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In this article, we study the existence of solution for the problem (−Δ)αu =
λf(u) + ν in Ω, u ≡ 0 in RN\Ω, where λ > 0 is a parameter, α ∈ (0, 1) and 
ν is a Radon measure. A weak solution is obtained by using Schauder’s fixed point 
theorem. In the case where ν is Dirac measure, the symmetry of the solution is 
obtained by using the moving plane method.
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1. Introduction

In recent years, fractional (nonlocal) Laplacian operator has been extensively studied by many authors 
[7,8,6,2,10,16,17,15]. It is well known that the corresponding Fokker–Planck equation to a stochastic differ-
ential equation with Brownian motion is the traditional diffusion equation. When the Brownian motion is 
replaced by an α-stable Lévy motion (a non-Gaussian process) Lα

t , α ∈ (0, 2), the Fokker–Planck equation 
becomes a nonlocal partial differential equation [1] with a fractional Laplacian operator (−Δ)α

2 . There are 
many physical motivations to consider the fractional Laplacian operator, which appears in many models in 
non-Newtonian fluids, in models of viscoelasticity such as Kelvin–Voigt models, various heat transfer pro-
cesses in fractal and disordered media and models of fluid flow and acoustic propagation in porous media 
[3,13,14]. Interestingly, it has also been applied to pricing derivative securities in financial market, see [3]
for details.

Recently, Chen and Véron [8] considered the following problem:
{

(−Δ)αu + g(u) = ν, t > 0, x ∈ Ω,

u|Ωc = 0,
(1.1)

* Corresponding author.
E-mail addresses: gylvmaths@henu.edu.cn (G. Lv), duan@iit.edu (J. Duan), taoismnature@hust.edu.cn (J. He).
http://dx.doi.org/10.1016/j.jmaa.2015.07.003
0022-247X/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmaa.2015.07.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:gylvmaths@henu.edu.cn
mailto:duan@iit.edu
mailto:taoismnature@hust.edu.cn
http://dx.doi.org/10.1016/j.jmaa.2015.07.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2015.07.003&domain=pdf


G. Lv et al. / J. Math. Anal. Appl. 432 (2015) 1106–1118 1107
where Ω ⊂ R
N is an open bounded C2 domain, α ∈ (0, 1), ν is a Radon measure such that 

∫
Ω δβd|ν| < ∞

for some β ∈ [0, α] and δ(x) = dist(x, Ωc). The nonlocal Laplacian (−Δ)α is defined by

(−Δ)αu(x) = lim
ε↓0

(−Δ)αε u(x),

where for ε > 0

(−Δ)αε u(x) = cn,α

∫
RN

u(x) − u(y)
|x− y|n+2α χε(|x− y|)dy,

and

χε(x) =
{

0, if x ∈ [0, ε],
1, if x > ε.

They proved that (1.1) admits a unique weak solution u under the condition that g : R → R is a continuous, 
non-decreasing function, satisfying

g(r)r ≥ 0, ∀r ∈ R and
∞∫
1

(g(s) − g(−s))s−1−kα,βds < ∞,

where

kα,β =

⎧⎪⎪⎨
⎪⎪⎩

N

N − 2α, if β ∈ [0, N − 2α
N

α],

N + α

N − 2α + β
, if β ∈ (N − 2α

N
α,α].

(1.2)

In their another paper [7], they obtained the existence of weak solution to (1.1), where g(u) was replaced 
by εg(|∇u|), ε = ±1. When the measure ν is just a bounded function g(x), the existence of solutions to 
(1.1) has been studied in [18] via variational methods.

Ros-Oton and Serra [16] studied the extremal solution for the following problem:

{
(−Δ)αu = λf(u), in Ω,

u|Ωc = 0,
(1.3)

where λ > 0 is a parameter, α ∈ (0, 1) and f : [0, ∞) → R satisfies

f ∈ C1, non-decreasing, f(0) > 0, and lim
t→+∞

f(t)
t

= +∞. (1.4)

Under the above assumptions, they proved that there exists λ∗ ∈ (0, ∞) such that

(i) If 0 < λ < λ∗, problem (1.3) admits a minimal classical solution uλ;
(ii) The family of functions {uλ : 0 < λ < λ∗} is increasing in λ, and its pointwise limit u∗ = lim

λ↑λ∗
is a 

weak solution of (1.3) with λ = λ∗;
(iii) For λ > λ∗, problem (1.3) admits no classical solution.
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It follows from (1.4) that f must satisfy f(u) ≥ f(0) > 0, ∀u > 0. Furthermore, they considered the 
solutions uλ and uλ∗ must be positive. Besides the above results, they also obtained the bounded domain
of the extremal solution uλ∗ .

Motivated by papers [7,8,16], in this paper, we consider the following nonlocal elliptic equations involving 
measure: {

(−Δ)αu = λf(u) + ν, in Ω,

u|Ωc = 0,
(1.5)

where λ > 0 is a parameter, ν ∈ M+(Ω, δβ). Here δ(x) = dist(x, Ωc) and M(Ω, δβ) is the space of Radon 
measures in Ω satisfying ∫

Ω

δβdν < ∞.

The associated positive cones are denoted by M+(Ω, δβ).
Our interest in this article is to investigate the existence of weak solutions to (1.5). Firstly, we remark 

that if f(u) = up, p > 0, then −f(r)r ≥ 0, ∀r ∈ R will not hold, that is, the result in [7] does not contain 
the case. Moreover, in paper [16], the authors assume that f(0) > 0 and lim

t→∞
f(t)
t = ∞. In this paper, we 

only assume that

(H) f(·) : R+ → R is a C1 continuous non-negative function which satisfies

f(u) ≤ aup + b, ∀u ≥ 0

for some p ∈ (0, pα,β), where a > 0, b ≥ 0 and pα,β is defined in (1.6).

Secondly, it follows from [11] that the eigenvalues of (−Δ)α are different from those of (−Δ) in the 
bounded domain. For n = 1, Kwaśnicki [11] obtained the existence of eigenvalues of (−Δ)α. When n ≥ 2, 
the problem was solved in papers [19,20]. However, in this paper, we will use a different method to prove 
the existence of weak solutions to (1.5). Before stating our main theorem we make precise the notion of 
weak solution used in this article. The following definition is used in [8].

Definition 1.1. We say that u is a weak solution of (1.5), if u ∈ L1(Ω), f(u) ∈ L1(Ω, δαdx) and∫
Ω

u(−Δ)αvdx =
∫
Ω

λf(u)vdx +
∫
Ω

vdν, ∀v ∈ Xα,

where Xα ⊂ C(RN ) is the space of functions v satisfying:

(i) supp(v) ⊂ Ω̄;
(ii) (−Δ)αv(x) exists for all x ∈ Ω and |(−Δ)αv(x)| ≤ C for some constant C > 0;
(iii) there exist φ ∈ L1(Ω, δαdx) and ε0 > 0 such that |(−Δ)αv(x)| ≤ φ a.e. in Ω for all ε ∈ (0, ε0].

Our main result is the following.

Theorem 1.1. Assume that ν ∈ M+(Ω, δβ) with β ∈ [0, α], and f satisfies (H).

(i) If p ∈ (0, 1), then problem (1.5) admits a weak solution u;
(ii) If p = 1 and λ or a is small enough, then problem (1.5) admits a weak solution u;
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(iii) If p ∈ (1, pα,β), a and b + ‖ν‖M+(Ω,δβ) > 0 fixed, then there exists a positive number λ∗ such that when 
λ ∈ (0, λ∗], the problem (1.5) admits a non-negative weak solution u, when λ > λ∗, the problem (1.5)
will admit no non-negative weak solution if f(u) = aup + b. On the other hand, if λ and a fixed, and 
b + ‖ν‖M+(Ω,δβ) > 0 is small enough, then the problem (1.5) admits a non-negative weak solution u. 
Here

pα,β = N

N − 2α + β
. (1.6)

If f(u) ≥ u, then there exists λ∗ > 0 such that when λ > λ∗, problem (1.5) admits no non-negative 
solution.

Remark 1.1. 1. From Theorem 1.1, we say that the value of p can be less than 1, which does not satisfy 
(1.4). On the other hand, we can let β = 0, then ν ∈ M+(Ω, dx), that is, 0 <

∫
Ω ν(x)dx < ∞. In particular, 

we can assume that ν = 1 or ν(x) = g(x) > 0.
2. Although Theorem 1.1 is similar to Theorem 1.2 in [7], the authors in [7] considered the case λf(u)

replaced by g(|∇u|). Moreover, the value of p in Theorem 1.1 is different from that of Theorem 1.2 in [7]. 
What’s more, we take different work space from that in [7].

The rest of this paper is organized as follows. In Section 2, we will recall some known results and interpret 
the difference between our work space and the ordinary fractional Sobolev space. Section 3 is concerned 
with the proof of Theorem 1.1. In the last section, we consider a special case where ν is Dirac measure and 
obtain that the solution is symmetric by using the moving plane method.

2. Preliminaries

In this section, we first introduce our work space. Then we recall the estimate of Green function and 
lastly we prove some properties of the work space.

We say (−Δ)α is a nonlocal operator because of its definition. Sometimes many authors call it fractional 
Laplacian operator. Now we will interpret the difference between nonlocal and fractional operators. Firstly, 
for a positive operator A on bounded domain Ω. We can define the fractional operator of A in the following 
way. Suppose 0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · are the eigenvalues of A and φ1, φ2, · · · , φn, · · · are the 
corresponding eigenfunctions of A. Then we define

Aβu =
∞∑
i=1

λβ
i (φi, u)φi, ∀u ∈ L2(Ω),

where φ1, φ2, · · · , φn, · · · is an orthonormal basis of L2(Ω). That is, λβ
i (i = 1, 2, · · ·) are the eigenvalues 

of Aβ . However, it follows from Theorem 1 of [11] that

λn =
(
nπ

2 − (2 − α)π
8

)α

+ O( 1
n

),

where n = 1, 2, · · · , Ω = (0, 1) and

(−Δ)αu = CαP.V.

∫
R

u(x) − u(y)
|x− y|1+α

dy, x ∈ Ω, and u ≡ 0 in R \ Ω.

It is well known that the eigenvalues of −Δ in (0, 1) is λn = nπ
2 . Thus the two operators are different, 

see [12] for details.
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On the other hand, the work space of the two operators is different. For fractional operator, we can take 
the classical fractional Sobolev space as its work space. But for nonlocal operator, we must take nonlocal 
Sobolev space as its work space, see Remark 2.1 in [12]. Here nonlocal Sobolev space is the weight fractional 
Sobolev space. More precisely, we define for 0 < s < 1, p ≥ 1,

W s,p
ρ (Ω) = {u ∈ W s,p(Ω) : ρ(x)u(x) ∈ Lp(Ω)}

with the norm

‖u‖p
W s,p

ρ (Ω) =
∫
Ω

|ρ(x)u(x)|pdx +
∫
Ω

∫
Ω

|u(x) − u(y)|p
|x− y|n+sp

dxdy,

where ρ(x) ∼ 1
δα(x) , δ(x) = dist(x, Ωc). Actually,

W s,p
ρ (Ω) =

{
u ∈ W s,p(RN ) : u ≡ 0 in R

N \ Ω
}

and

‖u‖p
W s,p

ρ (RN ) =
∫
RN

∫
RN

|u(x) − u(y)|p
|x− y|n+sp

dxdy,

which coincides with that in [9,10]. It is easy to see that W s,p
ρ (Ω) ⊂ W s,p(Ω). There is another reason 

why we introduce the nonlocal Sobolev space. It is well known that ‖Δu‖W s,p(Ω) = ‖u‖W s+2,p(Ω). But for 
nonlocal operator (−Δ)α, ‖(−Δ)αu‖W s,p(Ω) = ‖u‖W s+2α,p(Ω) will not hold. By using Fourier transform, we 
have ‖(−Δ)αu‖W s,p(RN ) = ‖u‖W s+2α,p(RN ), that is, ‖(−Δ)αu‖W s,p

ρ (Ω) = ‖u‖W s+2α,p
ρ (Ω).

Next, we denote by Gα the Green kernel of (−Δ)α in Ω and by G the Green operator defined by

G[f ](x) =
∫
Ω

Gα(x, y)f(y)dy.

It follows from [5] that there exists a constant C > 0 such that for any (x, y) ∈ Ω × Ω with x 
= y

Gα(x, y) ≤ C min
{

1
|x− y|N−2α ,

δα(x)
|x− y|N−α

,
δα(y)

|x− y|N−α

}
,

Gα(x, y) ≤ C
δα(y)

δα(x)|x− y|N−α
. (2.1)

From [4, Corollary 3.3], we have

∣∣∣∇xGα(x, y)
∣∣∣ ≤ NGα(x, y) max

{
1

|x− y| ,
1
δ

}
. (2.2)

Combining with (2.1) and (2.2), we get

∣∣∣∇xGα(x, y)
∣∣∣ ≤ C max

{
δα(y)

δα(x)|x− y|N−α
,
δ

(2α−1)(N−α)
N−2α+1 (y)δ

2α−1−Nα
N−2α+1 (x)

|x− y|N−α

}
,

∣∣∣∇xGα(x, y)
∣∣∣δα(x) ≤ C max

{
δα(y)

|x− y|N−α
,
δ

(2α−1)(N−α)
N−2α+1 (y)δ

(2α−1)(1−α)
N−2α+1 (x)

|x− y|N−α

}
.
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Consequently, the function 
∫
Ω Gα(x, y)dy may not belong to the Sobolev space W 1,1(Ω). Hence we cannot

prove Theorem 1.1 by using the method in [7].
Now, we study the property of the solution of equation (1.5).

Lemma 2.1. Assume that Ω ⊂ R
N (n ≥ 2) is an open bounded C2 domain and ν ∈ M+(Ω, δβ) with 

0 ≤ β ≤ α. Then for p ∈
(
1, N

N−2α+β

)
, there exists C = C(p) such that for any ν ∈ L1(Ω, δβdx)

‖G[ν]‖W 2α−γ,p
ρ (Ω) ≤ C‖ν‖L1(Ω,δβdx),

where γ = β + N
p′ if β > 0 and γ > N

p′ if β = 0, and p′ = p
p−1 .

Proof. Similar to [7, Proposition 2.5], we use Stampacchia’s duality method [21]. Let u = G[ν], then 
(−Δ)αu = ν. For ψ ∈ C∞

c (Ω̄), we have

∣∣∣ ∫
Ω

ψ(−Δ)αudx
∣∣∣ =

∣∣∣ ∫
Ω

ψνdx
∣∣∣ ≤ ∫

Ω

|ψ||ν|dx

≤ ‖ψ‖Cβ(Ω̄)‖ν‖L1(Ω,δβdx).

By Sobolev–Morrey embedding type theorem, we have for any p ∈
(
1, N

N−2α+β

)

‖ψ‖Cβ(Ω̄) ≤ C‖ψ‖Wγ,p′ (Ω),

where p′ = p
p−1 , and γ = β+ N

p′ if β > 0. Noting that W γ,p′
ρ (Ω) ⊂ W γ,p′(Ω) and ‖u‖Wγ,p′ (Ω) ≤ C‖u‖

Wγ,p′
ρ (Ω)

(C only depends on Ω), we have

∣∣∣ ∫
Ω

ψ(−Δ)αudx
∣∣∣ ≤ C‖ψ‖Wγ,p′ (Ω)‖ν‖L1(Ω,δβdx)

≤ C‖ψ‖
Wγ,p′

ρ (Ω)‖ν‖L1(Ω,δβdx),

which implies that the mapping ψ →
∫
Ω ψ(−Δ)αudx is continuous on W γ,p′

ρ (Ω) and thus

‖(−Δ)αu‖W−γ,p
ρ (Ω) ≤ C‖ν‖L1(Ω,δβdx).

Since (−Δ)α is an isomorphism from W 2α−γ,p
ρ (Ω) into W−γ,p

ρ (Ω), it follows that

‖u‖W 2α−γ,p
ρ (Ω) ≤ C‖ν‖L1(Ω,δβdx).

This completes the proof. �
It follows from Lemma 2.1 that for ν ∈ L1(Ω, δβdx) with 0 ≤ β ≤ α, we have u ∈ W 2α−γ,p

ρ (Ω), where 
(−Δ)αu = ν. Noting that

W 2α−γ,p
ρ (Ω) ⊂ W 2α−γ,p(Ω) ↪→compact Lq(Ω), (2.3)

where q ∈ [1, Np
N−(2α−γ)p ), we can obtain the compactness of the sequence {un} if ‖νn‖L1(Ω,δβdx) ≤ C, 

(−Δ)αun = νn and C does not depend on n. Additionally, when β > 0, using γ = β + N − N , we have
p
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Np

N − (2α− γ)p
= Np

N − (2α− β −N + N
p )p

= N

N − 2α + β
.

When β = 0, Np
N−(2α−γ)p = N

N−2α .
Before we end this section, we consider the following problem:

{
(−Δ)αu = f(u) + g, in Ω,

u = 0, in Ωc.
(2.4)

Lemma 2.2. Assume that f ∈ Cθ(R) ∩ L∞(R) for θ ∈ (0, 1] and g ∈ Cθ(Ω̄). The problem (2.4) admits a 
unique classical solution u. Moreover, u ≥ 0 if g + f(0) ≥ 0.

The proof of Lemma 2.2 is standard and omitted here, also see [7, Theorem 2.1] for similar proof.

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1 by using Schauder’s fixed point theorem.

Proof of Theorem 1.1. Let {νn} ⊂ C1(Ω) be a sequence of non-negative functions such that νn → ν in the 
sense of duality with Cβ(Ω̄) := {u ∈ C(Ω̄) : δ−βu ∈ C(Ω̄)}, that is,

lim
n→∞

∫
Ω

uνndx =
∫
Ω

uνdx, ∀u ∈ Cβ(Ω̄).

By the Banach–Steinhaus Theorem, ‖νn‖M+(Ω,δβ) is bounded independently of n. Let {fn} be a sequence 
of C1 non-negative functions defined on R+ such that

fn ≤ fn+1 ≤ f, sup
s∈R+

fn(s) = n, lim
n→∞

‖fn − f‖L∞
loc(R+) = 0.

Let p0 = p+pα,β

2 ∈ (p, pα,β), where pα,β is given by (1.6) and p < pα,β is the growth rate of f which 
satisfies (H), and

M(v) =

⎛
⎝∫

Ω

|v|p0dx

⎞
⎠

1
p0

.

We assume that

‖νn‖L(Ω,δβdx) ≤ 2‖ν‖L(Ω,δβdx)

for all n. We divide the proof into two steps.
Step 1. We claim that for n ≥ 1

{
(−Δ)αun = λfn(un) + νn, in Ω,

un = 0, in Ωc

admits a non-negative solution un such that M(un) ≤ μ̄, where μ̄ > 0 is independent of n.
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Define the operator Tn by

Tnu = G[λfn(u) + νn], ∀u ∈ Lp0(Ω).

Using (2.1), we have

‖Tnu‖Lp0 (Ω) ≤ λ‖G[λfn(u)]‖Lp0 (Ω) + ‖Gα[νn]‖Lp0 (Ω)

≤ C1
(
λ‖fn‖L∞(R+) + ‖νn‖L∞(Ω)

)
, (3.1)

where C1 = ‖ 
∫
Ω Gα(·, y)dy‖Lp0 (Ω) < ∞. Actually, by using polar transform, we have

∣∣∣ ∫
Ω

∣∣∣ ∫
Ω

Gα(x, y)dy
∣∣∣p0

dx
∣∣∣ ≤ C

∣∣∣ ∫
Ω

∣∣∣ ∫
Ω

1
|x− y|N−2α dy

∣∣∣p0
dx

∣∣∣
≤ C

∣∣∣ ∫
Ω

∣∣∣ ∫
BR(x)

1
|x− y|N−2α dy

∣∣∣p0
dx

∣∣∣

≤ C|Ω|
R∫

0

1
rN−2α r

N−1dr

≤ C|Ω|R2α,

where R > 0 and Ω ⊂ BR(x), ∀x ∈ Ω. It follows from Lemma 2.1 that

‖Tnu‖Lp0 (Ω) ≤ C‖Tnu‖W 2α−γ,p
ρ (Ω) = C‖G[λfn(u) + νn]‖W 2α−γ,p

ρ (Ω)

≤ C2‖λfn(u) + νn‖L1(Ω,δβdx)

≤ aC2λ‖up‖L1(Ω,δβdx) + bC2λ + 2C2‖ν‖M+(Ω,δβ)

≤ aC2λ‖u‖pLp0 (Ω)

⎛
⎝∫

Ω

δ
βp0
p0−p dx

⎞
⎠

1
p− 1

p0

+ bC2λ + 2C2‖ν‖M+(Ω,δβ), (3.2)

which implies

M(Tnu) ≤ aC3λM(u)p + bC2λ + 2C2‖ν‖M+(Ω,δβ),

where C3 = C2

(∫
Ω δ

βp0
p0−p dx

) 1
p− 1

p0 is independent of n.
Therefore, if we assume that M(u) ≤ μ, inequality (3.2) yields

M(Tnu) ≤ aC3λμ
p + bC2λ + 2C2‖ν‖M+(Ω,δβ).

Let μ̄ > 0 be the largest root of the equation

aC3λμ
p + bC2λ + 2C2‖ν‖M+(Ω,δβ) = μ. (3.3)

We have the following 4 cases:

(i) If p ∈ (0, 1), (3.3) admits a unique positive root;
(ii) If p = 1 and aC3λ < 1, (3.3) admits a unique positive root;
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(iii) If p ∈ (1, pα,β) and bC2λ + 2C2‖ν‖M+(Ω,δβ) is small enough, (3.3) admits two positive roots;
(iv) If p ∈ (1, pα,β) and ‖ν‖M+(Ω,δβ) fixed, there exists a constant λ∗ > 0 such that when λ ∈ (0, λ∗), (3.3)

admits two positive roots. When λ = λ∗, (3.3) admits a unique positive root. (3.3) admits no positive 
root when λ > λ∗.

If we suppose the one of the above 4 cases holds, the definition of μ̄ > 0 implies that it is the largest 
μ > 0 such that

aC3λμ
p + bC2λ + 2C2‖ν‖M+(Ω,δβ) ≤ μ.

For M(u) ≤ μ̄, we obtain

M(Tnu) ≤ aC3λμ̄
p + bC2λ + 2C2‖ν‖M+(Ω,δβ) = μ̄.

By the assumption of Theorem 1.1, μ̄ exists and it is larger than M(un), i.e.,

⎛
⎝∫

Ω

|Tnu|p0dx

⎞
⎠

1
p0

≤ μ̄.

Thus Tn maps Lp0(Ω) into itself. By the condition (H), if un → u in Lp0(Ω) as n → ∞, then f(un) → f(u)
in L1(Ω), and thus T is continuous. We claim that T is a compact operator. In fact, for u ∈ Lp0(Ω), we 
have fn(u) + νn ∈ L1(Ω) and then, by Lemma 2.1, it implies that Tnu ∈ W 2α−γ,p

ρ (Ω), where p ∈ (1, pα,β)
and γ ∈ (N(p−1)

p , 2α− β). Note that

N(p− 1)
p

= N

(
1 − 1

p

)
< N

(
1 − 1

pα,β

)
= 2α− β.

Since the embedding W 2α−γ,p
ρ (Ω) ↪→ Lp0(Ω) is compact, Tn is a compact operator.

Let

M =
{
u ∈ Lp0(Ω) : ‖u‖Lp0 (Ω) ≤ C1

(
λ‖fn‖L∞(R+) + ‖νn‖L∞(Ω)

)
and M(u) ≤ μ̄

}
,

which is a closed and convex set of Lp0(Ω). Combining with (3.1), we have

Tn(M) ⊆ M.

It follows by Schauder’s fixed point theorem that there exists some un ∈ Lp0(Ω) such that Tnun = un and 
M(un) ≤ μ̄, where μ̄ is independent of n. By Lemma 2.2, un belongs to C2α+ε locally in Ω (ε > 0 small 
enough) and

∫
Ω

un(−Δ)αφdx =
∫
Ω

fn(un)φdx +
∫
Ω

φνndx, ∀φ ∈ Xα.

Step 2. Taking limits.
Noting that M(un) ≤ μ̄ and using the condition (H), we have fn(un) is uniformly bounded in L1(Ω, δβdx). 

By Lemma 2.1, {un} is bounded in W 2α−γ,p
ρ (Ω), where p ∈ (1, pα,β) and 0 < γ < 2α − β. By (2.3), there 

exist a subsequence {unk
} and u such that unk

→ u a.e. in Ω and in Lq(Ω) for any q ∈ [1, pα,β). By 
condition (H), fnk

(unk
) → f(u) in L1(Ω). Letting nk → ∞, we have
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∫
Ω

u(−Δ)αφdx =
∫
Ω

f(u)φdx +
∫
Ω

φνndx, ∀φ ∈ Xα.

Thus u is a weak solution of (1.5), which is non-negative as {un} are non-negative.
Lastly, we prove that when f(u) ≥ u, there exists λ∗ > 0 such that when λ > λ∗, problem (1.5) admits 

no non-negative weak solution. We can verify it by using eigenvalue and eigenfunction. Let λ1 > 0 be the 
first eigenvalue of (−Δ)α in Ω and φ1 > 0 the corresponding eigenfunction, that is,

⎧⎪⎨
⎪⎩

(−Δ)αφ1 = λ1φ1, in Ω,

φ1 > 0, in Ω,

φ1 = 0, in R
N \ Ω.

The existence, simplicity, and boundedness of the first eigenvalue are proved in [19, Proposition 5] and [20, 
Proposition 4]. Assume that u is a non-negative weak solution of (1.5). Then, taking φ1 as a test function 
for problem (1.5), we get

λ1

∫
Ω

uφ1 =
∫
Ω

u(−Δ)αφ1 = λ

∫
Ω

f(u)φ1 +
∫
Ω

φ1dν

≥ λ

∫
Ω

f(u)φ1.

Therefore, if f(u) ≥ u ≥ 0 and u 
≡ 0, we will get a contradiction when λ > λ1. Hence there exists λ∗ > 0
such that when λ > λ∗, problem (1.5) admits no non-negative weak solution. �
4. Symmetry of solution: the method of moving plane

In this section, we consider the symmetry of the solution to the following equation:
{

(−Δ)αu = f(u), x ∈ BR(0)\{0},

u ≡ 0, in BR(0)c,
(4.1)

where R > 0, f(·) : R+ → R+ is a non-decreasing function and α ∈ (0, 1).

Theorem 4.1. Assume that f satisfies the condition (H). Then any non-negative solution to (4.1) is sym-
metric about the origin. Moreover, u > 0 in BR(0)\{0}.

In order to prove Theorem 4.1, we need the following lemmas.

Lemma 4.1. (See [2, Lemma 4.2].) Let Ω ⊂ R
N be a bounded domain. Suppose w : RN → R+ is continuous, 

(−Δ)αw ≥ 0 on Ω, and satisfies w ≡ 0 on Ωc. Then either w ≡ 0 or w > 0 on Ω.

Lemma 4.2. (See [2, Lemma 4.3].) Let Ω ⊂ R
N be open, w : RN → R+ continuous with w ≡ 0 on Ωc, 

(−Δ)αw ≥ 0 on Ω, w not identically zero. Let x0 ∈ ∂Ω satisfy an interior sphere condition, i.e., there exists 
a ball Bρ(x1) with Bρ(x1) ∩ Ωc = {x0}, and let ν be an outward pointing unit vector at x0. Then

∂

∂ν
w(x0) < 0

(in fact, lim(w(x0) − w(x0 − ε))/ε = −∞).

ε↓0
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Proof of Theorem 4.1. The existence of non-negative solutions follows from Theorem 1.1 with β = 0 and 
ν = δ0, where δ0 is the Dirac measure at the origin.

We first prove u > 0 in BR(0)\{0}. Suppose u(x0) = minx∈BR(0) u(x) = 0. Then

(−Δ)αu(x0) = CN,α

∫
RN

u(x0) − u(y)
|x0 − y|N+2α dy < 0.

And thus

0 = (−Δ)αu(x0) − f(u(x0)) < 0,

which yields a contradiction. On the other hand, it follows from Lemma 4.1 that either w ≡ 0 or w > 0 in 
BR(0)\{0}. It follows from the above discussion that u > 0 in BR(0)\{0}.

Now, we apply the method of moving plane to prove the symmetry of the solution. Choose any direction 
in RN , without loss of generality the x1-direction, and show that u is mirror symmetric with respect to 
the hyperplane through the origin with this given direction as a normal vector. For this, let us define for 
0 < σ < R,

∑
σ

= {x ∈ BR : x1 > σ}, Tσ = {x ∈ BR : x1 = σ},

and uσ(x) = u(xσ) for x ∈
∑

σ, where xσ is the reflection of x with respect to the line x1 = σ, i.e., 
xσ = (2σ − x1, x2, · · · , xN ).

Set wσ(x) = uσ(x) − u(x) for x ∈
∑

σ. Then wσ satisfies the following equation:

{
(−Δ)αwσ = f(uσ) − f(u) + δ(2σ,0), in

∑
σ,

wσ ≥ 0, on ∂
∑

σ,

where δ(2σ, 0) is the Dirac measure at the point (2σ, 0). Define

Su =
{
ρ ∈ (0, R) : wσ > 0 in

∑
σ

for σ ∈ (ρ,R)
}
,

ρu = inf
ρ∈Su

{ρ}.

First, we show that Su 
= ∅. By Lemma 4.2 and u(x) > 0 in BR\{0}, we have ∂
∂νu(x) < 0 for |x| = R, 

where ν is the unit outer normal to ∂BR at x. In particular,

uσ(x) = u(xσ) > u(x) for x ∈
∑
σ

,

if σ is sufficiently close to R. This shows that wσ > 0 in 
∑

σ if σ is sufficiently close to R. Hence Su is 
nonempty.

Next, we prove that ρu = 0. Suppose this is not true. Then, by continuity, we have wρu
(x) ≥ 0 in 

∑
σ. 

By the non-decreasing of f , it is easy to see that

{
(−Δ)αwρu

≥ δ(2σ,0), in
∑

σ,

w ≥ 0, in
∑

∪ ∂
∑

.
(4.2)
ρu ρu ρu
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Thus, if wρu
(x0) = 0 for some x0 ∈

∑
ρu

, then by Lemma 4.1, we have wρu
≡ 0 in 

∑
ρu

. However, this 
contradicts the fact that wρu

= u(xρu) −u(x) = u(xρu) > 0 for x ∈ ∂
∑

ρu
\{x1 = ρu}. Therefore, we obtain 

that
{

wρu
> 0, for any

∑
σ\Tρu

,

wρu
= 0, on

∑
ρu

∩ Tρu
.

(4.3)

By (4.2), (4.3) and Lemma 4.2, we obtain

∂

∂x1
wρu

< 0, on
∑
ρu

∩ Tρu
. (4.4)

On the other hand, since ρu > 0, there exists a positive sequence εk such that ρu−εk > 0 and (ρu−εk) → ρu
as k → ∞. By the definition of ρu, for each εk, we obtain that wρu−εk is non-positive somewhere in 

∑
ρu−εk

. 
By the way, we have wρu−εk > 0 on ∂

∑
ρu−εk

\Tρu−εk and wρu−εk = 0 on ∂
∑

ρu−εk
∩ Tρu−εk . Hence, for 

each εk there exists xk ∈
∑

ρu−εk
such that

{
wρu−εk(xk) ≤ 0,
∇wρu−εk(xk) = 0.

(4.5)

Since {xk} is a bounded sequence, there exists a convergence subsequence, we still denote it by xk, such 
that xk → x0. By (4.5), we obtain that

0 ≥ lim
k→∞

wρu−εk(xk) = lim
k→∞

[u(xρu−εk) − u(xk)] = u(xρu

0 ) − u(x0) = wρu
(x0).

Hence, by the above inequality and (4.3), we conclude that x0 ∈
∑

ρu
∩ Tρu

and, by (4.5),

0 = lim
k→∞

∂wρu−εk

∂x1
(xk) = lim

k→∞
[
∂u(xρu−εk)

k

∂x1
(xk) −

∂u(xk)
∂x1

(xk)] = ∂u

∂x1
(xρu

0 ) − ∂u

∂x1
(x0) = ∂wρu

∂x1
(x0).

This contradicts (4.4). Thus ρu = 0 and u is radially symmetric. �
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