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1. Introduction

Yang and Debnath [10] presented the following double inequality for every z in 0 < z < %

e—gx-F 12146 2 118em3<(1+x)1/”<e——x+—x . (1.1)
Such inequalities were proven to be of great interest through the researchers, especially in the recent past,
due to many practical problems where they can be applied. As example, we refer to inequality (1.1) which
is the main tool for improving Carleman’s inequality in [10].
Recently, Mortici and Yang [6] proposed an improvement of (1.1) and provided a simple, direct proof of
(1.1) for every real number z € (0;1].

a(z) < (1 +2)Y* < b(z), (1.2)
where a(z) = e — §x + Sfa? — 2o’ + 254%706 *— 53052° and b(x) = a(z) + F3552°.
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Motivated by the work of Yang and Debnath [10], Mortici and Yang [6], Hu and Mortici [5], in this
paper we will continue our previous works, and apply the multiple-correction method to construct some
new continued fraction inequalities related to (1 + %)x, which have faster rate of convergence.

This paper is organized as follows. In Section 2, we explain how to find the continued fraction approxi-
mation for (1 + %)x In Section 3, we give the improved continued fraction approximation for (1 + %)x

Throughout the paper, the notation ¥(k; ) means a polynomial of degree k in x with all of its non-zero
coefficients positive, which may be different at each occurrence.

2. Continued fraction approximation for (1 + %)m

Theorem 1. For every real number x > 1, we have

1 * S1 .
1+-) <e-ai(z)=e| 1+ ,i=1,2,3, ..., (2.1)
T T+t + 2
T oy ———=
z+t3+w
_ 1 _ 11, _ _ 5 _ 34, _ 481 __ 357866 . _ 792876605 _
where s1 = —5, b1 = 157 82 = —qi7, b2 = 557 83 = —1ino000 13 = Fararss 4 = —Ticoosasodd 4 =
2317657460602 .
4805307952263 7 """

Proof. Inequalities (2.1) are equivalent to f; < 0 on [1, +00), where

filz) =2 (1 + %) —Ina(x) — 1.

Based on our previous works [7,11-13], we will apply multiple-correction method to study the estimate
for (1 + %)I Now, we prove the estimate for (1 + %)x by multiple-correction method [1-3] as follows:

(Step 1) The first-correction. Because (z1In (1 + %))// = fx(Tlx)Q, so we choose ai(z) = 1+ S3-. Then
1

letting the coefficient of 2*, 2% of the molecule in the following fractions equal to zero, we have s; = -3,

t; = & and
1 1
(mln (1 + E) —Inay(x) — 1)

Pi(z)
z(1+2)2(5 + 122)2(11 + 12x)2°

1 ()

As Pi(x) = —3025 — 72962 — 432022 has all coefficients negative, it results that fi(z) is strictly concave on

[1, 00) with f1(00) = 0, we deduce that fi(z) < Oon [1,00). As fi(1) = —1+In 22+In2 = —0.00457195... < 0.

(Step 2) The second-correction. We let as(z) = 1 + -5-1——. Then letting the coefficient of 2°, ° of the
z+to

molecule in the following fractions equal to zero, we have sy =

(o (1+2) ~tuosor 1)

Py ()
2(1+ 2)2(185 1 1044z + 120022)2(457 + 1644z 1 120022)2

to = 3—§ and

_ 5
144> 7

5 (z)

As Py(z) = —T7147857025 — 521612962562 — 13244406672022 — 1393589760003 — 51948000000z has all
coefficients negative, it results that fo(z) is strictly concave on [1,00) with fo(co) = 0, we deduce that

fa(z) <0 on [1,00). As fo(1) = =1 +In 3% 4 102 = —0.000107017... < 0.
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(Step 3) The third-correction. Similarly, we let az(z) =1+ 75— . Then letting the coefficient of
:r+f2+

T+t3

28, 27 of the molecule in the following fractions equal to zero, we have s3 = — 135(1)07 t3 = ?g;ggg and

. 1 1

s(@)=(xzIn{1+ - —Inag(x) —1

_ Ps(z)
z(1+x)20%(3;2)V3(3;2)’

where Wy(3;z) = 1535537 + 15041160 + 3905112022 + 2909088023, Wy(3;z) = 3950767 +
28506120z + 5359656022 + 29090880x3. As  P3(z) = —36803015639554789813520641 —

510240050132939340975095040x —269341820757532368881404320022 —70050743748457172999012659202> —
95832416614883269941217728002* —66055097322409233964843008002° —18073922871814679157829632002.°
has all coefficients negative, it results that f3(z) is strictly concave on [1,00) with f3(oc0) = 0, we deduce

that f3(z) <0 on [1,00). As f3(1) = —1 +In LBLE2T 4 In2 = —2.78166... x 107¢ < 0.

Similarly, repeat the above approach, we can get a4(z) = 1+ P 2 —
.7:+t2+43;
x+t3z+

, where s4 =

z+t4
__ 792876605 ty = 2317657460602 nd
14692348944 “4 — 4805307952263

1= (o (14 3) - o)1) = et

As Py(x) = —U(8;z) has all coefficients negative, it results that fy(x) is strictly concave on [1,00) with
f1(o0) = 0, we deduce that fi(z) < 0 on [1,00). As f4(1) = —7.57111... x 10~® < 0. This is the end of

Theorem 1.

Remark 1. It is worth to point out that Theorem 1 provides some continued fraction estimates of (1 + %)x
by multiple-correction method. Similarly, repeating the above approach step by step, we can get more sharp
estimates. But this may cause some computational increase, the details are omitted here.

3. Improved continued fraction approximation for (1 + %)m
In this section, we show the following improvement of Theorem 1.

(Step 1) The first-correction. We choose by (z) =1+ % Then letting the coefficient of 3 of the molecule

in the following fractions equal to zero, we have ki = —% and
. 1 "
gi(@)=(zln(1+ = Inby(z) —1
Q1 (z)

22(1+2)%(—1+ 2x)?

As Q1(z+1) = 11+ 23z + 1122 has all coefficients positive, it results that gy (z) is strictly convex on [1, 00)
with g1(o0) =0, we deduce that g1(x) > 0 on [1, 00).

(Step 2) The second-correction. We let by(z) = 1+ & + w
28 of the molecule in the following fractions equal to zero, we have ko =

Then letting the coefficient of x'°

39040 and

247 22’
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gl(z) = (x In (1 + %) —Inby(z) — 1>H

_ Q2()
T 22(1 + 2)2(—457 + 27720z 1 2904022)2(457 — 2014z + 2640022 + 5808023)2

As Qa(x + 1) = —1383118582943652269 — 8185800606735613017x — 20543391880395185989z2 —
28305926099272779320x> —230959914761344348802* —11144489439639916800° —294071776611550080025 —
32700351632256000027 has all coefficients negative, it results that go(z) is strictly concave on [1,00) with
g2(00) = 0, we deduce that go(z) < 0 on [1, 00).

(Step 3) The third-correction. We let bs(z) = 1+ %+ %2 Then letting the coefficient of 2!, z1°

a2 ttrattot ooy
. . . _ 5341 _ 90156641
of the molecule in the following fractions equal to zero, we have u1 = 35555, V1 = 15050550 and

gl(z) = (m (1 + %) —Inbs(x) — 1)//

_ Qs(z)
C22(1 + )23, 7)VE(4; 1)

As Q3(z+1) = —U(9; z) has all coeflicients negative, it results that gs(x) is strictly concave on [1, 00) with
g3(00) = 0, we deduce that gs(x) < 0 on [1, 00).

.. o ky ko o
Similarly, repeat the above approach, we can get by(xz) = 1+ =L + PRy —" where vy =
T+vg
66627667815049
~Tor31470s13441200 and

As Q4(z + 1) = U(12;z) has all coefficients positive, it results that g4(x) is strictly convex on [1,00) with
ga(o0) = 0, we deduce that g4(z) > 0 on [1, c0).
So we can get the following theorem:

Theorem 2. For ecvery real number x > 1, we have

1 x
e by(x) < <1+x> < e-bs(x), (3.1)
where
k1 ko 1 u
by(x) =1+ —+ =1-24 24 _ 7
4( ) X £E2 —+ tllb —+ to —+ ﬁ X £U2 + ﬂl’ + 457 + 6L3410
T+vz 22 20040 T A 73195%26%
T~ 1213447081344120

and

kl /{32 1 11

bs(z) =1+ —+ =1-2+ - -
2 Ui 5341
T x+hw At + o T 24 %m + 23810 $+69?015é‘641

148052520

Remark 2. Different from the right-hand inequalities in Theorem 1, Theorem 2 gives the double-hand
x

inequalities for (1 + %)
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: _ k1 ko k3
Remark 3. In the proof of Theorem 2, if we let c3(x) =1+ == + e e i el e e e from

2

Step 3, then letting the coefficient of 227, x26... of the molecule in the following fractions equal to zero, we

_ 5341 by = 372802361
13939207 "4 — 1480525207 """

(em (141) e 1)

R3(x)
22(1 + 2)2(—457 + 27720z + 2904022)2W3 (5; 2) U2 (8; )

have k3 = and

h ()

As R3(x + 1) = —U(21;z) has all coefficients negative, it results that hs(z) is strictly concave on [1,00)
with hz(c0) = 0, we deduce that hs(z) < 0 on [1,00). So we can get the similar inequalities for every real
number x > 1,

(1 + i)z <e-cs(x),

_ k1 ko k3
where cg(z) =14 3 + Tttt T et Tt thia Tt

Finally, we are convinced that the inequalities presented in Theorem 1 and Theorem 2 can be successfully
used to obtain other new results, such as in the problem of proving the Keller’s limit [6], but also in the
problem of improving inequalities of Carleman’s inequality [4,8,9].
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