] investigated the specific one-dimensional 
case of the Cauchy stochastic process and some facts used in the paper require corrections. To the best of 
our knowledge, the rate of convergence has never been studied in the general context of non-central limit 
theorems for non-Gaussian limit distributions. This work was intended as an attempt to obtain first results 
in this direction.

Our focus in this paper is on fine convergence properties of functionals of long-range dependent Gaussian 
fields. The paper establishes the rate of convergence in limit theorems for random fields, which is also new 
for the case of stochastic processes. It also generalizes the result of [17], which was obtained for a stochastic 
process with a fixed Cauchy covariance function, to integral functionals of random fields over arbitrary 
convex sets. In addition, the paper corrects some proofs in [17]. Specific important examples of the Cauchy, 
generalized Linnik, and local–global distinguisher random processes and fields, which have been recently 
used to separate a fractal dimension and the Hurst effect [10], are considered.

To estimate distances between distributions in the limit theorems for non-linear transformations of Gaus-
sian stochastic processes Nourdin and Peccati proposed an approach based on the Malliavin calculus and 
Stein’s method, see [23,24] and the references therein. The cases of the standard normal distribution and 
the centred Gamma distribution were considered and the limit theorems for the weakly dependent case 
were obtained. In [4] the Malliavin calculus and Stein’s method were applied to obtain error bounds for 
Hermite power variations of a fractional Brownian motion. Central and non-central limit theorems for the 
Hermite variations of the anisotropic fractional Brownian sheet and the distance between a normal law and 
another law were studied in [30] and extended to the multidimensional case in [3]. However, to the best of 
our knowledge, there are no extensions of these results to more general classes of covariance functions in 
the multidimensional case considered in this paper. In contrast we use direct analytical probability methods 
to investigate the rate of convergence in the uniform (Kolmogorov) metric of long-range dependent random 
fields to the Rosenblatt-type distributions.

The class of Rosenblatt-type distributions is contained in the wide class of non-Gaussian Hermite distri-
butions, which can be defined by its representation in the form of multiple Wiener–Itô stochastic integrals 
with respect to the complex Gaussian white noise random measure. The Rosenblatt distribution is a specific 
element from this class, which has been widely used recently in the probability theory and also appeared 
in a statistical context as the asymptotic distribution of certain estimators. There are power series expres-
sions for the characteristic functions of the Rosenblatt distribution. For a comprehensive exposition of the 
Rosenblatt distribution and process we refer the reader to [9,20,32,34–36]. The approach presented in the 
present paper seems to be suitable even in more general situations of the Hermite limit distributions.

The results were obtained under assumptions similar to the standard ones in [31] and the references 
therein. Rather general assumptions were chosen to describe various asymptotic scenarios for correlation 
and spectral functions. Some simple sufficient conditions and examples of correlation models satisfying the 
assumptions are discussed in Sections 5 and 6.

As a bonus, some other new results of independent interest in the paper are: the boundedness of prob-
ability densities of the Rosenblatt-type distributions, asymptotics at the origin of the spectral densities of 
the Cauchy, generalized Linnik, and local–global distinguisher random processes and fields, and the repre-
sentation of the spectral density of the local–global distinguisher random processes.
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The article is organized as follows. In Section 2 we recall some basic definitions and formulae of the spectral 
theory of random fields. Section 3 introduces the key assumptions and auxiliary results. The main result 
is presented in Section 4 and its specifications to various important cases are demonstrated in Section 5. 
Discussions and short conclusions are presented in Section 6.

Some computations in Examples 3 and 4 were performed by using Maple 15.0 of Waterloo Maple Inc. 
and verified by Mathematica 9.0 of Wolfram Research, Inc.

2. Notations

In what follows | · | and ‖ · ‖ denote the Lebesgue measure and the Euclidean distance in R
d, respectively. 

We use the symbols C and δ to denote constants which are not important for our exposition. Moreover, the 
same symbol may be used for different constants appearing in the same proof.

We consider a measurable mean square continuous zero-mean homogeneous isotropic real-valued random 
field η(x), x ∈ R

d, defined on a probability space (Ω, F , P ), with the covariance function

B(r) := Cov
(
η(x), η(y)

)
=

∞∫
0

Yd(rz) dΦ(z), x, y ∈ R
d,

where r := ‖x − y‖, Φ(·) is the isotropic spectral measure, the function Yd(·) is defined by

Yd(z) := 2(d−2)/2Γ

(
d

2

)
J(d−2)/2(z)z(2−d)/2, z ≥ 0,

J(d−2)/2(·) is the Bessel function of the first kind of order (d − 2)/2.

Definition 1. The random field η(x), x ∈ R
d, as defined above is said to possess an absolutely continuous 

spectrum if there exists a function f(·) such that

Φ(z) = 2πd/2Γ−1(d/2)
z∫

0

ud−1f(u) du, z ≥ 0, ud−1f(u) ∈ L1(R+).

The function f(·) is called the isotropic spectral density function of the field η(x).

The field η(x) with an absolutely continuous spectrum has the isonormal spectral representation

η(x) =
∫
Rd

ei(λ,x)
√

f
(
‖λ‖

)
W (dλ),

where W (·) is the complex Gaussian white noise random measure on Rd.
Consider a Jordan-measurable convex bounded set Δ ⊂ R

d, such that |Δ| > 0 and Δ contains the origin 
in its interior. Let Δ(r), r > 0, be the homothetic image of the set Δ, with the centre of homothety at the 
origin and the coefficient r > 0, that is |Δ(r)| = rd|Δ|.

Consider the uniform distribution on Δ(r) with the probability density function (pdf) r−d|Δ|−1χΔ(r)(x), 
x ∈ R

d, where χA(·) is the indicator function of a set A.

Definition 2. Let U and V be two random vectors which are independent and uniformly distributed inside 
the set Δ(r). We denote by ψΔ(r)(z), z ≥ 0, the pdf of the distance ‖U − V ‖ between U and V .
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Note that ψΔ(r)(z) = 0 if z > diam{Δ(r)}. Using the above notations, we obtain the representation

∫
Δ(r)

∫
Δ(r)

Υ
(
‖x− y‖

)
dx dy = |Δ|2r2dE Υ

(
‖U − V ‖

)
= |Δ|2r2d

diam{Δ(r)}∫
0

Υ (z) ψΔ(r)(z) dz, (1)

where Υ (·) is an integrable Borel function.

Remark 1. If Δ(r) is the ball v(r) := {x ∈ R
d : ‖x‖ < r}, then

ψv(r)(z) = dr−dzd−1I1−(z/2r)2

(
d + 1

2 ,
1
2

)
, 0 ≤ z ≤ 2r,

where

Iμ(p, q) := Γ (p + q)
Γ (p) Γ (q)

μ∫
0

up−1(1 − u)q−1 du, μ ∈ (0, 1], p > 0, q > 0,

is the incomplete beta function, see [12].

Remark 2. Let Hk(u), k ≥ 0, u ∈ R, be the Hermite polynomials, see [28]. If (ξ1, . . . , ξ2p) is 2p-dimensional 
zero mean Gaussian vector with

Eξjξk =

⎧⎨
⎩

1, if k = j;
rj , if k = j + p and 1 ≤ j ≤ p,

0, otherwise,

then

E
p∏

j=1
Hkj

(ξj)Hmj
(ξj+p) =

p∏
j=1

δ
mj

kj
kj !r

kj

j .

The Hermite polynomials form a complete orthogonal system in the Hilbert space

L2
(
R, φ(w)dw

)
=

{
G :

∫
R

G2(w)φ(w) dw < ∞
}
, φ(w) := e−

w2
2 /

√
2π.

An arbitrary function G(w) ∈ L2(R, φ(w)dw) admits the mean-square convergent expansion

G(w) =
∞∑
j=0

CjHj(w)
j! , Cj :=

∫
R

G(w)Hj(w)φ(w) dw. (2)

By Parseval’s identity

∞∑
j=0

C2
j

j! =
∫
R

G2(w)φ(w) dw. (3)

Definition 3. (See [32].) Let G(w) ∈ L2(R, φ(w)dw) and assume there exists an integer κ ≥ 1 such that 
Cj = 0, for all 0 ≤ j ≤ κ − 1, but Cκ 	= 0. Then κ is called the Hermite rank of G(·) and denoted by 
H rankG.
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Definition 4. (See [1].) A measurable function L : (0, ∞) → (0, ∞) is called slowly varying at infinity if for 
all t > 0,

lim
λ→∞

L(λt)
L(λ)

= 1.

By the representation theorem [1, Theorem 1.3.1], there exists C > 0 such that for all r ≥ C the 
function L(·) can be written in the form

L(r) = exp
(
ζ1(r) +

r∫
C

ζ2(u)
u

du
)
, (4)

where ζ1(·) and ζ2(·) are such measurable and bounded functions that ζ2(r) → 0 and ζ1(r) → C0 (|C0| < ∞), 
when r → ∞.

If L(·) varies slowly and a > 0 then raL(r) → ∞, r−aL(r) → 0, when r → ∞, see Proposition 1.3.6
in [1].

3. Assumptions and auxiliary results

In this section we list the main assumptions and some auxiliary results from [19] which will be used to 
obtain the rate of convergence in non-central limit theorems. The detailed discussion of the main assumptions 
is given in Section 6. We also prove the boundedness of the pdf of the Rosenblatt-type distributions.

Assumption 1. Let η(x), x ∈ R
d, be a homogeneous isotropic Gaussian random field with Eη(x) = 0 and 

the covariance function B(x) such that

B(0) = 1, B(x) = Eη(0)η(x) = ‖x‖−αL
(
‖x‖

)
,

where L(‖ · ‖) is a function slowly varying at infinity.

In this paper we restrict our consideration to α ∈ (0, d/κ), where κ is the Hermite rank in Definition 3. 
For such α the covariance function B(x) satisfying Assumption 1 is not integrable, which corresponds to 
the case of long-range dependence.

Let us denote

Kr :=
∫

Δ(r)

G
(
η(x)

)
dx and Kr,κ := Cκ

κ!

∫
Δ(r)

Hκ

(
η(x)

)
dx,

where Cκ is defined by (2).

Theorem 1. (See [19].) Suppose that η(x), x ∈ R
d, satisfies Assumption 1 and H rankG(·) = κ ≥ 1. If there 

exists the limit distribution for at least one of the random variables

Kr√
VarKr

and Kr,κ√
VarKr,κ

,

then the limit distribution of the other random variable exists too and the limit distributions coincide when 
r → ∞.
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Remark 3. By the property limr→∞ VarKr/VarKr,κ = 1 (see [19]) Theorem 1 holds if the first random 
variable is replaced by Kr/

√
VarKr,κ.

Assumption 2. The random field η(x), x ∈ R
d, has the spectral density

f
(
‖λ‖

)
= c2(d, α)‖λ‖α−dL

(
1

‖λ‖

)
+ ε

(
‖λ‖

)
, (5)

where ε(t) = tα−dL(1/t) · O(min(tυ, 1)), as max(t, 1/t) → +∞,

c2(d, α) :=
Γ (d−α

2 )
2απd/2Γ (α2 )

,

and L(‖ · ‖) is a function which is locally bounded slowly varying at infinity and satisfies for sufficiently 
large r the condition ∣∣∣∣1 − L(tr)

L(r)

∣∣∣∣ ≤ Ctν/rq, t ≥ 1, (6)

where υ > 0, q > 0, and ν are constants.

Remark 4. For d = 1 Assumption 2 is similar to the conditions employed in [31] and the references therein 
to describe the asymptotic behaviour of the spectral density at zero. For example, the conditions (5) and (6)
are the equivalents of Assumptions 3 and 4 in [31]. Some sufficient conditions for Assumption 2 are discussed 
in Remark 6 and [31].

Remark 5. For d > 1 the situation is more complex. Under some additional conditions (for example, mono-
tonicity and essential positivity) Assumptions 1 and 2 are linked by Abelian and Tauberian theorems. 
However, they do not imply each other in general, consult [18,26]. Thus, to investigate the rate of conver-
gence we need both assumptions. Moreover, Assumption 2 provides more detailed information about the 
asymptotic behaviour of the spectral density at zero than one can obtain from the corresponding Tauberian 
theorem.

The following lemma shows that (6) can be replaced by a “stronger” condition.

Lemma 1. The condition (6) is equivalent to∣∣∣∣1 − L(tr)
L(r)

∣∣∣∣ ≤ C/rq, t ≥ 1, q > 0. (7)

Proof. The condition (6) implies that, for each t ≥ 1, L(tr)/L(r)−1 = O(r−q), as r → ∞, where O(r−q) may 
be different for different values of t. Notice that r−q has positive decrease because its upper Matuszewska 
index (refer to Section 2.1.2 of [1]) is −q < 0. Then, by the representation theorem for slowly varying 
functions with remainder, see Corollary 3.12.3 in [1],

L(r) = C
(
1 + C(r)

)
, as r → ∞, (8)

where C(r) = O(r−q). Therefore, by (8)

sup
t≥1

∣∣∣∣1 − L(tr)
L(r)

∣∣∣∣ =
supt≥1 |C(r) − C(tr)|

1 + C(r) ≤ C

rq
+ sup

t≥1

C

(tr)q = O
(
r−q

)
, r → ∞,

and the condition (6) can be replaced by (7). �
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Remark 6. An example of a sufficient condition for (6) is that L(·) is differentiable and its derivative satisfies

∣∣L′(r)
∣∣ = O

(
L(r)/r1+q

)
, r → +∞. (9)

Indeed, by Theorem 1.5.3 of [1], there exist r0 > 0 and C > 0 such that for all r ≥ r0 it holds

∣∣∣∣1 − L(tr)
L(r)

∣∣∣∣ ≤
∣∣∣∣r(t− 1) supu∈[r,rt] L

′(u)
L(r)

∣∣∣∣ ≤ r(t− 1) sup
u∈[r,rt]

∣∣∣∣L′(u)
L(u)

∣∣∣∣
× sup

u∈[r,rt]

uδ

rδ
·
supu∈[r,rt] u

−δL(u)
r−δL(r) ≤ C

t1+δ

rq
, t ≥ 1.

Notice, that (9) can be rewritten as | ln′(L(r))| = O(r−1−q), as r → +∞. Therefore, if the function ζ1(·)
is differentiable in (4) we obtain the sufficient condition

∣∣∣∣ζ ′1(r) + ζ2(r)
r

∣∣∣∣ = O
(
r−1−q

)
, r → +∞.

A few simple examples of functions satisfying the condition (6) for sufficiently large r are L(r) = a0, 
L(r) = (a0 + a1r

−q)a2 , and L(r) = a0 exp(a1/r
q), where a0 > 0, a1 and a2 are constants. The function 

L(r) = ln r does not satisfy the condition (6).

Remark 7. Note that Assumption 1 implies L(t) = O(tα), t → +0. Therefore, if Assumption 1 holds true 
then the condition ε(t) = tα−dL(1/t) · O(min(tυ, 1)) is equivalent to ε(t) = O(t−d), when t → +∞. Hence, 
the condition (5) is equivalent to f(‖λ‖) = O(‖λ‖−d), when ‖λ‖ → +∞. Thus, if Assumption 1 is fulfilled 
then for the case ‖λ‖ → +∞ one can use f(‖λ‖) = O(‖λ‖−d) instead of the condition (5) in Assumption 2.

Let us denote the Fourier transform of the indicator function of the set Δ by

KΔ(x) :=
∫
Δ

ei(x,u) du, x ∈ R
d. (10)

Lemma 2. (See [19].) If τ1, ..., τκ, κ ≥ 1, are such positive constants that 
∑κ

i=1 τi < d, then
∫

Rdκ

∣∣KΔ(λ1 + · · · + λκ)
∣∣2 dλ1 . . . dλκ

‖λ1‖d−τ1 · · · ‖λκ‖d−τκ
< ∞.

Theorem 2. (See [19].) Let η(x), x ∈ R
d, be a homogeneous isotropic Gaussian random field with Eη(x) = 0. 

If Assumptions 1 and 2 hold, then for r → ∞ the finite-dimensional distributions of

Xr,κ := r(κα)/2−dL−κ/2(r)
∫

Δ(r)

Hκ

(
η(x)

)
dx

converge weakly to the finite-dimensional distributions of

Xκ(Δ) := c
κ/2
2 (d, α)

∫
Rdκ

′
KΔ(λ1 + · · · + λκ) W (dλ1) . . .W (dλκ)

‖λ1‖(d−α)/2 · · · ‖λκ‖(d−α)/2 ,

where 
∫ ′
Rdκ denotes the multiple Wiener–Itô integral.
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Definition 5. The probability distribution of X2(Δ) will be called the Rosenblatt-type distribution.

It is a generalization of the Rosenblatt distribution to arbitrary set Δ. Consult [9,20,32,34–36] on various 
properties and applications of the Rosenblatt distribution.

Lemma 3. The Rosenblatt-type distribution has a bounded probability density function:

sup
z∈R

pX2(Δ)(z) = sup
z∈R

d
dzP

(
X2(Δ) ≤ z

)
< +∞.

Proof. By Theorem 1 in [5] (also consult [25] for some recent results) it follows that the probability distribu-
tion of X2(Δ) is absolutely continuous. To show that X2(Δ) has a bounded density we will use Theorem 2 
of [5] which is valid for general measurable spaces. In our case it requires the existence of linearly independent 
functions h1(·), h2(·) ∈ L2(Rd) such that

∫
R2d

KΔ(λ1 + λ2)h1(λ1)h1(λ2)
‖λ1‖(d−α)/2‖λ2‖(d−α)/2 dλ1 dλ2 > 0, (11)

and
∫

R4d

�K(λ1, λ2, λ3, λ4)h1(λ1)h1(λ2)h2(λ3)h2(λ4)
4∏

j=1

dλj

‖λj‖(d−α)/2 > 0, (12)

where �K(λ1, λ2, λ3, λ4) := KΔ(λ1 + λ2)KΔ(λ3 + λ4) −KΔ(λ1 + λ3)KΔ(λ2 + λ4).
Let us choose

hj(λ,A0) := χv(A0)(λ)
(
�j{Δ}

2π

)d/2 Jd/2(‖λ‖ · �j{Δ})
‖λ‖α/2 , (13)

where A0 is a positive number, v(A0) is the Euclidean ball of radius A0, and �j{Δ} > 0, j = 1, 2. For 
convenience, we will also use the definition (13) in the case A0 = +∞ assuming that χv(+∞)(λ) ≡ 1.

We will need the following asymptotic properties of the Bessel function of the first kind, see (8.402) and 
(8.451) in [11],

Jd/2(z) ∼
√

2
πz

cos
(
z − π(d + 1)/4

)
, z → ∞, Jd/2(z) ∼

zd/2

2d/2Γ (d/2 + 1)
, z → 0.

By the definition (13),

• hj(·, A0) ∈ L2(Rd), j = 1, 2, are radial functions with compact supports for which h̃j(λ, A0) :=
‖λ‖(α−d)/2hj(λ, A0) ∈ L1(Rd) ∩ L2(Rd), when A0 < +∞;

• h̃j(λ, A0) ∈ L2(Rd), when A0 = +∞.

Therefore, substituting (10) and (13) into (11) and (12) and legitimately changing the order of integration, 
for A0 < +∞ we get

I(A0) :=
∫

R2d

KΔ(λ1 + λ2)h1(λ1, A0)h1(λ2, A0)
‖λ1‖(d−α)/2‖λ2‖(d−α)/2 dλ1dλ2

=
∫ ∫

ei(λ1+λ2,u)h1(λ1, A0)h1(λ2, A0)
‖λ1‖(d−α)/2‖λ2‖(d−α)/2 dλ1dλ2 du =

∫ (ˆ̃h1(u,A0)
)2 du, (14)
Δ R2d Δ
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and similarly

I0(A0) :=
∫

R4d

�K(λ1, λ2, λ3, λ4)h1(λ1, A0)h1(λ2, A0)h2(λ3, A0)h2(λ4, A0)
4∏

j=1

dλj

‖λj‖(d−α)/2

=
∫
Δ

(ˆ̃h1(u,A0)
)2 du

∫
Δ

(ˆ̃h2(u,A0)
)2 du−

(∫
Δ

ˆ̃h1(u,A0)ˆ̃h2(u,A0) du
)2

, (15)

where ˆ̃hj(·, A0) are the Fourier transforms of h̃j(·, A0), j = 1, 2.
Notice, that for A0 = +∞ we get, see [26],

χv(	j{Δ})(u) =
(
�j{Δ}√

2π

)d ∫
Rd

ei(u,λ)Jd/2(‖λ‖�j{Δ})
(‖λ‖�j{Δ})d/2 dλ = ˆ̃hj(u,+∞), j = 1, 2. (16)

By the definition (13),

h̃j(λ,A0) → h̃j(λ,+∞) in L2
(
R

d
)
, when A0 → +∞.

Hence, (14), (15), and (16) yield

I(A0) →
∫
Δ

(ˆ̃h1(u,+∞)
)2 du =

∫
Δ

(
χv(	1{Δ})(u)

)2 du =
∣∣v(�1{Δ}

)
∩ Δ

∣∣

and

I0(A0) →
∣∣v(�1{Δ}

)
∩ Δ

∣∣ · ∣∣v(�2{Δ}
)
∩ Δ

∣∣− ∣∣v(min
(
�1{Δ}, �2{Δ}

))
∩ Δ

∣∣2,
when A0 → +∞.

If �1{Δ} := diam{Δ} and �2{Δ} is a such radius that |v(�2{Δ}) ∩ Δ| = |Δ|/2, then

I(A0) → |Δ| > 0 and I0(A0) → |Δ|2/4 > 0.

Hence, there exists A0 < +∞ such that the conditions (11) and (12) are satisfied for hj(λ) = hj(λ, A0), 
j = 1, 2. Finally, we complete the proof noting that hj(λ, A0), j = 1, 2, are linearly independent func-
tions. �
Definition 6. Let Y1 and Y2 be arbitrary random variables. The uniform (Kolmogorov) metric for the 
distributions of Y1 and Y2 is defined by the formula

ρ(Y1, Y2) = sup
z∈R

∣∣P (Y1 ≤ z) − P (Y2 ≤ z)
∣∣.

The following result follows from Lemma 1.8 of [29].

Lemma 4. If X, Y , and Z are arbitrary random variables, then for any ε > 0:

ρ(X + Y,Z) ≤ ρ(X,Z) + ρ(Z + ε, Z) + P
(
|Y | ≥ ε

)
.
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4. Main result

In this paper we consider the case of Rosenblatt-type limit distributions, i.e. κ = 2 and α ∈ (0, d/2) in 
Theorem 2. The main result describes the rate of convergence of Kr to X2(Δ), when r → ∞. To prove it 
we use some techniques and facts from [2,17,19].

Theorem 3. If Assumptions 1 and 2 hold, q < d/2 − α, and H rankG = 2, then for any κ <
1
3 min(α(d−2α)

d−α , κ1),

ρ

(
2Kr

C2rd−αL(r) , X2(Δ)
)

= o
(
r−κ

)
, r → ∞,

where C2 is defined by (2) and

κ1 := 2 min
(
q,

(
2

d− 2α + 2
d + 1 − 2α + 1

υ

)−1)
.

Remark 8. The order of convergence κ depends on the three parameters α, υ, and q. Recall the meaning 
of these parameters: α is a long-range dependence parameter, q gives the order for the upper bound of the 
slowly varying (with remainder) function L(·), and υ describes the magnitude of deviations of the spectral 
density from c2(d, α)‖λ‖α−dL(1/‖λ‖) at the origin.

Proof. Since H rankG = 2, it follows that Kr can be represented in the space of squared-integrable random 
variables L2(Ω) as

Kr = Kr,2 + Sr := C2

2

∫
Δ(r)

H2
(
η(x)

)
dx +

∑
j≥3

Cj

j!

∫
Δ(r)

Hj

(
η(x)

)
dx,

where Cj are coefficients of the Hermite series (2) of the function G(·).
Notice that EKr,2 = ESr = EX2(Δ) = 0, and

Xr,2 = 2Kr,2

C2rd−αL(r) .

It follows from Assumption 1 that |L(u)/uα| = |B(u)| ≤ B(0) = 1. Thus, by the proof of Theorem 4 
in [19],

VarSr ≤ |Δ|2r2d−3α
∑
j≥3

C2
j

j!

diam{Δ}∫
0

z−3αL3(rz)ψΔ(z)dz

= |Δ|2r2(d−α)L2(r)
∑
j≥3

C2
j

j!

diam{Δ}∫
0

z−2αL
2(rz)
L2(r)

L(rz)
(rz)α ψΔ(z) dz. (17)

We represent the integral in (17) as the sum of two integrals I1 and I2 with the ranges of integration 
[0, r−β1 ] and (r−β1 , diam{Δ}] respectively, where β1 ∈ (0, 1).
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It follows from Assumption 1 that |L(u)/uα| = |B(u)| ≤ B(0) = 1 and we can estimate the first integral as

I1 ≤
r−β1∫
0

z−2αL
2(rz)
L2(r) ψΔ(z) dz ≤

( sup0≤s≤r s
δ/2L(s)

rδ/2L(r)

)2 r−β1∫
0

z−δz−2αψΔ(z) dz,

where δ is an arbitrary number in (0, min(α, d − 2α)).
By Assumption 1 the function L(·) is locally bounded. By Theorem 1.5.3 of [1], there exist r0 > 0 and 

C > 0 such that for all r ≥ r0

sup0≤s≤r s
δ/2L(s)

rδ/2L(r)
≤ C.

Using (1) we obtain

r−β1∫
0

z−δz−2αψΔ(z) dz ≤ C

|Δ|

r−β1∫
0

ρd−2α−1−δ dρ = Cr−β1(d−2α−δ)

(d− 2α− δ)|Δ| .

Applying Theorem 1.5.3 of [1] we get

I2 ≤
supr1−β1≤s≤r·diam{Δ} s

δL2(s)
rδL2(r) · sup

r1−β1≤s≤r·diam{Δ}

L(s)
sα

·
diam{Δ}∫

0

z−(δ+2α)ψΔ(z) dz

≤ C · o
(
r−(α−δ)(1−β1)

)
,

when r is sufficiently large.
Notice that by (3)

∑
j≥3

C2
j

j! ≤
∫
R

G2(w) φ(w) dw < +∞.

Hence, for sufficiently large r

VarSr ≤ Cr2(d−α)L2(r)
(
r−β1(d−2α−δ) + o

(
r−(α−δ)(1−β1)

))
.

Choosing β1 = α
d−α to minimize the upper bound we get

VarSr ≤ Cr2(d−α)L2(r)r−
α(d−2α)

d−α +δ.

It follows from Lemma 3 that

ρ
(
X2(Δ) + ε,X2(Δ)

)
≤ ε sup

z∈R

pX2(Δ)(z) ≤ εC.

Applying Chebyshev’s inequality and Lemma 4 to X = Xr,2, Y = 2Sr

C2rd−αL(r) , and Z = X2(Δ), we get

ρ

(
2Kr

C2rd−αL(r) , X2(Δ)
)

= ρ

(
Xr,2 + 2Sr

C2rd−αL(r) , X2(Δ)
)

≤ ρ
(
Xr,2, X2(Δ)

)
+ C

(
ε + ε−2r−

α(d−2α)
d−α +δ

)
,

for sufficiently large r.
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Choosing ε := r−
α(d−2α)
3(d−α) to minimize the second term we obtain

ρ

(
2Kr

C2rd−αL(r) , X2(Δ)
)

≤ ρ
(
Xr,2, X2(Δ)

)
+ Cr−

α(d−2α)
3(d−α) +δ. (18)

Applying Lemma 4 once again to X = X2(Δ), Y = Xr,2 −X2(Δ), and Z = X2(Δ) we obtain

ρ
(
Xr,2, X2(Δ)

)
≤ ε1C + P

{∣∣Xr,2 −X2(Δ)
∣∣ ≥ ε1

}
≤ ε1C + ε−2

1 Var
(
Xr,2 −X2(Δ)

)
. (19)

Below we show how to estimate Var(Xr,2 −X2(Δ)).
By the self-similarity of Gaussian white noise and formula (2.1) in [6]

Xr,2
D= c2(d, α)

∫
R2d

′
KΔ(λ1 + λ2)Qr(λ1, λ2)

W (dλ1)W (dλ2)
‖λ1‖(d−α)/2‖λ2‖(d−α)/2 ,

where

Qr(λ1, λ2) := rα−dL−1(r) c−1
2 (d, α)

[
‖λ1‖d−α‖λ2‖d−αf

(
‖λ1‖
r

)
f

(
‖λ2‖
r

)]1/2

.

Notice that

X2(Δ) = c2(d, α)
∫

R2d

′
KΔ(λ1 + λ2)

W (dλ1)W (dλ2)
‖λ1‖(d−α)/2‖λ2‖(d−α)/2 .

By the isometry property of multiple stochastic integrals

Rr := E|Xr,2 −X2(Δ)|2
c22(d, α) =

∫
R2d

|KΔ(λ1 + λ2)|2(Qr(λ1, λ2) − 1)2

‖λ1‖d−α‖λ2‖d−α
dλ1 dλ2.

Let us rewrite the integral Rr as the sum of two integrals I3 and I4 with the regions A(r) := {(λ1, λ2) ∈
R

2d : max(‖λ1‖, ‖λ2‖) ≤ rγ} and R2d \ A(r) respectively, where γ ∈ (0, 1). Our intention is to use the 
monotone equivalence property of regularly varying functions in the regions A(r).

First we consider the case of (λ1, λ2) ∈ A(r). By Assumption 2 and the inequality |
√
ab−1| ≤ |1 −a| +|1 −b|, 

for sufficiently large r, we obtain

∣∣Qr(λ1, λ2) − 1
∣∣ ≤ ∣∣∣∣1 −

L( r
‖λ1‖ )
L(r)

∣∣∣∣ +
∣∣∣∣1 −

L( r
‖λ2‖ )
L(r)

∣∣∣∣ + C
L( r

‖λ1‖ )
L(r)

(
‖λ1‖
r

)υ

+ C
L( r

‖λ2‖ )
L(r)

(
‖λ2‖
r

)υ

.

By Lemma 1, if ‖λj‖ ∈ (1, rγ), j = 1, 2, then for arbitrary β2 > 0 and sufficiently large r we get

∣∣∣∣1 −
L( r

‖λj‖ )
L(r)

∣∣∣∣ =
L( r

‖λj‖ )
L(r) ·

∣∣∣∣1 − L(r)
L( r

‖λj‖ )

∣∣∣∣ ≤ C
L( r

‖λj‖ )
L(r) · ‖λj‖q

rq

≤ C
‖λj‖q+β2

rq
·
sup‖λj‖∈(1,rγ)( r

‖λj‖ )β2L( r
‖λj‖ )

rβ2L(r)

≤ C
‖λj‖q+β2

q
·
supz∈(0,r) z

β2L(z)
β2

≤ C
‖λj‖q+β2

q
. (20)
r r L(r) r
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By Lemma 1 for ‖λj‖ ≤ 1, j = 1, 2, we obtain

∣∣∣∣1 −
L( r

‖λj‖ )
L(r)

∣∣∣∣ ≤ C

rq
. (21)

Hence, by (20) and (21)

∣∣Qr(λ1, λ2) − 1
∣∣2 ≤ C

(
‖λ1‖
r

)2υ

·
L2( r

‖λ1‖ )
L2(r) + C

(
‖λ2‖
r

)2υ

·
L2( r

‖λ2‖ )
L2(r)

+ Cr−2q(‖λ1‖(μ1+1)(q+β2) + ‖λ2‖(μ2+1)(q+β2)
)

for (λ1, λ2) ∈ A(r) ∩Bμ, where

Bμ :=
{
(λ1, λ2) ∈ R

2d : ‖λj‖ ≤ 1, if μj = −1, and ‖λj‖ > 1, if μj = 1, j = 1, 2
}
,

μ = (μ1, μ2) ∈ {−1, 1}2 is a binary vector of length 2.
By Lemma 2, for r > 1

r−2q
∫

A(r)∩B(μ1,−1)

|KΔ(λ1 + λ2)|2 dλ1dλ2

‖λ1‖d−α‖λ2‖d−α
≤ C

r2q ,

when μ1 ∈ {−1, 1}.
Similarly, by Lemma 2 we obtain

r−2q
∫

A(r)∩B(μ1,1)

|KΔ(λ1 + λ2)|2 dλ1dλ2

‖λ1‖d−α‖λ2‖d−α−2q−2β2
≤ C

r2q ,

when μ1 ∈ {−1, 1}, q ∈ (0, d/2 − α), α > 0, and β2 is sufficiently small.
By properties of slowly varying functions [1, Theorem 1.5.3]

lim
r→∞

sup‖λj‖≤1( r
‖λj‖ )−υL( r

‖λj‖ )
r−υL(r) = lim

r→∞

supz≥r z
−υL(z)

r−υL(r) = 1.

Hence, it holds for sufficiently large r that

(
‖λj‖
r

)2υ

·
L2( r

‖λj‖ )
L2(r) ≤ Cr−2υ.

Therefore, by Lemma 2 we obtain for sufficiently large r

I3 ≤ Cr−2q
∑

μ∈{−1,1}2

∫
A(r)∩Bμ

|KΔ(λ1 + λ2)|2 dλ1dλ2

‖λ1‖d−α‖λ2‖d−α−(μ2+1)(q+β2)
+ C sup

μ2∈{−1,1}
sup

‖λ2‖≤rγ

‖λ2‖2υ+μ2δ

r2υ

≤ Cr−2q + Cr−2υ(1−γ)+δ. (22)

It follows from Assumption 2 and the specification of the estimate (23) in the proof of Theorem 5 in [19]
for k = 2 that for each positive δ there exists r0 > 0 such that for all r ≥ r0, (λ1, λ2) ∈ B(1,μ2), and 
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μ2 ∈ {−1, 1}, it holds

|KΔ(λ1 + λ2)|2(Qr(λ1, λ2) − 1)2

‖λ1‖d−α‖λ2‖d−α
≤ C|KΔ(λ1 + λ2)|2

‖λ1‖d−α‖λ2‖d−α
+ C

|KΔ(λ1 + λ2)|2
‖λ1‖d−α−δ‖λ2‖d−α−μ2δ

.

Hence, we can estimate I4 as shown below

I4 ≤ 2
∫
Rd

∫
‖λ1‖>rγ

|KΔ(λ1 + λ2)|2(Qr(λ1, λ2) − 1)2dλ1dλ2

‖λ1‖d−α‖λ2‖d−α

≤ C

∫
Rd

∫
‖λ1‖>rγ

|KΔ(λ1 + λ2)|2 dλ1dλ2

‖λ1‖d−α‖λ2‖d−α

+ C
∑

μ2∈{1,−1}

∫
‖λ2‖μ2≥1

∫
‖λ1‖>rγ

|KΔ(λ1 + λ2)|2
‖λ1‖d−α−δ‖λ2‖d−α−μ2δ

dλ1dλ2

≤ C max
μ2∈{0,1,−1}

∫
Rd

∫
‖λ1‖>rγ

|KΔ(u)|2
‖λ1‖d−α−δ‖u− λ1‖d−α−μ2δ

dλ1du

= C max
μ2∈{0,1,−1}

∫
Rd

|KΔ(u)|2
‖u‖d−2α−(μ2+1)δ

∫
‖λ1‖> rγ

‖u‖

dλ1du
‖λ1‖d−α−δ‖ u

‖u‖ − λ1‖d−α−μ2δ
.

Taking into account that for δ ∈ (0, min(α, d/2 − α))

sup
u∈Rd\{0}

∫
Rd

dλ1

‖λ1‖d−α−δ‖ u
‖u‖ − λ1‖d−α−μ2δ

≤ C,

we obtain

I4 ≤ C max
μ2∈{0,1,−1}

∫
‖u‖≤rγ0

|KΔ(u)|2
‖u‖d−2α−(μ2+1)δ

∫
‖λ1‖>rγ−γ0

dλ1du
‖λ1‖d−α−δ‖ u

‖u‖ − λ1‖d−α−μ2δ

+ C max
μ2∈{0,1,−1}

∫
‖u‖>rγ0

|KΔ(u)|2 du
‖u‖d−2α−(μ2+1)δ ,

where γ0 ∈ (0, γ).
By Lemma 2, there exists r0 > 0 such that for all r ≥ r0 the first summand is bounded by

C max
μ2∈{0,1,−1}

∫
Rd

|KΔ(u)|2 du
‖u‖d−2α−(μ2+1)δ

∫
‖λ1‖>rγ−γ0

dλ1

‖λ1‖2d−2α−δ−μ2δ
≤ Cr−(γ−γ0)(d−2α−2δ).

Therefore, for sufficiently large r,

I4 ≤ Cr−(γ−γ0)(d−2α−2δ) + C

∫
‖u‖>rγ0

|KΔ(u)|2 du
‖u‖d−2α−2δ . (23)

By the spherical L2-average decay rate of the Fourier transform [2] for δ < d + 1 − 2α and sufficiently 
large r we get the following estimate of the integral in (23)
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∫
‖u‖>rγ0

|KΔ(u)|2 du
‖u‖d−2α−2δ ≤ C

∫
z>rγ0

∫
Sd−1

|KΔ(zω)|2
z1−2α−2δ dωdz

≤ C

∫
z>rγ0

dz
zd+2−2α−2δ = Cr−γ0(d+1−2α−2δ), (24)

where Sd−1 := {x ∈ R
d : ‖x‖ = 1} is a sphere of radius 1 in Rd.

Combining estimates (18), (19), (22), (23), (24), and choosing ε1 := r−β , we obtain

ρ

(
2Kr

C2rd−αL(r) , X2(Δ)
)

≤ C
(
r−

α(d−2α)
3(d−α) +δ + r−β + r−2υ(1−γ)+2β+δ + r−2q+2β

+ r−(γ−γ0)(d−2α−2δ)+2β + r−γ0(d+1−2α−2δ)+2β).
Therefore, for any κ̃1 ∈ (0, 3κ0) one can choose a sufficiently small δ > 0 such that

ρ

(
2Kr

C2rd−αL(r) , X2(Δ)
)

≤ Crδ
(
r−

α(d−2α)
3(d−α) + r−

κ̃1
3
)
, (25)

where

κ0 := sup
β>0

γ∈(0,1)
γ0∈(0,γ)

min
(
β, 2υ(1 − γ) − 2β, 2q − 2β, (γ − γ0)(d− 2α) − 2β, γ0(d + 1 − 2α) − 2β

)
.

Note, that for fixed γ ∈ (0, 1)

sup
γ0∈(0,γ)

min
(
(γ − γ0)(d− 2α), γ0(d + 1 − 2α)

)
= γ(d− 2α)(d + 1 − 2α)

2d + 1 − 4α ,

and

sup
γ∈(0,1)

min
(

2υ(1 − γ), γ(d− 2α)(d + 1 − 2α)
2d + 1 − 4α

)
= 2

(
2

d− 2α + 2
d + 1 − 2α + 1

υ

)−1

.

Thus, κ0 = supβ>0 min(β, κ1 − 2β) = κ1/3.
Finally, by (25) and κ̃1 < κ1 we obtain the statement of the theorem. �

Remark 9. The obtained results and the methods of [29, §5.5] provide a theoretical framework for general-
izations to non-uniform estimates of the remainder in the non-central limit theorem.

5. Examples

Theorem 3 was proven under rather general assumptions. In this section we present some examples and 
specifications of the results of Sections 3 and 4.

Example 1. If Δ is the ball v(1) in Rd, then

Kv(1)(x) =
∫

ei(x,u) du = (2π)d/2
Jd/2(‖x‖)
‖x‖d/2 , x ∈ R

d,
v(1)
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and we obtain

X2
(
v(1)

)
= (2π)d/2c2(d, α)

∫
R2d

′ Jd/2(‖λ1 + λ2‖)
‖λ1 + λ2‖d/2

W (dλ1)W (dλ2)
‖λ1‖(d−α)/2‖λ2‖(d−α)/2 .

Example 2. If Δ is the multidimensional rectangle [a, b] := {x ∈ R
d : xj ∈ [aj , bj ], j = 1, ..., d} and 

aj < 0 < bj , j = 1, ..., d, then

K[a,b](x) =
∫

[a,b]

ei(x,u) du =
d∏

j=1

eibjxj − eiajxj

ixj

and

X2
(
[a,b]

)
= c2(d, α)

∫
R2d

′ d∏
j=1

(eibj(λ1j+λ2j) − eiaj(λ1j+λ2j))W (dλ1j)W (dλ2j)
i(λ1j + λ2j)‖λ1‖(d−α)/2‖λ2‖(d−α)/2 ,

where λm = (λm1, ..., λmd), m = 1, 2.

Example 3. Let us consider η(x), x ∈ R
d, with the covariance function of the form

B
(
‖x‖

)
=

{
1 − α

θ+α‖x‖θ, ‖x‖ ≤ 1;
θ

θ+α‖x‖−α, ‖x‖ > 1,
(26)

which was proposed as a local–global distinguisher model in [10]. It was shown in [10] that (26) is a valid 
correlation function when α > 0, θ ∈ (0, (3 − d)/2], d = 1, 2.

The local–global distinguisher model obviously satisfies Assumption 1 and the condition (6) with L(t) =
θ

θ+α , t > 1.
In the case of long-memory stochastic processes, i.e. d = 1 and α ∈ (0, 1/2), taking the inverse Fourier 

transform of B(·) we obtain

f
(
‖λ‖

)
= 1

π

(
sin(‖λ‖)

‖λ‖ + θ

θ + α

(
(α− 1)−1

1F2

(
1
2 − α

2 ; 1
2 ,

3
2 − α

2 ;−‖λ‖2

4

)
+ ‖λ‖α−1 sin(πα/2)Γ (1 − α)

)

− α

(θ + 1)(θ + α) 1F2

(
θ

2
+ 1

2
; 1
2
,
θ

2
+ 3

2
;−‖λ‖2

4

))
,

where 1F2(a; b1, b2; z) is the generalized hypergeometric function [11, §9.14] defined by

1F2(a; b1, b2; z) =
∞∑
j=0

(a)j
j!(b1)j(b2)j

zj

(a)j = Γ (a + j)/Γ (a), j ∈ N0 := N ∪ {0}, −a /∈ N0.
The power series expansion of f(‖λ‖) gives

f
(
‖λ‖

)
= θΓ (1 − α) sin(πα/2)

π(θ + α) ‖λ‖α−1 + αθ

π(1 + θ)(α− 1) + O(1)

= c2(1, α) · θ

θ + α
· ‖λ‖α−1 + ‖λ‖α−1 · O

(
‖λ‖1−α

)
,

when ‖λ‖ → 0. Hence, υ = 1 − α.
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Fig. 1. Graphs of κ1/3 and α(1−2α)
3(1−α) for d = 1.

Now we consider the case ‖λ‖ → +∞. By the asymptotic expansion of 1F2(a; b1, b2; z) in trigonometric 
form [38] we obtain

1F2

(
1
2 − α

2 ; 1
2 ,

3
2 − α

2 ;−‖λ‖2

4

)
=

√
πΓ (3

2 − α
2 )

2α−1Γ (α/2) ‖λ‖
α−1(1 + O

(
‖λ‖−2)) + O

(
‖λ‖−1),

1F2

(
θ

2 + 1
2; 1

2 ,
θ

2 + 3
2;−‖λ‖2

4

)
= O

(
‖λ‖−1).

Therefore, 
√
π Γ ( 3

2−α
2 )

2α−1(1−α)Γ (α/2) = sin(πα/2)Γ (1 − α) implies f(‖λ‖) = O(1/‖λ‖), when ‖λ‖ → +∞. By 
Remark 7, Assumption 2 holds true for the local–global distinguisher processes.

Example 4. Assume there exists t0 > 0 such that L(t) = a0 for all t ≥ t0 in Assumption 2.
Since the parameter q is arbitrary in (6), the only condition on q in Theorem 3 is q ∈ (0, d/2 − α). As 

a consequence, taking q arbitrarily close to d/2 − α makes q > (2(d− 2α)−1 + 2(d + 1 − 2α)−1 + υ−1)−1, 
because (2(d− 2α)−1+2(d +1 −2α)−1+υ−1)−1 < d/2 −α. Thus, we get in the definition of κ1 in Theorem 3

κ1 = 2
(
2(d− 2α)−1 + 2(d + 1 − 2α)−1 + υ−1)−1

. (27)

For instance, let us consider Example 3 with d = 1 and v = 1 − α. Fig. 1 displays the graphs of α(d−2α)
3(d−α)

and κ1/3, plotted as functions of the variable α. In this case

κ <
1
3 min

(
α(1 − 2α)

1 − α
,κ1

)
= α(1 − 2α)

3(1 − α) .

Example 5. Let us consider η(x), x ∈ R
d, with the covariance function of the form

B
(
‖x‖

)
=

(
1 + ‖x‖2)−θ

, θ > 0.

In geostatistics, it is known as the Cauchy covariance function [10,22,37].
The corresponding spectral density has the form, see [22, Proposition 2.4],

f
(
‖λ‖

)
= ‖λ‖θ− d

2

2 d
2 +θ−1π

d
2Γ (θ)

K d
2−θ

(
‖λ‖

)
, (28)

where Kμ(·) is the modified Bessel function of the second kind.
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It follows from the representation B(‖x‖) = ‖x‖−2θ(1 + ‖x‖−2)−θ that, in the notations of the paper, 
α = 2θ, L(t) = (1 + t−2)−θ, and the Cauchy covariance function satisfies Assumption 1. The considered case 
of long-range dependence corresponds to the region 0 < θ < d/4. By Remark 6 the slowly varying function 
L(·) satisfies the condition (6) for q < min(2, d/2 − α).

To verify the condition (5) we note that

f
(
‖λ‖

)
= c2(d, 2θ)‖λ‖2θ−d

(
1 + ‖λ‖2)−θ + ε

(
‖λ‖

)
,

where

ε
(
‖λ‖

)
= f

(
‖λ‖

)
− c2(d, 2θ)‖λ‖2θ−d

(
1 + ‖λ‖2)−θ

. (29)

We will use the asymptotic expansions of the functions (1 + ‖λ‖2)−θ and f(‖λ‖) for ‖λ‖ → 0. By the 
binomial series expansion we get

(
1 + ‖λ‖2)−θ =

∞∑
j=0

(
−θ

j

)
‖λ‖2j = 1 − θ‖λ‖2 + θ(θ + 1)

2 ‖λ‖4 + .... (30)

Note that the condition of long-range dependence θ ∈ (0, d/4) implies positivity of d/2 − θ. First we 
consider the case d/2 − θ /∈ N. By the asymptotic expansions of f(‖λ‖) given in [22, Proposition 3.2] and 
Euler’s reflection formula Γ (z)Γ (1 − z) = π/sin (πz) we obtain

f
(
‖λ‖

)
= 1

2dπ d−2
2 Γ (θ) sin(π(d2 − θ))

∞∑
j=0

(
(‖λ‖/2)2j+2θ−d

j!Γ (j + θ − d−2
2 )

− (‖λ‖/2)2j

j!Γ (j + d+2
2 − θ)

)

= 1
2dπ d−2

2 Γ (θ) sin(π(d2 − θ))

(
(‖λ‖/2)2θ−d

Γ (θ − d−2
2 )

+ (‖λ‖/2)2+2θ−d

Γ (1 + θ − d−2
2 )

+ ...− 1
Γ (d+2

2 − θ)
− ...

)

= c2(d, 2θ)‖λ‖2θ−d

(
1 + ‖λ‖2

2(2 + 2θ − d) + ...−
22θ−dΓ (θ − d−2

2 )
Γ (d+2

2 − θ)
‖λ‖d−2θ − ...

)
. (31)

Therefore, by the substitution of (30) and (31) into (29) for d/2 − θ /∈ N we obtain ε(t) = t2θ−dL(1/t) ·
O(tυ), t → 0, where

υ = min
θ<d/4

(2, d− 2θ) =
{
d− 2θ, if d = 1, 2, or d = 3 and θ ∈ (1/2, 3/4);
2, if d ≥ 4, or d = 3 and θ ∈ (0, 1/2).

(32)

Now we investigate the case l := d/2 − θ ∈ N. Proposition 3.2 in [22] implies

f
(
‖λ‖

)
= 1

2dπ d
2Γ (d2 − l)

(
l−1∑
j=0

(−1)j (l − j − 1)!(‖λ‖/2)2j−2l

j! + (−1)l+1

×
∞∑
j=0

(‖λ‖/2)2j

j!(l + j)!
(
2 ln

(
‖λ‖/2

)
− ψ(j + 1) − ψ(l + j + 1)

))

= 1
2dπ d

2Γ (d2 − l)

(
22l(l − 1)!

‖λ‖2l − 22l−2(l − 2)!
‖λ‖2l−2 + ... + (−1)l+1 2 ln(‖λ‖/2) − ψ(1) − ψ(l + 1)

l! + ...

)

= c2(d, 2θ)‖λ‖2θ−d

(
1 + ‖λ‖2

2(2 + 2θ − d) + ... + (−1)d/2+1−θ ln(‖λ‖)‖λ‖d−2θ

2d−2θ−1(d2 − 1 − θ)!(d2 − θ)!
+ ...

)
,

where ψ(z) := Γ ′(z)/Γ (z) is the digamma function.
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Hence, for d/2 − θ ∈ N we get

υ =
{

2 − δ, if θ = 1/2, d = 3;
2, otherwise,

(33)

where δ is an arbitrary non-negative number.
Now we consider the case ‖λ‖ → +∞. By (28) and the asymptotic property Kμ(t) = O(e−t), t → +∞, 

see [11, (8.451.6)], we obtain f(‖λ‖) = O(‖λ‖−d), when ‖λ‖ → +∞. Thus, by Remark 7, Assumption 2
holds true for the Cauchy model.

If d/2 − α < 2, then q can be chosen close to d/2 − α and (27) holds. For q = 2 it follows from (32) and 
(33) that the inequality 2υ(1 − γ) − 2β < 2q − 2β holds true for all υ. Hence, by the definition of κ0, we 
can choose κ1 as in (27).

Example 6. Let us consider η(x), x ∈ R
d, with the covariance function of the form

B
(
‖x‖

)
=

(
1 + ‖x‖σ

)−θ
, σ ∈ (0, 2], θ > 0,

which is known as the generalized Linnik covariance function [8,14,22]. Cauchy and Linnik’s fields are 
important particular cases of this model.

The Cauchy model with σ = 2 was considered in Example 5. Therefore, we will only investigate the case 
σ ∈ (0, 2) and θ > 0. Note, that the asymptotic expansion of f(‖λ‖) for σ ∈ (0, 2) differs from the expansion 
for σ = 2. That is why we consider these two cases of the generalized Linnik model separately.

For σ ∈ (0, 2) the spectral density has the form, see [22, Proposition 2.4],

f
(
‖λ‖

)
= − ‖λ‖ 2−d

2

2 d−2
2 π

d+2
2

Im
∞∫
0

K d−2
2

(‖λ‖u)u d
2 du

(1 + eiπσ/2uσ)θ
.

Analogously to the case of the Cauchy field, α = θσ, θσ < d/2, L(t) = (1 + t−σ)−θ, and the generalized 
Linnik covariance function satisfies Assumption 1. By Remark 6 the condition (6) holds true with q <

min(σ, d/2 − α).
Note that

f
(
‖λ‖

)
= c2(d, θσ)‖λ‖θσ−d

(
1 + ‖λ‖σ

)−θ + ε
(
‖λ‖

)
,

ε
(
‖λ‖

)
= f

(
‖λ‖

)
− c2(d, θσ)‖λ‖θσ−d

(
1 + ‖λ‖σ

)−θ
,

(
1 + ‖λ‖σ

)−θ = 1 − θ‖λ‖σ + θ(θ + 1)
2 ‖λ‖2σ + ..., ‖λ‖ → 0.

By the asymptotic expansions of f(‖λ‖), see [22, Proposition 3.9], we obtain

f
(
‖λ‖

)
= 1

2dπ d
2Γ (θ)

(
Γ (θ)Γ (d−σθ

2 )
Γ (σθ2 )

(
‖λ‖
2

)σθ−d

−
(
1 − χd+2N0(σθ + σ)

)

×
Γ (θ + 1)Γ (d−σθ−σ

2 )
Γ (σ(θ+1)

2 )

(
‖λ‖
2

)σθ−d+σ

+ ... +
(
1 − χN0(d/σ − θ)

)2Γ ( d
σ )Γ (σθ−d

σ )
σΓ (d2 )

+ ...

+ (−1)σθ+σ−d
2 Γ (θ + 1)

(σθ+σ−d
2 )! · Γ (σ(θ+1)

2 )
χd+2N0(σθ + σ) ln

(
‖λ‖

)(‖λ‖
2

)σθ+σ−d

+ ...

)
,

where d + 2N0 := {m : m = d + 2j, j ∈ N0}.
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Fig. 2. Graphs of κ1/3 and α(d−2α)
3(d−α) for d = 2 and 3.

Therefore, ε(t) = t2θ−dL(1/t) · O(tυ), t → 0, when σθ < d/2 and

υ =

⎧⎪⎨
⎪⎩

d− σθ, if σ ∈ (d/(θ + 1), 2), θ ∈ (0, 1), d = 1, 2, 3;
σ − δ, if σ = d/(θ + 1), θ ∈ (max(0, d/2 − 1), 1), d = 1, 2, 3;
σ, if d ≥ 4, or σ ∈ (0, d/(θ + 1)) and d = 1, 2, 3,

(34)

where δ is an arbitrary non-negative number.
Now we consider the case ‖λ‖ → +∞. By [22, Proposition 3.4] we get f(‖λ‖) = O(‖λ‖−d−σ), ‖λ‖ → +∞. 

Hence, by Remark 7, Assumption 2 holds true for the generalized Linnik model.
If d/2 − α < σ, then q can be chosen close to d/2 − α and (27) holds. For q = σ by (34) we obtain that 

the inequality 2υ(1 − γ) − 2β < 2q − 2β holds for all υ. Hence, it follows from the definition of κ0 that κ1

can be given by (27).
Fig. 2 displays the graphs of α(d−2α)

3(d−α) and κ1/3 for d = 2, q = σ = 7/4, υ = 17/12, θ = 1/3, and d = 3, 
q = υ = σ = 1, plotted as functions of the variable α = θ. Notice, that contrary to Example 4 and the case 
d = 2 the order κ1/3 is smaller than α(d−2α)

3(d−α) for d = 3 and the values of α close to d/2.

Remark 10. Due to the strict inequality for κ in Theorem 3 the constant δ, appearing in expressions (33)
and (34) for υ, can be chosen equal to zero.

6. Concluding remarks

We have investigated the rate of convergence to the Rosenblatt-type limit distributions in the non-central 
limit theorem. The results were obtained under rather general assumptions allowing specifications for various 
scenarios. In particular, special attention was devoted to the Cauchy, generalized Linnik, and local–global 
distinguisher random processes and fields. We use direct analytical probabilistic methods which have, in our 
view, an independent interest as an alternative to methods in [4,23,24]. The analysis and the approach to 
the rate of convergence in non-central limit theorems are new and extend the investigations of the rate of 
convergence in central limit theorems in the current literature.

In the one-dimensional case the rate of convergence of Kr,2 obtained in the proof of Theorem 3 is analogous 
to the result for the discrete fractional Gaussian noise in [4]. However, Theorem 3 additionally estimates 
the rate of the term Sr, which allows to consider the class of all functions of Hermite rank 2. Moreover, the 
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obtained results are valid for the multidimensional case and more general classes of covariance functions 
and random processes.

It is possible to extend the results to wider classes of slowly varying functions with remainder, see 
[1, §3.12], whose bounds are different from (6) (the detailed discussion on the condition (6) is given in 
Remarks 6 and 7). However, for such classes the rate of convergence would be different (depending on the 
remainder) from the following results. Assumption 2 was chosen to ensure a polynomial convergence rate.
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