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1. Introduction

In this paper, we consider the following Schrödinger–Poisson equation:

{
−Δu + u + K(x)φ(x)u = a(x)|u|p−2u + u5, in R

3,

−Δφ = K(x)u2, in R
3,

(1.1)

where p ∈ (4, 6). Eq. (1.1) or the more general one

{
−Δu + V (x)u + K(x)φu = f(x, u), in R

3,

−Δφ = K(x)u2, in R
3,

(1.2)

arises while looking for the existence of standing waves for the Schrödinger equation interacting with an 
electrostatic field. For a more physical background of the problem, the reader may see [4] and the references
therein.
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After the work of [4], many papers have been devoted to the existence of solutions for (1.2) under various 
assumptions on V , K and f . If V (x) ≡ 1, K(x) ≡ 1 and f(x, u) = |u|p−2u, problem (1.2) has been 
studied sufficiently as p varies. For the case 4 ≤ p < 6, the existence of radial and non-radial solutions 
is considered in [8,9] and [11] respectively. For the case p ≤ 2 or p ≥ 6, the authors in [10] proved that 
(1.2) has no nontrivial solutions. In [20], the existence and non-existence of nontrivial solutions are also 
considered for the case 2 < p < 6. The problem of finding ground state solutions is a very classical problem. 
Recall that u is a ground state solution of (1.2) if and only if u solves (1.2) and minimizes the functional 
associated with (1.2) among all nontrivial solutions. In [2], the authors obtained the existence of ground 
state solutions for the case 3 < p < 6. The critical case was also considered if f(x, u) = |u|p−2u + u5 with 
4 < p < 6. In [23], we extended the work of [2] to a more general nonlinearity with critical growth. If 
V (x) is not a constant, K(x) ≡ 1 and f(x, u) = |u|p−2u, the existence of ground state solutions for (1.2) is
obtained in [2] for 4 < p < 6 and in [24] for 3 < p ≤ 4 respectively. The authors in [2] also considered the 
critical case. If V (x) ≡ 1, K(x) is not a constant and f(x, u) = a(x)|u|p−2u with 4 < p < 6, by requiring 
suitable assumptions on K(x) and a(x), the existence of ground state solutions and high energy solutions 
is investigated in [6]. For other results on the existence and multiplicity of solutions for the problem (1.2), 
the reader may see [3,5,16–18,21,26] for the subcritical case and [13,25] for the critical case. However, in all 
these papers mentioned above, nodal solutions are not considered. Recently, the authors in [14] obtained 
the existence of nodal solutions in the critical case.

One aim of this paper is to consider the existence of ground state solutions for (1.1) in the critical 
case. The critical exponential growth makes the problem complicated due to the lack of compactness. More 
important, since the functions K(x) and a(x) are not radial symmetric, it is impossible to work in the 
radial symmetric space. We need to investigate the influence of the interaction of K(x) and a(x) on the 
existence of ground state solutions. In this paper, we also consider the existence of nodal solutions for (1.1). 
Problem (1.1) is rather different from that of [14]. We use a different method to deal with the problem. In 
order to obtain the existence of ground state and nodal solutions, we introduce the following hypotheses on 
K(x) and a(x):

(K1) There exist C1 > 0 and a > 0 such that 0 ≤ K(x) ≤ C1e
−a|x| for all x ∈ R

3;
(K2) K(x) ∈ L2(R3) ∩ L∞(R3), K(x) ≥ 0 and lim|x|→∞ K(x) = 0;
(a1) a(x) ∈ C(R3) and lim|x|→∞ a(x) = a∞ > 0;
(a2) there exist C2 > 0 and b > 0 such that a(x) ≥ a∞ + C2e

−b|x| for all x ∈ R
3;

(a3) a(x) ≥ a∞ for all x ∈ R
3 and meas{x ∈ R

3; a(x) > a∞} > 0.

Firstly, we consider the existence of ground state solutions.

Theorem 1.1. Assume (K1) and (a1)–(a2) with 0 < b < a < 2. Then problem (1.1) admits a positive ground 
state solution.

Theorem 1.2. Assume (K2), (a1) and (a3). Then problem (1.1) admits a positive ground state solution for 
‖K‖2 small enough.

Remark 1.1. In Theorem 1.1, the decay rate assumptions (K1) and (a2) are the key to the energy estimate. 
In Theorem 1.2, without any decay rate assumption, we still obtain a ground state solution by requiring 
‖K‖2 small enough. It is remarkable that (K2) and (a3) are more general than (K1) and (a2).

Now we consider the existence of nodal solutions.

Theorem 1.3. Assume (K1) and (a1)–(a2) with 0 < b < a < 1. Then problem (1.1) admits a positive ground 
state solution and a nodal solution.



JID:YJMAA AID:19320 /FLA Doctopic: Functional Analysis [m3L; v1.149; Prn:19/03/2015; 13:16] P.3 (1-18)
J. Zhang / J. Math. Anal. Appl. ••• (••••) •••–••• 3
The outline of this paper is as follows: in Section 2, we establish some important lemmas. In Section 3, 
we prove Theorems 1.1–1.2. In Section 4, we prove Theorem 1.3.

Notations:

• ‖u‖s :=
(∫

R3 |u|sdx
) 1

s , 2 ≤ s ≤ ∞.
• Let H1(R3) be the Hilbert space with the norm ‖u‖2 :=

∫
R3(|∇u|2 + u2)dx.

• Let D1,2(R3) :=
{
u ∈ L6(R3);∇u ∈ L2(R3)

}
be the Sobolev space with the norm ‖u‖2

D1,2 :=∫
R3 |∇u|2dx.

• C denotes a universal positive constant.
• Br(y) denotes the open ball centered at y with radius r > 0.
• S denotes the best Sobolev constant:

S := inf
u∈D1,2(R3)\{0}

∫
R3 |∇u|2dx(∫
R3 |u|6dx

) 1
3
.

2. Preliminary lemmas

In this section, we assume (K2), (a1) and (a3). By the Lax–Milgram theorem, for every u ∈ H1(R3), 
there exists a unique φu ∈ D1,2(R3) satisfying −Δφu = K(x)u2. Similar to the argument in [20], we can 
derive that the function φu has the following properties.

Lemma 2.1. For any u ∈ H1(R3), we have

(i) φu ≥ 0;
(ii) φtu = t2φu, ∀ t > 0;
(iii)

∫
R3 K(x)φuu

2dx ≤ C‖u‖4
α, where α = 12

5 .

For simplicity, we may assume a∞ = 1. Denote H = H1(R3). The functional associated with (1.1) is

I(u) = 1
2‖u‖

2 + 1
4

∫
R3

K(x)φuu
2dx− 1

p

∫
R3

a(x)|u|pdx− 1
6

∫
R3

|u|6dx, (2.1)

where u ∈ H. It is easy to check that I : H �→ R is of class C1 and (u, φ) ∈ H ×D1,2(R3) is a solution of 
(1.1) if and only if u ∈ H is a critical point of I and φ = φu.

Lemma 2.2. There is a sequence {un} ⊂ H such that {un} is bounded in H, I(un) → c ∈
(
0, 1

3S
3
2

)
and 

I ′(un) → 0.

Proof. From (a1) and (a3), ∀ ε > 0, there exists C(ε) > 0 such that

1
p
a(x)|u|p + 1

6 |u|
6 ≤ ε|u|2 + C(ε)|u|6. (2.2)

By (2.2) and Sobolev embedding theorem, we can conclude that there exists r0 > 0 such that I(u) ≥ c0 > 0
for ‖u‖ = r0. Set ϕ ∈ H such that ϕ ≥ 0, ϕ �= 0. By Lemma 2.1(ii), we have limt→+∞ I(tϕ) = −∞. We 
also have I(0) = 0. Define

c = inf max I(γ(t)),

γ∈Γ t∈[0,1]
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where Γ = {γ ∈ C([0, 1], H); γ(0) = 0, I(γ(1)) < 0}. The mountain pass in [1] implies that there is a 
sequence {un} ⊂ H satisfying I(un) → c ≥ c0 and I ′(un) → 0. Similar to Lemma 2.5 in [23], we have 
c < 1

3S
3
2 . By I(un) → c and I ′(un) → 0,

c + o(1)‖un‖ = I(un) − 1
4(I ′(un), un) ≥ 1

4‖un‖2,

which implies that {un} is bounded in H. �
Define the functional

I∞(u) = 1
2‖u‖

2 − 1
p

∫
R3

|u|pdx− 1
6

∫
R3

|u|6dx, u ∈ H.

Lemma 2.3. Let {un} ⊂ H be a sequence such that ‖un‖ is bounded, I(un) → c ∈
(
0, 1

3S
3
2

)
and I ′(un) → 0. 

Then there exists a subsequence of {un}, still denoted by {un}, an integer k ∈ N ∪{0}, vi ∈ H for 1 ≤ i ≤ k

satisfying

(i) un ⇀ u weakly in H with I ′(u) = 0,
(ii) vi �= 0 and I∞

′(vi) = 0 for 1 ≤ i ≤ k,
(iii) c = I(u) +

∑k
i=1 I

∞(vi),

where we agree that in the case k = 0, the above holds without vi.

Proof. From ‖un‖ is bounded, we know un ⇀ u weakly in H up to a subsequence. Then I ′(u) = 0 and 
(i) holds.

Set v1
n = un − u. By the Brezis–Lieb lemma in [22], we obtain that

‖v1
n‖2 = ‖un‖2 − ‖u‖2 + o(1),∫

R3

|v1
n|6dx =

∫
R3

|un|6dx−
∫
R3

|u|6dx + o(1),

∫
R3

a(x)|v1
n|pdx =

∫
R3

a(x)|un|pdx−
∫
R3

a(x)|u|pdx + o(1). (2.3)

Combining (a1), v1
n → 0 in Lp

loc(R3) and third equality of (2.3), we have
∫
R3

|v1
n|pdx =

∫
R3

a(x)|un|pdx−
∫
R3

a(x)|u|pdx + o(1). (2.4)

Lemma 2.2 in [24] implies that
∫
R3

K(x)φv1
n
(v1

n)2dx =
∫
R3

K(x)φun
u2
ndx−

∫
R3

K(x)φuu
2dx + o(1).

By lim|x|→∞ K(x) = 0, we have ∀ ε > 0, there exists R(ε) > 0 such that
∫

K(x)φv1
n
(v1

n)2dx ≤ ε.
|x|≥R(ε)
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We also have

lim
n→∞

∫
|x|≤R(ε)

K(x)φv1
n
(v1

n)2dx

≤ lim
n→∞

C

⎛
⎜⎝ ∫
|x|≤R(ε)

|φv1
n
|6dx

⎞
⎟⎠

1
6
⎛
⎜⎝ ∫
|x|≤R(ε)

|v1
n|

12
5 dx

⎞
⎟⎠

5
6

= 0.

Thus, ∫
R3

K(x)φun
u2
ndx−

∫
R3

K(x)φuu
2dx = o(1). (2.5)

Combining (2.3)–(2.5), there holds

c− I(u) = I∞(v1
n) + o(1). (2.6)

On the other hand, by elliptic estimates in [12], we get u ∈ L∞(R3). Since the proof is standard, we omit 
it here. Then from Lemma 8.9 in [22], we have∣∣∣∣∣∣

∫
R3

[
u5
n − u5 − (v1

n)5
]
ϕdx

∣∣∣∣∣∣ = o(1)‖ϕ‖, ∀ ϕ ∈ H. (2.7)

Similar to Lemma 8.9 in [22], we also have∣∣∣∣∣∣
∫
R3

a(x)(|un|p−2un − |u|p−2u− |v1
n|p−2v1

n)ϕdx

∣∣∣∣∣∣ = o(1)‖ϕ‖, ∀ ϕ ∈ H.

The condition (a1) implies that∣∣∣∣∣∣
∫
R3

(a(x) − 1)|v1
n|p−2v1

nϕdx

∣∣∣∣∣∣ = o(1)‖ϕ‖, ∀ ϕ ∈ H.

Then ∣∣∣∣∣∣
∫
R3

[
a(x)(|un|p−2un − |u|p−2u) − |v1

n|p−2v1
n

]
ϕdx

∣∣∣∣∣∣ = o(1)‖ϕ‖, ∀ ϕ ∈ H. (2.8)

By lim|x|→∞ K(x) = 0, we can derive that
∣∣∣∣∣∣
∫
R3

K(x)φv1
n
v1
nϕdx

∣∣∣∣∣∣ = o(1)‖ϕ‖, ∀ ϕ ∈ H.

Lemma 2.2 in [24] implies that∣∣∣∣∣∣
∫

K(x)
[
φun

un − φuu− φv1
n
v1
n

]
ϕdx

∣∣∣∣∣∣ = o(1)‖ϕ‖, ∀ ϕ ∈ H.
R3
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Thus,
∣∣∣∣∣∣
∫
R3

K(x) [φun
un − φuu]ϕdx

∣∣∣∣∣∣ = o(1)‖ϕ‖, ∀ ϕ ∈ H. (2.9)

Combining (2.7)–(2.9), there holds
∣∣∣(I ′(un) − I ′(u), ϕ) − (I∞

′
(v1

n), ϕ)
∣∣∣ = o(1)‖ϕ‖, ∀ ϕ ∈ H,

which implies that

I∞
′
(v1

n) = o(1). (2.10)

We will consider two cases.
Case 1. limn→∞ supy∈R3

∫
B1(y) |v1

n|2dx = 0.
Applying the Lions lemma, we obtain that

v1
n → 0 in Lt(R3), ∀ t ∈ (2, 6). (2.11)

Combining (2.6), (2.11) and 
(
I∞

′(v1
n), v1

n

)
= o(1), there holds c − I(u) = 1

2‖v1
n‖2 − 1

6
∫
R3 |v1

n|6dx + o(1) and 

‖v1
n‖2 −

∫
R3 |v1

n|6dx = o(1). We assume that ‖v1
n‖2 → l. Now we prove l = 0. In fact, if l > 0, then Sobolev 

embedding theorem implies that l ≥ S
3
2 . By I ′(u) = 0, we have I(u) ≥ 0. Then c ≥ c − I(u) = 1

3 l ≥
1
3S

3
2 , 

a contradiction with c < 1
3S

3
2 . From l = 0, we have c = I(u).

Case 2. There exists γ1 > 0 such that

lim
n→∞

sup
y∈R3

∫
B1(y)

|v1
n|2dx ≥ γ1 > 0.

In this case, there exists y1
n ∈ R

3 with |y1
n| → ∞ such that 

∫
B1(y1

n) |v1
n|2dx ≥ γ1

2 > 0, from which we 

derive that v1
n(. + y1

n) ⇀ v1 �= 0 weakly in H and

c− I(u) = I∞(v1
n(. + y1

n)) + o(1),

I∞
′
(v1

n(. + y1
n)) = o(1). (2.12)

Then I∞
′(v1) = 0. Set v2

n = v1
n(. + y1

n) − v1. We also have ‖v2
n‖2 = ‖v1

n‖2 −‖v1‖2 + o(1). Together with the 
first equality of (2.3), there holds

‖v2
n‖2 = ‖un‖2 − ‖u‖2 − ‖v1‖2 + o(1). (2.13)

Similar to the prove of (2.6) and (2.10), we can derive that

c− I(u) − I∞(v1) + o(1) = I∞(v2
n),

I∞
′
(v2

n) = o(1). (2.14)

Note that either

lim
n→∞

sup
y∈R3

∫
|v2

n|2dx = 0, (2.15)

B1(y)
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or there exists γ2 > 0 such that

lim
n→∞

sup
y∈R3

∫
B1(y)

|v2
n|2dx ≥ γ2 > 0. (2.16)

If (2.15) holds, similar to the argument of Case 1, we have c = I(u) + I∞(v1). So we may assume (2.16)
holds. Then there exists y2

n ∈ R
3 with |y2

n| → ∞ such that v2
n(. + y2

n) ⇀ v2 �= 0 weakly in H, I∞′(v2) = 0
and

c− I(u) − I∞(v1) − I∞(v2) = I∞(v3
n) + o(1),

I∞
′
(v3

n) = o(1),

‖v3
n‖2 = ‖un‖2 − ‖u‖2 − ‖v1‖2 − ‖v2‖2 + o(1),

where v3
n = v2

n(. + y2
n) − v2. Continuing this process, we obtain vin ∈ H, yin ∈ R

3 with |yin| → ∞ such that 
vin(. + yin) ⇀ vi �= 0 weakly in H, I∞′(vi) = 0 and

c− I(u) −
j∑

i=1
I∞(vi) = I∞(vj+1

n ) + o(1),

I∞
′
(vj+1

n ) = o(1)

‖vj+1
n ‖2 = ‖un‖2 − ‖u‖2 −

j∑
i=1

‖vi‖2 + o(1), (2.17)

where vj+1
n = vjn(. + yjn) − vj , j ∈ N . From 

(
I∞

′(vi), vi
)

= 0, (2.2) and Sobolev embedding theorem, 
we can derive that there exists β > 0 independent of i such that ‖vi‖2 ≥ β > 0. Then by the third 
equality of (2.17), we know vj+1

n → 0 at some j = k. Together with the first equality of (2.17), we have 
c = I(u) +

∑k
i=1 I

∞(vi). �
3. Proof of Theorems 1.1–1.2

Let m∞ = infu∈N∞ I∞(u), where N∞ = {u ∈ H \ {0}; (I∞′(u), u) = 0}. Similar to the proof of Theo-
rem 1.7 in [2], we can prove there exists u∞ ∈ H \ {0} satisfying I∞(u∞) = m∞ and I∞

′(u∞) = 0. Since 
u∞ is not sign-changing, we may assume u∞ ≥ 0 in H. The Maximum Principle implies that u∞ is positive.

Lemma 3.1. For any δ ∈ (0, 1), there exists C = C(δ) > 0 such that

u∞(x) ≤ Ce−(1−δ)|x|.

Proof. By elliptic estimates in [12], we can derive that u∞ ∈ L∞(R3) and u∞(x) → 0 as |x| → ∞. Since 
the proof is standard, we omit it here. Then for any δ > 0, there exists R = R(δ) > 0 such that for 
|x| ≥ R, 1 − up−2

∞ − u4
∞ ≥ (1 − δ)2. Thus, we have −Δu∞ + (1 − δ)2u∞ ≤ 0 for |x| ≥ R and there exists 

M = M(δ) > 0 such that u∞(x) ≤ M for |x| = R. Let v(x) = Me−(1−δ)(|x|−R). Direct calculation can 
derive that −Δv+(1 −δ)2v ≥ 0 for x �= 0. From the Maximum Principle, we have u∞(x) ≤ Me−(1−δ)(|x|−R)

for |x| ≥ R. Then Lemma 3.1 follows easily. �
Proof of Theorem 1.1. From Lemma 2.2, we know there is a bounded sequence {un} ⊂ H satisfying 

I(un) → c ∈
(
0, 1

3S
3
2

)
and I ′(un) → 0. From Lemma 2.3, we can derive that I satisfies the Palais–Smale 

condition at c ∈ (0, m∞). Then if c ∈ (0, m∞), we have un → u in H, I(u) = c and I ′(u) = 0.
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Now we prove c < m∞. Let γ = (1, 0, 0) be a fixed unit vector in R3. By the definition of c, we have 
c ≤ supt≥0 I(tu∞(x −Rγ)). From (a2), Lemma 2.1(iii) and Sobolev embedding theorem,

I(u) ≤ 1
2‖u‖

2 + C‖u‖4 − 1
p

∫
R3

|u|pdx− 1
6

∫
R3

|u|6dx. (3.1)

Then there exists t′ ∈ (0, 1) such that

sup
0≤t≤t′

I(tu∞(x−Rγ)) ≤ 1
2 |t

′|2‖u∞‖2 + C|t′|4‖u∞‖4 < m∞ (3.2)

independent of R > 0. From (3.1), we also have that there exists t′′ > 0 such that

sup
t≥t′′

I(tu∞(x−Rγ)) < m∞ (3.3)

independent of R > 0. Observe that

I(tu) = I∞(tu) + t4

4

∫
R3

K(x)φuu
2dx− 1

p
tp
∫
R3

(a(x) − 1)|u|pdx

≤ I∞(tu) + t4

4

⎛
⎝∫

R3

|φu|6dx

⎞
⎠

1
6
⎛
⎝∫

R3

K(x) 6
5 |u| 125 dx

⎞
⎠

5
6

− 1
p
tp
∫
R3

(a(x) − 1)|u|pdx.

By (K1) and (a2),

I(tu∞(x−Rγ)) ≤ I∞(tu∞) + Ct4

⎛
⎝∫

R3

e−
6a
5 |x+Rγ||u∞| 125 dx

⎞
⎠

5
6

− C2

p
tp
∫
R3

e−b|x+Rγ||u∞|pdx.

Set l(t) = I∞(tu∞), where t ∈ (0, ∞). Note that l(t) has a unique critical point corresponding to its 
maximum. Since l′(1) = 0, this critical point should be achieved at t = 1. Then supt≥0 l(t) = I∞(u∞) = m∞. 
Choose δ ∈ (0, 1 − a

2 ). By Lemma 3.1, we have

⎛
⎝∫

R3

e−
6a
5 |x+Rγ||u∞| 125 dx

⎞
⎠

5
6

≤ C

⎛
⎝∫

R3

e−
6a
5 Re[ 6a5 − 12

5 (1−δ)]|x|dx

⎞
⎠

5
6

≤ Ce−aR.

We also have
∫
3

e−b|x+Rγ||u∞|pdx ≥ e−bR

∫
e−b|x||u∞|pdx ≥ Ce−bR.
R |x|≤1
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Thus,

sup
t′≤t≤t′′

I(tu∞(x−Rβ)) ≤ m∞ + Ce−aR − Ce−bR. (3.4)

Choose R large enough, we have supt′≤t≤t′′ I(tu∞(x −Rβ)) < m∞. Combining (3.2)–(3.4), we get c < m∞.
Let m = inf{I(v); v ∈ H, v �= 0, I ′(v) = 0}. Since I ′(u) = 0, we have 0 ≤ m ≤ I(u) < m∞. By the 

definition of m, there exists {vn} ⊂ H such that vn �= 0, I(vn) → m and I ′(vn) = 0. From (I ′(vn), vn) = 0, 
(2.2) and Sobolev embedding theorem, we can derive that there exists β > 0 independent of n such that 
‖vn‖ ≥ β. Thus,

m = I(vn) − 1
4 (I ′(vn), vn) + o(1) ≥ 1

4‖vn‖
2 + o(1) ≥ 1

4β
2 + o(1),

which implies that m > 0. Since I satisfies the Palais–Smale condition at c ∈ (0, m∞), we have vn → v �= 0
in H and m is attained by v. It is clear that v is not sign-changing. Thus, we may assume v ≥ 0 in H. The 
Maximum Principle implies that v is positive. �

Now we prove Theorem 1.2. Similar argument as Proposition 4.2 in [15] can derive the following result.

Lemma 3.2. There exists γ ∈ C([0, 1], H) such that γ(0) = 0, I∞(γ(1)) < 0, u∞ ∈ γ([0, 1]) and 
maxt∈[0,1] I

∞(γ(t)) = I∞(u∞) = m∞. Moreover, 0 /∈ γ((0, 1]).

Define the functional

J(u) = 1
2‖u‖

2 − 1
p

∫
R3

a(x)|u|pdx− 1
6

∫
R3

|u|6dx, u ∈ H. (3.5)

Lemma 3.3. The functional J admits a nontrivial critical point w ∈ H satisfying J(w) ∈ (0, m∞) and 
‖w‖2 ≤ 2pJ(w)

p−2 .

Proof. From Lemma 2.2, we know that there is a sequence {wn} ⊂ H satisfying wn ⇀ w weakly 

in H, J(wn) → c̄ ∈
(
0, 1

3S
3
2

)
and J ′(wn) → 0, where c̄ = infγ∈Γ maxt∈[0,1] J(γ(t)) with Γ = {γ ∈

C([0, 1], H); γ(0) = 0, J(γ(1)) < 0}. Lemma 2.3 implies that J satisfies the Palais–Smale condition at 
c̄ ∈ (0, m∞). Now we claim c̄ ∈ (0, m∞). From Lemma 3.2, we know there exists γ ∈ C([0, 1], H) such that 
γ(0) = 0, I∞(γ(1)) < 0, 0 /∈ γ((0, 1]) and maxt∈[0,1] I

∞(γ(t)) = m∞. It is clear that γ ∈ Γ. By (a3), we 
have c̄ ≤ maxt∈[0,1] J(γ(t)) < maxt∈[0,1] I

∞(γ(t)) = m∞. Thus, we have wn → w in H, J(w) = c̄ ∈ (0, m∞)
and J ′(w) = 0. From

J(w) = J(w) − 1
p
(J ′(w), w) ≥

(
1
2 − 1

p

)
‖w‖2,

we get ‖w‖2 ≤ 2pJ(w)
p−2 . �

Proof of Theorem 1.2. By Lemma 2.2, there is a bounded sequence {un} ⊂ H satisfying I(un) → c ∈(
0, 1

3S
3
2

)
and I ′(un) → 0. We claim that c < m∞. In fact, from the definition of c, we only need to prove 

c ≤ supt≥0 I(tw) < m∞, where w is obtained in Lemma 3.3.
Set h(t) = I(tw), where t ∈ (0, ∞). It is obvious that h(t) attains its maximum at t0 ∈ (0, ∞). Then 

h′(t0) = 0, which implies that

t20‖w‖2 ≤ tp0

∫
a(x)|w|pdx + t60

∫
|w|6dx. (3.6)
R3 R3
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We claim that t0 ≥ 1. In fact, if t0 ∈ (0, 1), then by (3.6) and (J ′(w), w) = 0, we have

t20‖w‖2 < t60

⎛
⎝∫

R3

a(x)|w|pdx +
∫
R3

|w|6dx

⎞
⎠ = t60‖w‖2,

a contradiction with t0 ∈ (0, 1). Then t0 ≥ 1. From t0 ≥ 1, h′(t0) = 0 and (J ′(w), w) = 0, we have

h(t0) = 1
4 t

2
0‖w‖2 +

(
1
4 − 1

p

)
tp0

∫
R3

a(x)|w|pdx + 1
12 t

6
0

∫
R3

|w|6dx

≤ t60

(
J(w) − 1

4(J ′(w), w)
)

= t60J(w).

We also have

t40

⎛
⎝‖w‖2 +

∫
R3

K(x)φww
2dx

⎞
⎠

≥ t20‖w‖2 + t40

∫
R3

K(x)φww
2dx = tp0

∫
R3

a(x)|w|pdx + t60

∫
R3

|w|6dx

≥ tp0

⎛
⎝∫

R3

a(x)|w|pdx +
∫
R3

|w|6dx

⎞
⎠ = tp0‖w‖2,

which implies that tp−4
0 ≤ 1 +

∫
R3 K(x)φww2dx

‖w‖2 . Thus,

h(t0) ≤ t60J(w) ≤
(

1 +
∫
R3 K(x)φww

2dx
‖w‖2

) 6
p−4

J(w). (3.7)

Observe that

S‖φw‖2
6 ≤

∫
R3

|∇φw|2dx =
∫
R3

K(x)φww
2dx

≤ ‖K‖2‖φw‖6‖w‖2
6 ≤ 1

S
‖K‖2‖φw‖6‖w‖2,

which implies that ‖φw‖6 ≤ 1
S2 ‖K‖2‖w‖2. Thus,

∫
R3

K(x)φww
2dx ≤ 1

S3 ‖K‖2
2‖w‖4. (3.8)

Combining (3.7)–(3.8) and Lemma 3.3, we have

h(t0) ≤
(

1 + 1
S3 ‖K‖2

2‖w‖2
) 6

p−4

J(w) < m∞

for ‖K‖2 small enough. The rest of the proof is similar to the proof of Theorem 1.1, we omit it here. �



JID:YJMAA AID:19320 /FLA Doctopic: Functional Analysis [m3L; v1.149; Prn:19/03/2015; 13:16] P.11 (1-18)
J. Zhang / J. Math. Anal. Appl. ••• (••••) •••–••• 11
4. Proof of Theorem 1.3

In this section, we consider the existence of nodal solutions for (1.1). We use an idea of [7]. Denote 
u+ = max{u, 0}, u− = max{−u, 0}. Define the functional f(u) on H by

f(u) =

⎧⎨
⎩

∫
R3 a(x)|u|pdx+

∫
R3 |u|6dx

‖u‖2+
∫
R3 K(x)φuu2dx , u �= 0,

0, u = 0.

Then we define

N∗ = {u ∈ H; f(u+) = f(u−) = 1}

and

U =
{
u ∈ H; |f(u±) − 1| < 1

2

}
.

By (a1)–(a2), we know there exists D > 0 such that 0 ≤ a(x) ≤ D. Then for u ∈ U , we have

1
2‖u

±‖2 <

∫
R3

a(x)|u±|pdx +
∫
R3

|u±|6dx ≤
∫
R3

(D|u±|p + |u±|6)dx.

Note that for p ∈ (4, 6), there hold limt→0
|t|p
t2 = 0 and limt→+∞

|t|p
t6 = 0. Then ∀ ε > 0, there exist 

0 < r1(ε) < r2(ε) such that |t|p ≤ ε(t2 + t6) for |t| ∈ [0, r1(ε)] ∪ [r2(ε), +∞). Since |t|p ≤ r2(ε)p
r1(ε)6 t

6 for 

|t| ∈ [r1(ε), r2(ε)], we derive |t|p ≤ εt2 +
(
ε + r2(ε)p

r1(ε)6

)
t6. Hence, we obtain that ∀ ε > 0, there exists 

C(ε) > 0 such that

1
2‖u

±‖2 ≤ ε

∫
R3

|u±|2dx + C(ε)
∫
R3

|u±|6dx.

Set ε < 1
2 . By Sobolev embedding theorem, we have

⎛
⎝∫

R3

|u±|6dx

⎞
⎠

1
3

≤ C

∫
R3

|u±|6dx.

Thus, for u ∈ U , there exists 
 > 0 such that 
∫
R3 |u±|6dx ≥ 
 > 0.

Lemma 4.1. Assume m < m∞. If {un} ⊂ U be a sequence such that ‖un‖ is bounded, I(un) → c ∈
(0, m + m∞) and I ′(un) → 0, then un → u in H.

Proof. From ‖un‖ is bounded, we know un ⇀ u weakly in H and I ′(u) = 0. Set vn = un−u. Similar to the 
proof of Lemma 2.3, we have

c = I(u) + I∞(vn) + o(1) (4.1)

and

I∞
′
(vn) = o(1). (4.2)
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If vn → 0 strongly in H, then Lemma 4.1 holds. So we may assume vn converges weakly (and not strongly) 
to 0 in H. Then either v+

n converges weakly (and not strongly) to 0 in H, or v−n converges weakly (and not 
strongly) to 0 in H. We will consider three cases.

Case 1. v+
n converges weakly (and not strongly) to 0 in H, v−n → 0 strongly in H.

We claim that un ⇀ u �= 0 weakly in H. In fact, if un ⇀ 0 weakly in H, then u−
n = v−n → 0 strongly 

in H, a contradiction with 
∫
R3 |u−

n |6dx ≥ 
 > 0. So un ⇀ u �= 0 weakly in H. From (4.2), we have

‖v+
n ‖2 =

∫
R3

|v+
n |pdx +

∫
R3

|v+
n |6dx + o(1). (4.3)

Observe that there exists t+n ∈ (0, ∞) such that t+n v+
n ∈ N∞. Then

(t+n )2‖v+
n ‖2 = (t+n )p

∫
R3

|v+
n |pdx + (t+n )6

∫
R3

|v+
n |6dx. (4.4)

Now we prove that t+n → 1. Up to a subsequence, we may assume limn→∞ ‖v+
n ‖ and limn→∞

∫
R3 |v+

n |6dx
exist. From (4.3), we know ∀ ε > 0, there exists C(ε) > 0 such that

‖v+
n ‖2 ≤ ε

∫
R3

|v+
n |2dx + C(ε)

∫
R3

|v+
n |6dx + o(1).

Choose ε > 0 small enough, we have

‖v+
n ‖2 ≤ C

∫
R3

|v+
n |6dx + o(1).

Since v+
n converges weakly (and not strongly) to 0 in L6(R3), we can derive that limn→∞

∫
R3 |v+

n |6dx > 0. 
Then by (4.4), we have (t+n )4 ≤ ‖v+

n ‖2∫
R3 |v+

n |6dx , from which we get t+n is bounded. Without loss of generality, we 

may assume t+n → t+ ≥ 0. By (4.3)–(4.4),

[
(t+n )p−2 − 1

] ∫
R3

|v+
n |pdx +

[
(t+n )4 − 1

] ∫
R3

|v+
n |6dx = o(1).

If t+ �= 1, then

[
(t+)p−2 − 1

]
lim
n→∞

∫
R3

|v+
n |pdx +

[
(t+)4 − 1

]
lim
n→∞

∫
R3

|v+
n |6dx = 0,

a contradiction with limn→∞
∫
R3 |v+

n |6dx > 0. Then t+n → 1. Thus, by (4.1) and t+n → 1, we have

c = I(u) + I∞(v+
n ) + o(1)

= I(u) + I∞(t+n v+
n ) + o(1)

≥ m + m∞ + o(1),

a contradiction with c < m + m∞.
Case 2. v+

n → 0 strongly in H, v−n converges weakly (and not strongly) to 0 in H.
The proof is similar to Case 1, we omit it.
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Case 3. v+
n converges weakly (and not strongly) to 0 in H, v−n converges weakly (and not strongly) to 0

in H.
Similar to the proof of Case 1, we can derive that there exists s±n ∈ (0, ∞) such that s±n v±n ∈ N∞ and 

s±n → 1. Then by (4.1),

c ≥ I∞(vn) + o(1)

= I∞(v+
n ) + I∞(v−n ) + o(1)

= I∞(s+
n v

+
n ) + I∞(s−n v−n ) + o(1)

≥ 2m∞ + o(1) > m + m∞ + o(1),

a contradiction with c < m + m∞. �
Following the idea of [7], we give some definitions. Denote P the cone of non-negative functions in H. 

Let Q = [0, 1] × [0, 1]. Define

Σ = { σ ∈ C(Q,H); σ(t, 0) = 0, σ(0, s) ∈ P, σ(1, s) ∈ −P,

I(σ(t, 1)) ≤ 0, f(σ(t, 1)) ≥ 2, ∀ t, s ∈ [0, 1]}.

Choose u ∈ H such that u± �= 0. Let σ(t, s) = ks(1 − t)u+ − kstu−, where k > 0, t, s ∈ [0, 1]. It is easy to 
check that σ ∈ Σ for k > 0 large enough.

Lemma 4.2. infu∈N∗ I(u) = infσ∈Σ supu∈σ(Q) I(u).

Proof. From the definition of Σ, we have ∀ σ ∈ Σ, ∀ s ∈ [0, 1],

f(σ+(0, s)) − f(σ−(0, s)) = f(σ+(0, s)) ≥ 0

and

f(σ+(1, s)) − f(σ−(1, s)) = −f(σ−(1, s)) ≤ 0.

On the other hand, from the definition of Σ, we also have ∀ σ ∈ Σ, ∀ t ∈ [0, 1],

f(σ+(t, 0)) + f(σ−(t, 0)) − 2 = −2 < 0

and

f(σ+(t, 1)) + f(σ−(t, 1)) − 2 = f(σ(t, 1)) − 2 ≥ 0.

Then from Miranda’s theorem in [19], we know ∀ σ ∈ Σ, there exists (t̄, ̄s) ∈ Q such that

f(σ+(t̄, s̄)) − f(σ−(t̄, s̄)) = 0 = f(σ+(t̄, s̄)) + f(σ−(t̄, s̄)) − 2,

which implies that σ(t̄, ̄s) ∈ N∗. Thus,

inf
σ∈Σ

sup I(u) ≥ inf
u∈N∗

I(u). (4.5)

u∈σ(Q)
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Conversely, ∀ ū ∈ N∗, choose σ̄ ∈ Σ such that σ̄(Q) ⊂ {αū+ −βū−; α ≥ 0, β ≥ 0}. Set g(t) = I(tū±), where 
t ∈ (0, ∞). It is easy to check that g(t) has a unique critical point t̄± corresponding to its maximum. From 
ū ∈ N∗, we have g′(1) = 0, which implies that t̄± = 1. Thus, ∀ ū ∈ N∗,

I(ū) = I(ū+) + I(ū−)

= sup
α≥0

I(αū+) + sup
β≥0

I(βū−)

≥ sup
α,β≥0

[
I(αū+) + I(βū−)

]
= sup

α,β≥0
I(αū+ − βū−)

≥ sup
u∈σ̄(Q)

I(u) ≥ inf
σ∈Σ

sup
u∈σ(Q)

I(u),

which implies that

inf
u∈N∗

I(u) ≥ inf
σ∈Σ

sup
u∈σ(Q)

I(u). (4.6)

From (4.5)–(4.6), we know Lemma 4.2 holds. �
Lemma 4.3. There is a sequence {un} ⊂ U such that I(un) → c∗ = infu∈N∗ I(u) and I ′(un) → 0.

Proof. From Lemma 4.2 and the proof of (4.6), we know there is a sequence {ūn} ⊂ N∗ and σ̄n ∈ Σ such 
that

lim
n→∞

max
u∈σ̄n(Q)

I(u) = lim
n→∞

I(ūn) = c∗. (4.7)

Standard argument can derive that there exists {un} ⊂ H such that

I(un) → c∗, I ′(un) → 0 and dist(un, σ̄n(Q)) → 0. (4.8)

The reader may see [7] for the details of the proof. Now we only need to prove {un} ⊂ U for n large enough. 
By (4.7)–(4.8), there exists a sequence vn = αnū

+
n − βnū

−
n ∈ σ̄n(Q) such that

I(vn) → c∗ and ‖vn − un‖ → 0. (4.9)

Note that for ūn ∈ N∗ ⊂ U , we have 
∫
R3 |ū±

n |6dx ≥ 
 > 0. Then

I(ū±
n ) = I(ū±

n ) − 1
4(I ′(ū±

n ), ū±
n ) ≥ 1

4‖ū
±
n ‖2 ≥ 1

4S
2


2
3 .

Thus, we may assume I(ū+
n ) → c∗1 > 0 and I(ū−

n ) → c∗2 = c∗ − c∗1 > 0. By ūn ∈ N∗, we also have 
I(ū+

n ) ≥ I(αnū
+
n ) = I(v+

n ) and I(ū−
n ) ≥ I(βnū

−
n ) = I(v−n ). Thus,

c∗ = lim
n→∞

I(ūn) = lim
n→∞

[I(ū+
n ) + I(ū−

n )]

≥ lim
n→∞

[I(v+
n ) + I(v−n )] = lim

n→∞
I(vn) = c∗,

from which we have limn→∞ I(v+
n ) = limn→∞ I(ū+

n ) = c∗1 and limn→∞ I(v−n ) = limn→∞ I(ū−
n ) = c∗2. 

By (4.9), we get ‖v±n −u±
n ‖ → 0. Thus, we have limn→∞ I(u+

n ) = c∗1 and limn→∞ I(u−
n ) = c∗2, which implies 

that u±
n �= 0. Together with (I ′(u±

n ), u±
n ) = o(1), we have {un} ⊂ U for n large enough. �
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Proof of Theorem 1.3. It is obvious that Theorem 1.1 holds. Thus, problem (1.1) admits a positive ground 
state solution u1. Now we prove (1.1) admits a nodal solution. From Lemma 4.3, there is a sequence {un} ⊂ U

such that I(un) → c∗ = infu∈N∗ I(u) and I ′(un) → 0. By {un} ⊂ U , we have 
∫
R3 |u±

n |6dx ≥ 
 > 0. Thus, if 
un → u in H, then I ′(u) = 0 and 

∫
R3 |u±|6dx > 0, which implies that u is a nodal solution of (1.1). Now 

we prove un → u in H. From Lemmas 4.1–4.2, we only need to prove

sup
α≥0,β∈R

I(αu1 + βu∞(.−Rγ)) < m + m∞ (4.10)

for R large enough, where γ = (1, 0, 0) is the fixed unit vector in R3. By elliptic estimates in [12], we 
can derive u ∈ L∞(R3). Since the proof is standard, we omit it here. Denote v(x) = u∞(x − Rγ). Direct 
calculation can derive that

I(αu1 + βv) = I(αu1) + I∞(βv) − |β|p
p

∫
R3

(a(x) − 1)|v|pdx

− 1
p

∫
R3

a(x)
(
|αu1 + βv|p − |αu1|p − |βv|p − pαβ|u1|p−2u1v

)
dx

− 1
6

∫
R3

(
|αu1 + βv|6 − |αu1|6 − |βv|6 − 6αβ|u1|4u1v

)
dx

+ 1
4

⎡
⎣∫
R3

K(x)φαu1+βv(αu1 + βv)2dx−
∫
R3

K(x)φαu1(αu1)2dx

⎤
⎦

− αβ

∫
R3

K(x)φu1u1vdx

≤ I(αu1) + I∞(βu∞) − |β|p
p

∫
R3

(a(x) − 1)|v|pdx

+ 1
4

⎡
⎣∫
R3

K(x)φαu1+βv(αu1 + βv)2dx−
∫
R3

K(x)φαu1(αu1)2
⎤
⎦

− αβ

∫
R3

K(x)φu1u1vdx. (4.11)

From (K1), (a2) and Lemma 2.1(iii),

I(αu1 + βv) ≤ I(αu1) + I∞(βu∞) + C‖αu1 + βv‖4 + C|αβ|. (4.12)

By (4.12), we can derive that there exists M > 0 large enough such that

sup
|α|+|β|≥M

I(αu1 + βv) < m + m∞ (4.13)

independent of R > 0. From (K1), u1 ∈ L∞(R3) and Lemma 3.1, we have

sup
0≤α≤M,|β|≤M

|αβ|

∣∣∣∣∣∣
∫

K(x)φu1u1vdx

∣∣∣∣∣∣

R3
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≤ M2‖φu1‖6

⎡
⎣∫
R3

K(x) 6
5 (u1v)

6
5 dx

⎤
⎦

5
6

≤ C

⎛
⎝∫

R3

e−
6
5a|x+Rγ|e−

6
5 (1−δ)|x|dx

⎞
⎠

5
6

≤ C

⎛
⎝∫

R3

e−
6
5aRe[ 65a− 6

5 (1−δ)]|x|dx

⎞
⎠

5
6

. (4.14)

Choose δ ∈ (0, 1 − a), there holds

sup
0≤α≤M,|β|≤M

|αβ|

∣∣∣∣∣∣
∫
R3

K(x)φu1u1vdx

∣∣∣∣∣∣ ≤ Ce−aR. (4.15)

Set

L = 1
4

⎡
⎣∫
R3

K(x)φαu1+βv(αu1 + βv)2dx−
∫
R3

K(x)φαu1(αu1)2
⎤
⎦ .

Then

L = αβ

∫
R3

K(x)φαu1u1vdx + αβ

∫
R3

K(x)φβvu1vdx

+ 1
4

∫
R3

K(x)φβv(βv)2dx + 1
2

∫
R3

K(x)φαu1(βv)2dx

+ α2β2
∫
R3

∫
R3

K(x)u1(x)v(x)K(y)u1(y)v(y)
|x− y| dxdy.

Now we estimate L. Observe that
∫
R3

∫
R3

K(x)u1(x)v(x)K(y)u1(y)v(y)
|x− y| dxdy =

∫
R3

φ√
u1vK(x)u1vdx.

Thus, similar to (4.14)–(4.15), we have

sup
0≤α≤M,|β|≤M

α2β2
∫
R3

∫
R3

K(x)u1(x)v(x)K(y)u1(y)v(y)
|x− y| dxdy ≤ Ce−aR,

sup
0≤α≤M,|β|≤M

|αβ|

∣∣∣∣∣∣
∫
R3

K(x)φαu1u1vdx

∣∣∣∣∣∣ ≤ Ce−aR,

sup
0≤α≤M,|β|≤M

|αβ|

∣∣∣∣∣∣
∫

K(x)φβvu1vdx

∣∣∣∣∣∣ ≤ Ce−aR. (4.16)

R3
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Similar to the estimate of 
∫
R3 K(x)φuu

2dx in the proof of Theorem 1.1, we also have

sup
0≤α≤M,|β|≤M

∣∣∣∣∣∣
∫
R3

K(x)φβv(βv)2dx

∣∣∣∣∣∣ ≤ Ce−aR,

sup
0≤α≤M,|β|≤M

∣∣∣∣∣∣
∫
R3

K(x)φαu1(βv)2dx

∣∣∣∣∣∣ ≤ Ce−aR. (4.17)

Combining (4.11) and (4.15)–(4.17),

I(αu1 + βv) ≤ I(αu1) + I∞(βv) − |β|p
p

∫
R3

(a(x) − 1)|v|pdx + Ce−aR. (4.18)

Since u1 is a ground state solution of (1.1), we have supα≥0 I(αu1) = I(u1) = m. Thus, by (4.18) and 
a(x) ≥ 1, we derive that there exists |β0| ∈ (0, M) small enough and R1 > 0 large enough such that for 
R > R1,

sup
|β|≤|β0|,|α|+|β|≤M

I(αu1 + βv) < m + m∞. (4.19)

We also have supβ∈R
I∞(βv) = I∞(u∞) = m∞. Thus, there exist α0 ∈ (0, M) small enough and R2 > 0

such that for R > R2,

sup
0≤α≤α0,|α|+|β|≤M

I(αu1 + βv) < m + m∞. (4.20)

In view of (4.13) and (4.19)–(4.20), we only need to prove

sup
α0≤α≤M,|β0|≤|β|≤M

I(αu1 + βv) < m + m∞ (4.21)

for R large enough. Similar to the proof of Theorem 1.1, we have

sup
|β0|≤|β|≤M

−|β|p
p

∫
R3

(a(x) − 1)|v|pdx

≤ −C2|β0|p
p

∫
R3

e−b|x+Rγ||u∞|pdx ≤ −Ce−bR. (4.22)

Combining (4.18) and (4.22),

sup
α0≤α≤M,|β0|≤|β|≤M

I(αu1 + βv) ≤ sup
α≥0

I(αu1) + sup
β∈R

I∞(βu∞) + Ce−aR − Ce−bR

= I(u1) + I∞(u∞) + Ce−aR − Ce−bR

= m + m∞ + Ce−aR − Ce−bR.

Choose R > max{R1, R2} large enough, we know (4.21) holds. Thus, Theorem 1.3 is proved. �
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