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In this paper, we provide some new continued fraction inequalities related to (
1 + 1

x

)x.
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1. Introduction

Yang and Debnath [10] presented the following double inequality for every x in 0 < x ≤ 1
5 :

e− e

2x + 11e
24 x2 − 21e

48 x3 < (1 + x)1/x < e− e

2x + 11e
24 x2. (1.1)

Such inequalities were proven to be of great interest through the researchers, especially in the recent past, 
due to many practical problems where they can be applied. As example, we refer to inequality (1.1) which 
is the main tool for improving Carleman’s inequality in [10].

Recently, Mortici and Yang [6] proposed an improvement of (1.1) and provided a simple, direct proof of 
(1.1) for every real number x ∈ (0; 1].

a(x) < (1 + x)1/x < b(x), (1.2)

where a(x) = e − e
2x + 11e

24 x2 − 21e
48 x3 + 2447e

5760 x4 − 959e
2304x

5 and b(x) = a(x) + 959e
2304x

5.
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Motivated by the work of Yang and Debnath [10], Mortici and Yang [6], Hu and Mortici [5], in this 
paper we will continue our previous works, and apply the multiple-correction method to construct some 
new continued fraction inequalities related to 

(
1 + 1

x

)x, which have faster rate of convergence.
This paper is organized as follows. In Section 2, we explain how to find the continued fraction approxi-

mation for 
(
1 + 1

x

)x. In Section 3, we give the improved continued fraction approximation for 
(
1 + 1

x

)x.
Throughout the paper, the notation Ψ(k; x) means a polynomial of degree k in x with all of its non-zero 

coefficients positive, which may be different at each occurrence.

2. Continued fraction approximation for 
(
1 + 1

x

)x

Theorem 1. For every real number x ≥ 1, we have

(
1 + 1

x

)x

< e · ai(x) = e

⎛
⎜⎝1 + s1

x + t1 + s2
x+t2+ s3

x+t3+ s4
x+t4+···

⎞
⎟⎠ , i = 1, 2, 3, ..., (2.1)

where s1 = −1
2 , t1 = 11

12 ; s2 = − 5
144 , t2 = 34

75 ; s3 = − 481
10000 , t3 = 357866

757575 ; s4 = − 792876605
14692348944 , t4 =

2317657460602
4805307952263 ; ....

Proof. Inequalities (2.1) are equivalent to fi < 0 on [1, +∞), where

fi(x) = x ln
(

1 + 1
x

)
− ln ai(x) − 1.

Based on our previous works [7,11–13], we will apply multiple-correction method to study the estimate 
for 

(
1 + 1

x

)x. Now, we prove the estimate for 
(
1 + 1

x

)x by multiple-correction method [1–3] as follows:

(Step 1) The first-correction. Because 
(
x ln

(
1 + 1

x

))′′ = − 1
x(1+x)2 , so we choose a1(x) = 1 + s1

x+t1
. Then 

letting the coefficient of x4, x3 of the molecule in the following fractions equal to zero, we have s1 = −1
2 , 

t1 = 11
12 and

f ′′
1 (x) =

(
x ln

(
1 + 1

x

)
− ln a1(x) − 1

)′′

= P1(x)
x(1 + x)2(5 + 12x)2(11 + 12x)2 .

As P1(x) = −3025 − 7296x − 4320x2 has all coefficients negative, it results that f1(x) is strictly concave on 
[1, ∞) with f1(∞) = 0, we deduce that f1(x) < 0 on [1, ∞). As f1(1) = −1 +ln 23

17+ln 2 = −0.00457195... < 0.

(Step 2) The second-correction. We let a2(x) = 1 + s1
x+t1+ s2

x+t2
. Then letting the coefficient of x6, x5 of the 

molecule in the following fractions equal to zero, we have s2 = − 5
144 , t2 = 34

75 and

f ′′
2 (x) =

(
x ln

(
1 + 1

x

)
− ln a2(x) − 1

)′′

= P2(x)
x(1 + x)2(185 + 1044x + 1200x2)2(457 + 1644x + 1200x2)2 .

As P2(x) = −7147857025 − 52161296256x − 132444066720x2 − 139358976000x3 − 51948000000x4 has all 
coefficients negative, it results that f2(x) is strictly concave on [1, ∞) with f2(∞) = 0, we deduce that 
f2(x) < 0 on [1, ∞). As f2(1) = −1 + ln 3301 + ln 2 = −0.000107017... < 0.
2429
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(Step 3) The third-correction. Similarly, we let a3(x) = 1 + s1
x+t1+ s2

x+t2+ s3
x+t3

. Then letting the coefficient of 

x8, x7 of the molecule in the following fractions equal to zero, we have s3 = − 481
10000 , t3 = 357866

757575 and

f ′′
3 (x) =

(
x ln

(
1 + 1

x

)
− ln a3(x) − 1

)′′

= P3(x)
x(1 + x)2Ψ2

1(3;x)Ψ2
2(3;x) ,

where Ψ1(3; x) = 1535537 + 15041160x + 39051120x2 + 29090880x3, Ψ2(3; x) = 3950767 +
28506120x + 53596560x2 + 29090880x3. As P3(x) = −36803015639554789813520641 −
510240050132939340975095040x −2693418207575323688814043200x2−7005074374845717299901265920x3−
9583241661488326994121772800x4−6605509732240923396484300800x5−1807392287181467915782963200x6

has all coefficients negative, it results that f3(x) is strictly concave on [1, ∞) with f3(∞) = 0, we deduce 
that f3(x) < 0 on [1, ∞). As f3(1) = −1 + ln 115144327

84718697 + ln 2 = −2.78166... × 10−6 < 0.
Similarly, repeat the above approach, we can get a4(x) = 1 + s1

x+t1+ s2
x+t2+ s3

x+t3+ s4
x+t4

, where s4 =

− 792876605
14692348944 , t4 = 2317657460602

4805307952263 , and

f ′′
4 (x) =

(
x ln

(
1 + 1

x

)
− ln a4(x) − 1

)′′
= P4(x)

x2(1 + x)2Ψ2
1(4;x)Ψ2

2(4;x) .

As P4(x) = −Ψ(8; x) has all coefficients negative, it results that f4(x) is strictly concave on [1, ∞) with 
f4(∞) = 0, we deduce that f4(x) < 0 on [1, ∞). As f4(1) = −7.57111... × 10−8 < 0. This is the end of 
Theorem 1.

Remark 1. It is worth to point out that Theorem 1 provides some continued fraction estimates of 
(
1 + 1

x

)x
by multiple-correction method. Similarly, repeating the above approach step by step, we can get more sharp 
estimates. But this may cause some computational increase, the details are omitted here.

3. Improved continued fraction approximation for 
(
1 + 1

x

)x

In this section, we show the following improvement of Theorem 1.

(Step 1) The first-correction. We choose b1(x) = 1 + k1
x . Then letting the coefficient of x3 of the molecule 

in the following fractions equal to zero, we have k1 = −1
2 and

g′′1 (x) =
(
x ln

(
1 + 1

x

)
− ln b1(x) − 1

)′′

= Q1(x)
x2(1 + x)2(−1 + 2x)2 .

As Q1(x +1) = 11 +23x +11x2 has all coefficients positive, it results that g1(x) is strictly convex on [1, ∞)
with g1(∞) = 0, we deduce that g1(x) > 0 on [1, ∞).

(Step 2) The second-correction. We let b2(x) = 1 + k1
x + k2

x2+t1x+t0
. Then letting the coefficient of x10, x9, 

x8 of the molecule in the following fractions equal to zero, we have k2 = 11 , t1 = 21 , t0 = 457 and
24 22 29040
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g′′2 (x) =
(
x ln

(
1 + 1

x

)
− ln b2(x) − 1

)′′

= Q2(x)
x2(1 + x)2(−457 + 27720x + 29040x2)2(457 − 2014x + 26400x2 + 58080x3)2 .

As Q2(x + 1) = −1383118582943652269 − 8185800606735613017x − 20543391880395185989x2 −
28305926099272779320x3−23095991476134434880x4−11144489439639916800x5−2940717766115500800x6−
327003516322560000x7 has all coefficients negative, it results that g2(x) is strictly concave on [1, ∞) with 
g2(∞) = 0, we deduce that g2(x) < 0 on [1, ∞).

(Step 3) The third-correction. We let b3(x) = 1 + k1
x + k2

x2+t1x+t0+ u1
x+v1

. Then letting the coefficient of x11, x10

of the molecule in the following fractions equal to zero, we have u1 = 5341
638880 , v1 = 90156641

148052520 and

g′′3 (x) =
(
x ln

(
1 + 1

x

)
− ln b3(x) − 1

)′′

= Q3(x)
x2(1 + x)2Ψ2

3(3;x)Ψ2
3(4;x) .

As Q3(x + 1) = −Ψ(9; x) has all coefficients negative, it results that g3(x) is strictly concave on [1, ∞) with 
g3(∞) = 0, we deduce that g3(x) < 0 on [1, ∞).

Similarly, repeat the above approach, we can get b4(x) = 1 + k1
x + k2

x2+t1x+t0+ u1
x+ v1

x+v2

, where v2 =

− 66627667815049
1213447081344120 , and

g′′4 (x) =
(
x ln

(
1 + 1

x

)
− ln b4(x) − 1

)′′
= Q4(x)

x2(1 + x)2Ψ2
4(4;x)Ψ2

1(5;x) .

As Q4(x + 1) = Ψ(12; x) has all coefficients positive, it results that g4(x) is strictly convex on [1, ∞) with 
g4(∞) = 0, we deduce that g4(x) > 0 on [1, ∞).

So we can get the following theorem:

Theorem 2. For every real number x ≥ 1, we have

e · b4(x) <
(

1 + 1
x

)x

< e · b3(x), (3.1)

where

b4(x) = 1 + k1

x
+ k2

x2 + t1x + t0 + u1
x+ v1

x+v2

= 1 −
1
2
x

+
11
24

x2 + 21
22x + 457

29040 +
5341

638880

x+
90156641
148052520

x− 66627667815049
1213447081344120

,

and

b3(x) = 1 + k1

x
+ k2

x2 + t1x + t0 + u1
x+v1

= 1 −
1
2
x

+
11
24

x2 + 21
22x + 457

29040 +
5341

638880
x+ 90156641

148052520

.

Remark 2. Different from the right-hand inequalities in Theorem 1, Theorem 2 gives the double-hand 
inequalities for 

(
1 + 1

x

)x.



JID:YJMAA AID:20494 /FLA Doctopic: Real Analysis [m3L; v1.180; Prn:7/06/2016; 11:10] P.5 (1-5)
X. You et al. / J. Math. Anal. Appl. ••• (••••) •••–••• 5
Remark 3. In the proof of Theorem 2, if we let c3(x) = 1 + k1
x + k2

x2+t1x+t0
+ k3

x5+t4x4+t3x3+t2x2+t1x+t0
from 

Step 3, then letting the coefficient of x27, x26... of the molecule in the following fractions equal to zero, we 
have k3 = − 5341

1393920 , b4 = 372802361
148052520 , ... and

h′′
3(x) =

(
x ln

(
1 + 1

x

)
− ln c3(x) − 1

)′′

= R3(x)
x2(1 + x)2(−457 + 27720x + 29040x2)2Ψ2

2(5;x)Ψ2(8;x) .

As R3(x + 1) = −Ψ(21; x) has all coefficients negative, it results that h3(x) is strictly concave on [1, ∞)
with h3(∞) = 0, we deduce that h3(x) < 0 on [1, ∞). So we can get the similar inequalities for every real 
number x ≥ 1,

(
1 + 1

x

)x

< e · c3(x),

where c3(x) = 1 + k1
x + k2

x2+t1x+t0
+ k3

x5+t4x4+t3x3+t2x2+t1x+t0
.

Finally, we are convinced that the inequalities presented in Theorem 1 and Theorem 2 can be successfully 
used to obtain other new results, such as in the problem of proving the Keller’s limit [6], but also in the 
problem of improving inequalities of Carleman’s inequality [4,8,9].
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