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Abstract

Hilbert space operator polynomials with self-inversive structure are studied.
If the inner numerical radius of an associated polynomial is greater than or
equal to one then the spectrum lies on the unit circle and consists of normal
approximate characteristic values.
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1. Introduction

Let
f(z) = f0 + f1z + · · ·+ fn−1z

n−1 + fnz
n ∈ C[z]

with f0fn �= 0. Define

f̂(z) = f̄n + f̄n−1z + · · ·+ f̄1z
n−1 + f̄0z

n. (1.1)

If
f(z) = γf̂(z) and |γ| = 1, (1.2)

then f(z) is said to be γ-self-inversive (see e.g. Marden [36, p. 201], Sheil– 15

Small [49, p. 149], and Rahman and Schmeisser [45]). Self-inversive poly-
nomials can be found in the literature under various names such as self-
reciprocal [1, 15, 31], reciprocal [2, 32, 34], palindromic [9, 53, 11], conjugate
symmetric [8], symmetric [51], or conjugate reciprocal [42]. If all zeros of a
complex polynomial f(z) lie on the unit circle then there exists a unimodular 20

γ such that f(z) is γ-self-inversive [16]. Polynomials with roots of modulus
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one have a wide range applications. We mention Lie algebras [30], kine-
matics [20], quantum chaotic dynamics [10], signal and speech processing [50,
51] and self-dual codes [15]. The starting point of our note is a constructive
result of Schur [48, XII]. We state it in a modified form as follows (see also25

[13], [29]).

Theorem 1.1. Let p(z) ∈ C[z] a polynomial of degree k, let r ∈ N0 and
|γ| = 1. Then f(z) = p(z) + γ zrp̂(z) is γ-self-inversive. Suppose p(z) =
c
∏k

j=1(z − ωj). If |ωj| ≥ 1, j = 1, . . . , k, then the zeros of f(z) lie on the
unit circle.30

In this paper we consider Hilbert space operator polynomials with γ-self-
inversive structure. Let H be a complex Hilbert space and let L(H) be the
algebra of bounded linear operators on H. If T ∈ L(H) then T ∗ shall denote
the adjoint of T . Let

F (z) = F0 + F1z + · · ·+ Fm−1z
m−1 + Fmz

m ∈ L(H)[z]

with F0 �= 0, Fm �= 0. In accordance with (1.1) and (1.2) we associate to35

F (z) an operator polynomial

F̂ (z) = F ∗
m + F ∗

m−1z + · · ·+ F ∗
1 z

m−1 + F ∗
0 z

m,

and we say that F (z) is γ-self-inversive if

F (z) = γF̂ (z) and |γ| = 1.

Applications of γ-self-inversive matrix polynomials are cited in [39]. We men-
tion vibrational analysis of railroad tracks excited by high speed trains [38],
modelling and numerical simulation of periodic surface acoustic wave filters40

[28], computation of the Crawford number of two hermitian matrices [26],
and the solution of discrete-time linear-quadratic optimal control problems
via structured eigenvalue problems [12].

Let P (z) =
∑k

j=0 Ajz
j ∈ L(H)[z] be given such that Ak �= 0, A0 �= 0. It

is easy to see that45

F (z) = P (z) + γzrP̂ (z)

is γ-self-inversive, if |γ| = 1 and r ≥ 0. Using the inner numerical radius of
operator polynomials P (z) we shall extend Schur’s theorem. Our main result
is Theorem 3.1. It involves the spectrum of F (z) and its approximate and
residual parts, and therefore goes beyond results on matrix polynomials in
[29]. In Section 2 below we gather together basic facts on the spectrum and50

the approximate numerical range of operator polynomials in Hilbert space.
In Section 4 we deal with a special case of F (z) assuming that P (z) is of
degree 1.
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2. Operator polynomials

2.1. The spectrum 55

Let SH = {x ∈ H; ‖x‖2 = 〈x, x〉 = 1} be the unit sphere of a complex
Hilbert space H. If v ∈ H then v∗ ∈ H∗ is defined by v∗(u) = 〈v, u〉, u ∈ H.
Let u = (uν) ∈ HN. We write

u =̂ 0 if limν→∞ uν = 0,

and u ˆ�= 0 if (uν) is not a null sequence. Let T ∈ L(H), and let σ(T ) denote
the spectrum of the bounded linear operator T . A complex number λ is 60

called an approximate eigenvalue of T , if for all ε > 0 there exists a y ∈ H
such that

‖(λI − T )y‖ < ε‖y‖. (2.1)

The set σA(T ) of approximate eigenvalues of T is the approximate point
spectrum of T (see [6], [27, p. 54] [5, p. 241], [41, p. 413], [22, p. 81]). We say
that a sequence v = (vν) ∈ HN is an approximate eigenvector corresponding 65

to λ if
(λI − T )v =̂ 0 and v ˆ�= 0. (2.2)

If convenient, one can assume vν ∈ SH , ν ∈ N, in (2.2). We define

KerA(λI − T ) = {v ∈ HN; (λI − T )v =̂ 0}.

Suppose λ ∈ σA(T ). If there exists a corresponding approximate eigenvector
v = (vν) such that (λI − T )∗v =̂ 0, then λ is called a normal approximate
eigenvalue of T (see e.g. [17], [21], [35]). Thus λ is normal if 70

KerA(λI − T ) = KerA(λI − T )∗.

The set
σP (T ) = {λ ∈ C; λI − T is not injective}

is the point spectrum of T . From (2.1) follows σP (T ) ⊆ σA(T ). Let

σR(T ) = {λ ∈ C; λI − T is injective and range(λI − T ) �= H}

be the residual spectrum of T . Then (see e.g. [41, p. 413])

σ(T ) = σA(T ) ∪ σR(T ),

and (see e.g. [3, p. 298], [41, p. 412])

σP (T ) ∩ σR(T ) = ∅. (2.3)
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It is known ([47, p. 194], [18, p. 161]) that75

σR(T ) ⊆ σP (T
∗). (2.4)

We extend the notion of spectrum from operators T ∈ L(H) to operator
polynomials

B(z) =
∑m

j=0
Bjz

j ∈ L(H)[z]. (2.5)

We assume that B(μ) ∈ L(H) is invertible for some μ ∈ C. If H is finite di-
mensional, say H = C

n, then B(z) ∈ C
n×n[z], and in that case the preceding

assumption means that detB(z) is not the zero polynomial. We define80

σ(B) = {λ ∈ C; B(λ) is not invertible}.
Thus σ(B) =

{
λ ∈ C; 0 ∈ σ

(
B(λ)

)}
. Similarly, we define

σM(B) =
{
λ; 0 ∈ σM

(
B(λ)

)}
for M ∈ {P,A,R}.

Thus λ ∈ σA(B) if and only if

B(λ)v =̂ 0, v ˆ�= 0, (2.6)

for some sequence v = (vν) ∈ HN. Adapting a notion of [4] we call the
elements of σA(B) approximate characteristic values of B(z). If (2.6) holds
then v = (vν) is said to be an approximate eigenvector of B(z) corresponding85

to λ. Moreover, λ ∈ σA(B) is called normal if there exists an approximate
eigenvector v such that B(λ)∗v=̂0. In particular, λ is normal, if KerA B(λ) =
KerA B(λ)∗. We note a preliminary result.

Lemma 2.1. Let F (z) =
∑m

j=0 Fjz
j ∈ L(H)[z] be γ-self-inversive. If λ ∈

σA(F ) and |λ| = 1, then λ is normal, and we have90

KerA F (λ) = KerA F (λ)∗. (2.7)

Proof. If |λ| = 1 and y ∈ H then F = γF̂ implies

(
F (λ)y

)∗
= y∗

( m∑
j=0

F ∗
j λ

j
)
= γ̄y∗

(
γ

m∑
j=0

F ∗
j λ

−j
)
=

(γ̄λ−m)
(
y∗γF̂ (λ)

)
= (γ̄λ−m)y∗F (λ). (2.8)

Now let λ ∈ σA(F ) and v =
(
vν
)
be a corresponding approximate eigenvector.

If |λ| = 1, then it follows from (2.8) that limν→∞ F (λ)vν = 0 is equivalent
to limν→∞ v∗νF (λ) = 0.
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2.2. The approximate numerical range

Let B(z) ∈ L(H)[z]. The set 95

W (B) = {λ ∈ C; y∗B(λ)y = 0 for some y ∈ H, y �= 0} (2.9)

is the numerical range of B(z). We refer to [33] for a detailed study of
the numerical range of matrix polynomials and to [37], [19], [40], [43], [14]
for further investigations. In addition to (2.9) we consider the approximate
numerical range WA(B) of B(z). We define

WA(B) = {λ ∈ C; lim
ν→∞

y∗νB(λ)yν = 0 for some y = (yν) ∈ HN, y ˆ�= 0}.

Then σA(B) ⊆ WA(B). In [52] it was shown that 100

WA(B) = W (B). (2.10)

If B(z) = zI − T and T ∈ L(H), then WA(B) and W (B) are equal to

NA(T ) = {λ ∈ C; λ = lim
ν→∞

x∗
νTxν for some (xν) ∈ HN, xν ∈ SH , ν ∈ N}

and

N(T ) = {λ ∈ C; λ = x∗Tx for some x ∈ SH} = {x∗Tx; x ∈ SH},

respectively. The set N(T ) is the numerical range (or field of values) of T .
Let

w(B) = sup{|λ|; λ ∈ W (B)} and ν(T ) = sup{|λ|; λ ∈ N(T )}

be the numerical radius of B(z) and T , respectively, and let 105

wi(B) = inf{|λ|; λ ∈ W (B)}

be the inner numerical radius of B(z). From (2.10) follows

w(B) = sup{|λ|; λ ∈ WA(B)}

and ν(T ) = sup{|λ|; λ ∈ NA(T )} and wi(B) = min{|λ|; λ ∈ WA(B)}.
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3. The main result

Let D = {λ; |λ| < 1} be the open unit disc and ∂D = {λ; |λ| = 1} be
the unit circle.110

Theorem 3.1. Let P (z) =
∑k

j=0 Ajz
j ∈ L(H)[z] be given with Ak �= 0,

A0 �= 0. If |γ| = 1 and r ≥ 0 then

F (z) = P (z) + γzrP̂ (z)

is γ-self-inversive. If wi(P ) ≥ 1 then

σ(F ) ⊆ WA(F ) ⊆ ∂D.

The residual spectrum of F (z) is empty, that is σ(F ) = σA(F ). The charac-
teristic values λ of F (z) are approximately normal, satisfying (2.7).115

Proof. Let us show first that λ ∈ ∂D if λ ∈ W (F ). Suppose v ∈ H, v �= 0,
and v∗F (λ)v = 0. Set

pv(z) =
∑k

j=0
v∗Ajv z

j = v∗P (z)v and fv(z) = v∗F (z)v.

Then fv(z) = pv(z)+γzrp̂v(z). The assumption wi(P ) ≥ 1, that is W (P ) ⊆
{λ; |λ| ≥ 1}, implies that |ω| ≥ 1 if pv(ω) = 0. Hence Theorem 1.1 yields
λ ∈ ∂D, and we obtain W (F ) ⊆ ∂D. Then W (F ) ⊆ ∂D. Therefore we120

conclude from WA(F ) = W (F ) and σA(F ) ⊆ WA(F ) that

σA(F ) ⊆ WA(F ) ⊆ ∂D.

We now show that σR(F ) = ∅. Suppose λ ∈ σR(F ), that is 0 ∈ σR

(
F (λ)

)
.

Then (2.4) implies 0 ∈ σP

(
F (λ)∗

)
. If λ = 0 then 0 ∈ σP

(
F (0)∗

)
= σP (F

∗
0 ).

Then 0 = y∗F ∗
0 y = y∗F0y for some y ∈ SH . Thus 0 ∈ W (F ), in contradiction

to W (F ) ⊆ ∂D. If λ �= 0 then

(
F (λ)

)∗
= F ∗

0 + F ∗
1 λ̄+ · · ·+ F ∗

mλ̄
m =

λ̄m
(
F ∗
0 λ̄

−m + F ∗
1 λ̄

−(m−1) + · · ·+ F ∗
m

)
= λ̄mF̂ (λ̄−1) = λ̄mγ̄F (λ̄−1).

Hence 0 ∈ σP

(
F (λ)∗

)
is equivalent to 0 ∈ σP

(
F (λ̄−1)

)
, that is to λ̄−1 ∈

σP (F ). Then σP (F ) ⊆ σA(F ) ⊆ ∂D implies λ̄−1 = λ ∈ σP (F ). Hence
λ ∈ σR(F ) ∩ σP (F ), in contradiction to (2.3). The last statement follows
from Lemma 2.1.125
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4. P (z) = I − Tz

In this section we deal with self-inversive operator polynomials

F (z) = P (z) + zP̂ (z)

where P (z) = I − Tz and T ∈ L(H). Let R(T ) = 1
2
(T + T ∗) be the real

part of T . Then
F (z) = (1 + z2)I − 2zR(T ).

It is easy to see that wi(P ) = ν(T ). Hence σ(F ) ⊆ ∂D if ν(T ) ≤ 1 (by 130

Theorem 3.1). A sharper result is the following.

Proposition 4.1. (i) The spectrum of F (z) = (1 + z2)I − 2zR(T ) is

σ(F ) = {λ; λ2 − 2λμ+ 1 = 0, μ ∈ σ(R(T )}. (4.1)

(ii) Suppose σ(R(T ) = [−a, a], a ∈ R, a > 0. Then σ(F ) ⊆ ∂D if and
only if a ≤ 1.

(iii) If σ(R(T ) = [−a, a] ⊆ [−1, 1], and a = cosα, with 0 ≤ α < π
2
, then 135

σ(F ) = WA(F ) = A+ ∪ A−,

where

A+ = {eiτ ; α ≤ τ ≤ π − α} and A− = {e−iτ ; α ≤ τ ≤ π − α},

are circular arcs with midpoints i and −i, respectively. In particular,
if a = 1 then σ(F ) = WA(F ) = ∂D.

Proof. (i) The spectral mapping theorem for polynomials (see e.g. [5, p. 226],
[24, p. 53]) implies 140

σ
(
F (λ)

)
= F

[
σ
(
(λ2 + 1)I − 2λR(T )

)]
.

Hence 0 ∈ σ
(
F (λ)

)
if and only if

(λ2 + 1)− 2λμ = 0 (4.2)

for some μ ∈ R(T ).
(ii) If μ ∈ R, then the roots of the quadratic equation (4.2) are

λ±(μ) = μ±
√

μ2 − 1.
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If |μ| ≤ 1, μ = cosφ, then λ±(μ) = e±iφ. If |μ| ≥ 1, |μ| = coshψ, then
λ±(μ) ∈ {±e±ψ}. Therefore |λ±(μ)| = 1 is equivalent to |μ| ≤ 1. Hence we145

have |μ| ≤ 1 for all μ ∈ R if and only if a ≤ 1.
(iii) We have λ+(a) = eiα and λ+(−a) = ei(π−α). Hence, if μ varies

between a and −a then the characteristic values λ+(μ) of F (z) yield the arc
A+. Similarly, λ−(a) = e−iα and λ−(−a) = e−i(π−α) are the end points of the
arc A−. If a = 1 then α = 0, and A+ ∪ A− = ∂D.150

It remains to show that σ(F ) = WA(F ). We have λ ∈ W (F ) if and only
if

v∗
(
(λ2 + 1)I − 2λR(T )

)
v = 0 for some v ∈ SH . (4.3)

Then 0 /∈ W (F ), and we obtain

W (F ) =
{
λ; (1 + λ2)(2λ)−1 ∈ N(R(T ))

}
. (4.4)

Let conv(M) denote the convex hull of a set M ⊆ C. The operator R(T ) ∈
L(H) is normal, and therefore (see [23, p. 16], [25, Problem 216])155

N(R(T )) = conv
(
σ(R(T ))

)
.

Hence (4.4) implies

WA(F ) =
{
λ; (1 + λ2)(2λ)−1 = μ for some μ ∈ [−a, a]

}
.

Then (4.1) completes the proof.

To illustrate the preceding observations we choose H = �2(0,∞) and
T = aS, where S is the left shift on H,

S : (x0, x1, x2, . . . ) �→ (x1, x2, x3, . . . ),

and a ∈ C, a �= 0. If P (z, a) = I − zaS and F (z, a) = P (z, a) + P̂ (z, a) then160

F (z, a) = (z2 + 1)I − z(aS + āS∗).

The adjoint S∗ is the right shift on �2(0,∞),

S∗ : (x0, x1, x2, . . . ) �→ (0, x0, x1, x2, , . . . ).

The numerical radius of S is equal to 1 (see e.g. [25, Problem 112]). Hence
ν(aS) = |a|, and therefore the condition |a| ≤ 1 is sufficient for σ

(
F (z, a)

) ⊆
∂D. If |η| = 1 and D(η) = diag(1, η, η2, . . . ), then D(η)−1 = D(η)∗ and

D(η) (ηS)D(η)−1 = S

8



Hence (see also [46, p.7]), if a = |a|eiθ, then

F (z, a) = (1 + z2)I − z(aS + aS∗) =

D(e−iθ)
[
(1 + z2)I − z |a| (S + S∗)

]
D(eiθ) = D(e−iθ)F (z, |a|)D(eiθ).

Therefore only the case a = |a| is of interest. Since S is hyponormal, that is 165

S∗S − SS∗ ≥ I, it follows from [44], [7] that

σ(R(S)) = [−1, 1] and σ(R(S)) ∩ σP (R(S)) = ∅. (4.5)

We also refer to [25, Problem 144]. Hence Proposition 4.1 implies that
σ
(
F (z, a)

) ⊆ ∂D is equivalent to |a| ≤ 1. Moreover, if 0 < |a| ≤ 1 and
|a| = cosα, 0 ≤ α < π

2
, then

σ
(
F (z, a)

)
= WA

(
F (z, a)

)
= {eiθ; α ≤ θ ≤ π−α}∪{eiθ; π+α ≤ θ ≤ 2π−α}.
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