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THE POWER SERIES METHOD

FOR NONLOCAL AND NONLINEAR EVOLUTION EQUATIONS

RAFAEL F. BAROSTICHI, A. ALEXANDROU HIMONAS* & GERSON PETRONILHO

Abstract. The initial value problem for a 4-parameter family of nonlocal and nonlinear evo-

lution equations with data in a space of analytic functions is solved by using a power series

method in abstract Banach spaces. In addition to determining the power series expansion of the

solution, this method also provides an estimate of the analytic lifespan expressed in terms of

the norm of the initial data, thus establishing an abstract Cauchy-Kovalevsky type theorem for

these equations.

1. Introduction and Results

In this work we prove an abstract Cauchy-Kovalevsky theorem for the following 4-parameter

family of Camassa-Holm type equations

ut + ukux − auk−2u3x + ∂x(1− ∂2
x)

−1
[ b

k + 1
uk+1 + c uk−1u2x − a (k − 2)uk−3u4x

]
+ (1− ∂2

x)
−1

[[
k (k + 2)− 8a− b− c (k + 1)

]
uk−2u3x − 3a (k − 2)uk−3u3x uxx

]
= 0, (1.1)

which was introduced in [HMa1] and is referred there as the k-abc-equation. The three parameters

a, b and c range over the real numbers while k is a positive integer, whose value depends on a.

If a �= 0 then k ≥ 2 and the presence of the term auk−2u3x makes k-abc-equation a nonlocal and

nonlinear equation which is not quasilinear. For k = 2 and c = (6 − 6a − b)/2, we obtain the

ab-family of equations (ab-equation) with cubic nonlinearities

ut + u2ux − au3x + ∂x(1− ∂2
x)

−1
[ b
3
u3 +

6− 6a− b

2
uu2x

]
+ (1− ∂2

x)
−1
[2a+ b− 2

2
u3x

]
= 0, (1.2)

which was also introduced in [HMa1] and which contains two well-known integrable equations

with cubic nonlinearities. In fact, for a = 1/3 and b = 2 the ab-equation gives the Fokas-Olver-

Rosenau-Qiao (FORQ) equation (also known as the modified Camassa-Holm equation)

∂tu+ u2∂xu− 1
3(∂xu)

3 + ∂x(1− ∂2
x)

−1
[2
3
u3 + u (∂xu)

2
]
+ (1− ∂2

x)
−1
[1
3
(∂xu)

3
]
= 0, (1.3)

which was derived in different ways by Fokas [F], Olver and Rosenau [OR] and Qiao [Q], and

also appeared in a work by Fuchssteiner [Fu]. For a = 0 and b = 3 the ab-equation gives the
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2 The Power Series Method for nonlocal and nonlinear evolution equations

Novikov equation (NE)

ut + u2ux + ∂x(1− ∂2
x)

−1
[
u3 +

3

2
uu2x

]
+ (1− ∂2

x)
−1
[1
2
u3x

]
= 0, (1.4)

which was derived by V. Novikov in [N1], where he provides a classification of all integrable

CH-type equations with quadratic and cubic nonlinearities.

Finally, for a = 0 and c = (3k − b)/2 the k-abc-equation makes sense for all k ≥ 1 and gives the

following generalized Camassa-Holm equation (g-kbCH)

ut + ukux + (1− ∂2
x)

−1∂x

[ b

k + 1
uk+1 +

3k − b

2
uk−1u2x

]
+ (1− ∂2

x)
−1

[(k − 1)(b− k)

2
uk−2u3x

]
= 0,

(1.5)

which is a quasilinear equation with (k+1) order nonlinearities and which was studied in [HH2]

and [GH]. When k = 1 the g-kbCH equation gives the well-known b-equation

mt︸︷︷︸
evolution

+ umx︸︷︷︸
convection

+ buxm︸ ︷︷ ︸
stretching

= 0, m = u− uxx, (1.6)

having quadratic nonlinearities. In this local form it was introduced by Holm and Staley

[HS1, HS2] and it expresses a balance between evolution, convection and stretching. The b-

equation (1.6) contains two integrable members, namely the Camassa-Holm (CH) equation that

corresponds to b = 2 and the Degasperis-Procesi (DP) equation that corresponds to b = 3.

Mikhailov and Novikov [MN] proved that there are no other integrable members of the b-equation.

Furthermore, V. Novikov [N2] recently proved that the only other integrable member of the g-

kbCH equation (1.5) apart from CH and DP is the NE (1.4). To summarize, thus far it is known

that the k-abc-equation (1.1) contains four integrable equations, CH, DP, FORQ and NE. How-

ever, the existence of other integrable members of the k-abc-equation remains an open question.

In fact, integrability theory provides one of the motivations for studying such nonlocal equations.

Another motivation for studying equations like k-abc-equation is the quest for equations capturing

wave breaking and peaking, which goes back to Whitham, who articulates it in his 1974 book [W]

(p. 477) as follows: “Although both breaking and peaking, as well as criteria for the occurrence of

each, are without doubt contained in the equations of the exact potential theory, it is intriguing

to know what kind of simpler mathematical equation could include all these phenomena.” It is

remarkable that the k-abc-equation has peakon traveling wave solutions for all values of the four

parameters k, a, b and c. These, including multipeakons, have been derived in [HMa1]. The

peakon solutions in the non-periodic case can be written in the following form

u(x, t) = γe−|x−(1−a)γkt|, γ ∈ R. (1.7)

When a = 0 and c = (3k − b)/2, which is the case of the generalized Camassa-Holm equation

(1.5), these are of the form u(x, t) = c1/k e−|x−ct| and were derived in [GH], together with

the corresponding multipeakon on the line and the circle. In the case k = 1, which is the b-

equation, peakon solutions were derived by Holm and Staley [HS1, HS2], who made the important

observation that the b-equation has peakon (and multipeakon) traveling wave solutions for all

values of b. Of course, it is Camassa and Holm [CH] who observed first that the celebrated CH

equation has the peakon (weak) solutions u(x, t) = ce−|x−ct|.
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The initial value problem of the k-abc-equation in Sobolev spaces was studied in [HMa2]. More

precisely, there the following well-posedness result was obtained. If a, b, c ∈ R with a �= 0 and

k ∈ N with k � 2, then the Cauchy problem for the k-abc-equation (1.1) with initial data

u(x, 0) = u0(x) ∈ Hs, x ∈ R or T, s > 5
2 , has a unique solution u ∈ C([0, T ];Hs). Furthermore,

the lifespan T satisfies the estimate

T � 1

‖u0‖kHs

. (1.8)

Also, in [HMa2] continuity properties of the data-to-solution map are investigated. The case

a = 0 and c = (6−6a− b)/2 yields the g-kbCH equation, whose well-posedness in Sobolev spaces

Hs for all s > 3
2 was proved in [HH2]. The Cauchy problem for the integrable members CH,

DP, FORQ and NE was studied earlier by many authors. For some results on well-posedness,

traveling wave solutions, and other analytic properties of these and related equations we refer

the reader to the following works and the references therein [BHP2], [BSS], [BC], [CHT], [CK],

[CL], [CM], [CS], [DP], [EY], [FF], [HH1], [HK], [HMPZ], [KL], [LO], [LS], [R], [B], [CKSTT],

[KPV], [GLOQ], [HHG], [HGH], [HLS], [KT], [L], and [Ti].

In this work we study the initial value problem for k-abc-equation when the initial data belong

to spaces of analytic functions, on both the line and the circle. More precisely, these spaces are

defined as follows. For s ≥ 0 and δ > 0, on the line these spaces are defined by

Gδ,s(R) = {ϕ ∈ L2(R) : ||ϕ||2Gδ,s(R) =̇

∫
R

〈ξ〉2se2δ|ξ||ϕ̂(ξ)|2dξ < ∞}, (1.9)

where 〈ξ〉 =̇ (1 + ξ2)1/2. On the circle the corresponding spaces are

Gδ,s(T) = {ϕ ∈ L2(T) : ||ϕ||2Gδ,s(T) =̇
∑
k∈Z

〈k〉2se2δ|k||ϕ̂(k)|2 < ∞}, (1.10)

where 〈k〉 =̇ (1 + k2)1/2. Here, when a result holds for both on the line and the circle then we

use the notation || · ||δ,s for the norm and Gδ,s for the space in both cases. We observe that a

function ϕ in Gδ,s has an analytic extension to a symmetric strip around the real axis with width

δ (see Lemma 2). This δ is called the radius of analyticity of ϕ. Since in the next Theorem we

will assume that the initial data u0 is in G1,s+2 we would like to point out that in the periodic

case an analytic function (i.e. an element of Cω(T)) belongs to a Gδ0,s(T), for some δ0 > 0 and

any s ≥ 0. More precisely we have the following result, whose proof is easy and will be omitted.

Lemma 1. If u0 ∈ Cω(T), there exists δ0 > 0 such that u0 ∈ Gδ0,s(T) for any s ≥ 0.

Next, we state our main result, which is motivated by [BHP1] and [BHP2]. For the sake of

simplicity we shall assume that our initial data u0 belong in G1,s+2.

Theorem 1. Let s > 1
2 . If u0 ∈ G1,s+2 on the circle or the line, then there exists a positive time

T , which depends on the initial data u0 and s, such that for every δ ∈ (0, 1), the Cauchy problem

for the k-abc-equation (1.1) with initial condition u(x, 0) = u0(x) has a unique solution u which

is a holomorphic function in D(0, T (1− δ)) valued in Gδ,s+2. Furthermore, the analytic lifespan

T satisfies the estimate

T � 1

||u0||k1,s+2

. (1.11)
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Amore precise statement of estimate (1.11) is provided in Section 4 (see (4.13)). For the Camassa-

Holm equation on the circle, a result similar to Theorem 1 but without an analytic lifespan

estimate like (1.11) was proved in [HM]. Furthermore, for CH, DP, NE and FORQ Theorem

1 was proved in [BHP2] using a different approach based on a contraction type argument in

an appropriate space which is build from a scale of Banach spaces. Here we are using a power

series method, which for the quasilinear g-kbCH equation was presented in [BHP1]. The novelty

of this work is that it provides a comprehensive treatment of a large family of Camassa-Holm

type equations whose local part includes non-quasilinear terms like uk−2u3x. Furthermore, it

makes a complete presentation of the autonomous Ovsyannikov theorem using the power series

method, on which the proof of Theorem 1 is based. We conclude, by mentioning that there are

many versions of the abstract Cauchy-Kovalevsky theorem proved in a variety of ways. Many of

these works are motivated by water wave models and the Euler equations. For more information

about these we refer the reader to Baouendi and Goulaouic [BG1], [BG2], Ovsyannikov [O1], [O2],

Treves [Tre1], [Tre2], Nirenberg [Nr], Nishida [Ns], Caflisch [C], Safonov [S], and the references

therein.

The paper is organized as follows. In Section 2 we describe the spaces used and prove the needed

properties. In Section 3, following the work of Treves, we presents the proof of the autonomous

Ovsyannikov theorem which solves an abstract Cauchy problem by the power series method.

Finally, in Section 4 we apply the power series method to the k-abc-equation and derive the

estimates needed for this method.

2. Gδ,s spaces and results

We begin with the properties of the Gδ,s and the estimates needed to prove our main result. The

next two lemmas provide a better understanding of the spaces Gδ,s and their properties. One

can easily prove these results.

Lemma 2. Let ϕ ∈ Gδ,s. Then, ϕ has an analytic extension to a symmetric strip around the

real axis of width δ, for s ≥ 0 in the periodic case and s > 1
2 in the non-periodic case.

Lemma 3. If 0 < δ′ < δ ≤ 1, s ≥ 0 and ϕ ∈ Gδ,s on the circle or the line, then

||∂xϕ||δ′,s ≤ e−1

δ − δ′
||ϕ||δ,s (2.1)

||∂xϕ||δ,s ≤ ||ϕ||δ,s+1 (2.2)

||(1− ∂2
x)

−1ϕ||δ,s+2 = ||ϕ||δ,s (2.3)

||(1− ∂2
x)

−1ϕ||δ,s ≤ ||ϕ||δ,s (2.4)

||∂x(1− ∂2
x)

−1ϕ||δ,s ≤ ||ϕ||δ,s. (2.5)

Furthermore, we shall need to prove an algebra property for these spaces, which is the main

result in the following lemma.

Lemma 4. For ϕ ∈ Gδ,s on the circle or the line the following properties hold true:

1) If 0 < δ′ < δ and s ≥ 0, then || · ||2δ′,s ≤ || · ||2δ,s; i.e. Gδ,s ↪→ Gδ′,s.
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2) If 0 < s′ < s and δ > 0, then || · ||2δ,s′ ≤ || · ||2δ,s; i.e. Gδ,s ↪→ Gδ,s′.

3) For s > 1/2 and ϕ, ψ ∈ Gδ,s we have

||ϕψ||δ,s ≤ cs||ϕ||δ,s||ψ||δ,s, (2.6)

where cs =
√
2(1 + 22s)

∑∞
k=0

1
〈k〉2s in the periodic case and cs =

√
2(1 + 22s)

∫∞
0

1
〈ξ〉2sdξ in the

non-periodic case.

Proof of Lemma 4. We will provide the proof in the periodic case. The proof in the non-

periodic case is similar. Properties (1) and (2) follow directly from the definition of the spaces

Gδ,s and the corresponding norms. Therefore, we restrict our attention to the proof of the algebra

property (3), which reads as follows

||ϕψ||2δ,s =
∑
k∈Z

〈k〉2se2δ|k||ϕ̂ψ(k)|2 = ||〈k〉seδ|k|ϕ̂ψ(k)||2�2(Z)

= ||〈k〉seδ|k|
∑
n∈Z

ϕ̂(n)ψ̂(k − n)||2�2(Z) ≤ c2s||ϕ||2δ,s||ψ||2δ,s. (2.7)

Defining f and g by f̂(k) = 〈k〉seδ|k|ϕ̂(k), and ĝ(k) = 〈k〉seδ|k|ψ̂(k), we see that the algebra

property (2.7) is equivalent to∣∣∣∣∣∣〈k〉seδ|k| ∑
n∈Z

e−δ|n|f̂(n)
〈n〉s

e−δ|k−n|ĝ(k − n)

〈k − n〉s
∣∣∣∣∣∣2
�2(Z)

≤ c2s||f̂ ||2�2(Z)||ĝ||2�2(Z). (2.8)

Furthermore, using the triangle inequality |k| ≤ |n| + |k − n| we notice that in order to prove

(2.8) it suffices to show that∣∣∣∣∣∣〈k〉s ∑
n∈Z

f̂(n)

〈n〉s
ĝ(k − n)

〈k − n〉s
∣∣∣∣∣∣2
�2(Z)

≤ c2s||f̂ ||2�2(Z)||ĝ||2�2(Z). (2.9)

Using the Cauchy-Schwarz inequality we have∣∣∣∑
n∈Z

f̂(n)

〈n〉s
ĝ(k − n)

〈k − n〉s
∣∣∣2 ≤

(∑
n∈Z

1

〈n〉2s〈k − n〉2s
)(∑

n∈Z
|f̂(n)|2|ĝ(k − n)|2

)
,

which gives the following bound for the left-hand side of (2.9)∣∣∣∣∣∣〈k〉s ∑
n∈Z

f̂(n)

〈n〉s
ĝ(k − n)

〈k − n〉s
∣∣∣∣∣∣2
�2(Z)

≤
∣∣∣∣∣∣〈k〉s(∑

n∈Z

1

〈n〉2s〈k − n〉2s
)1/2(∑

n∈Z
|f̂(n)|2|ĝ(k − n)|2

)1/2∣∣∣∣∣∣2
�2(Z)

≤ sup
k∈Z

{
〈k〉2s

(∑
n∈Z

1

〈n〉2s〈k − n〉2s
}∣∣∣∣∣∣(∑

n∈Z
|f̂(n)|2|ĝ(k − n)|2

)1/2∣∣∣∣∣∣2
�2(Z)

. (2.10)

Now, we need the following estimate, whose proof is given after the one of algebra property.

Lemma 5. For 	 > 1/2, a ∈ Z and c� =
√
2(1 + 22�)

∑∞
k=0

1
〈k〉2� we have

∑
k∈Z

1

〈k〉2�〈k − a〉2� ≤ c2�
〈a〉2� . (2.11)
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In the non-periodic case, for a ∈ R and c� =
√
2(1 + 22�)

∫
ξ≥0

1
〈ξ〉2�dξ we have∫

R

1

〈x〉2�〈x− a〉2�dx ≤ c2�
〈a〉2� . (2.12)

Since s > 1/2, combining (2.10) and (2.11) and interchanging the order of summations (Fubini’s

theorem) we get∣∣∣∣∣∣〈k〉s ∑
n∈Z

f̂(n)

〈n〉s
ĝ(k − n)

〈k − n〉s
∣∣∣∣∣∣2
�2(Z)

≤ c2s
∑
n∈Z

∑
k∈Z

|f̂(n)|2|ĝ(k − n)|2 = c2s||ĝ||2�2(Z)
∑
n∈Z

|f̂(n)|2 = c2s||f̂ ||2�2(Z)||ĝ||2�2(Z),

which completes the proof of Lemma 4. �

Proof of Lemma 5. If a = 0 then it is easy to see that inequality (2.11) holds true. If a is

a negative integer then making the change of variables m = k − a the estimate is reduced to

the case where a is replaced with −a. Thus, it suffices prove inequality (2.11) only when a is a

positive integer. For this we shall use the notation [x], which stands for the biggest integer that

is less than or equal to x. Thus, x − 1 < [x] ≤ x. Now, we begin by decomposing our sum as

follows

S
.
=

∑
k∈Z

1

〈k〉2�〈k − a〉2� =
∑

−∞<k≤0

1

〈k〉2�〈k − a〉2�

+
∑

1≤k≤[a/2]

1

〈k〉2�〈k − a〉2� +
∑

[a/2]+1≤k≤[a]

1

〈k〉2�〈k − a〉2�

+
∑

[a]+1≤k<∞

1

〈k〉2�〈k − a〉2� =̇ S1 + S2 + S3 + S4.

By setting θ = −k we obtain

S1 =
∑

−∞<k≤0

1

(1 + k2)�(1 + (k − a)2)�
≤ 1

〈a〉2�
∞∑
θ=0

1

〈θ〉2� .

By noticing that in S2 we have 1 + (k − a)2 ≥ 1 + a2/4 = 4+a2

4 > 1+a2

4 we obtain

S2 ≤ 22�

〈a〉2�
∞∑
k=1

1

〈k〉2� .

We also notice that in S3 we have 1 + k2 ≥ 1 + a2/4 > 1+a2

4 and k − a ≤ 0 and therefore we

obtain

S3 ≤ 22�

〈a〉2�
∑

[a/2]+1≤k≤2[a]

1

〈k − a〉2� ≤ 22�

〈a〉2�
∑

k−a≤0

1

〈k − a〉2� =
22�

〈a〉2�
∞∑
θ=0

1

〈θ〉2� .

In S4 we have 1 + k2 > 1 + a2 and therefore if we set m = k − a

S4 ≤ 1

〈a〉2�
∞∑

m=1

1

〈m〉2� .
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Adding the estimates obtained above for the sums S1, S2, S3 and S4 gives inequality (2.11). In

order to prove (2.12) one has just to replace the sums with integrals. This completes the proof

of Lemma 5.�

3. The Power Series Method

Here, following Treves [Tre1], [Tre2], we prove the autonomous Ovsyannikov theorem using the

power series method, which consists of finding a solution for the Cauchy problem

du

dt
= F (u), u(0) = u0, (3.1)

given by a formal power series

u(t) =
∞∑

m=0

umtm, (3.2)

and estimating the coefficients um in order to prove the convergence of the above series. We

begin with the following important definition. Let {Xδ}0<δ≤1 be a decreasing scale of Banach

spaces and u0 ∈ X1 be given. Also, let X0 =
⋃

0<δ<1

Xδ.

Definition 1. We say that F : X0 → X0 is Ovsyannikov analytic at u0 if there exist positive

constants R, A and C0 such that for all k ∈ Z+ and 0 < δ′ < δ < 1 we have

||DkF (u)(v1, . . . , vk)||δ′ ≤ ACk
0k!

δ − δ′
||v1||δ . . . ||vk||δ, (3.3)

for all u ∈ {u ∈ Xδ : ||u − u0||δ < R} and (v1, . . . , vk) ∈ Xk
δ =̇Xδ × · · · ×Xδ︸ ︷︷ ︸

k

, where DkF is the

Frechet derivative of F of order k.

Here, we shall prove the following important result.

Theorem 2. If u0 ∈ X1 and F is Ovsyannikov analytic as above, then there exists T > 0 such

that the Cauchy problem (3.1) has a unique solution which, for every δ ∈ (0, 1) is a holomorphic

function in D(0, T (1− δ)) valued in Xδ satisfying

sup
|t|<T (1−δ)

‖u(t)− u0‖δ < R, 0 < δ < 1. (3.4)

Moreover, the lifespan T is given by

T =
1

2e2AC0
,

where the constants R,A and C0 come from the Definition 1.

From the definition of Ovsyannikov analyticity one can easily prove the following result.

Proposition 1. If F is Ovsyannikov analytic at u0 ∈ X1 then there is R > 0 such that, given

any pair (δ, δ′), 0 < δ′ < δ < 1 and any u ∈ Bδ(u0;R) the Taylor series
∞∑
k=0

1

k!
DkF (u0) (u− u0, . . . , u− u0)︸ ︷︷ ︸

k
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converges absolutely to F (u) in Xδ′.

Proof of Theorem 2. Let 0 < δ′ < δ < 1. Since u0 ∈ X1 and F is Ovsyannikov it follows from

Proposition 1 that

F (u) =

∞∑
k=0

1

k!
DkF (u0) (u− u0, . . . , u− u0)︸ ︷︷ ︸

k

, in Xδ′ .

Since we want to have du
dt = F (u), we must have

u1 +
∞∑

m=1

(m+ 1)um+1t
m

= F (u0) +
∞∑

m=1

m∑
k=1

∑
m1+···+mk=m

mi≥1

tm

k!
DkF (u0)(um1 , . . . , umk

).

We then conclude that the coefficients of the series are given recursively by

u1 = F (u0) (3.5)

and

(m+ 1)um+1 =

m∑
k=1

∑
m1+···+mk=m

mi≥1

DkF (u0)

k!
(um1 , . . . , umk

), m ≥ 1. (3.6)

We shall use the following lemma.

Lemma 6. For all k = 1, 2, . . . , we have

∑
m1+···+mk=m

mi≥1

1

m2
1 . . .m

2
k

≤ 1

m2

(
2π2

3

)k−1

.

Proof. We prove the lemma by induction on k. For k = 1 the inequality is clear:

∑
m1+···+mk=m

mi≥1

1

m2
1 . . .m

2
k

=
1

m2
=

1

m2

(
2π2

3

)0

.

For k ≥ 2 we can write

∑
m1+···+mk=m

mi≥1

1

m2
1 . . .m

2
k

=

m−k+1∑
�=1

1

	2

∑
m1+···+mk−1=m−�

mi≥1

1

m2
1 . . .m

2
k−1

.

Hence the induction hypothesis gives

∑
m1+···+mk=m

mi≥1

1

m2
1 . . .m

2
k

≤
(
2π2

3

)k−2 m−1∑
�=1

1

	2(m− 	)2
.
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We now see that

m2
m−1∑
�=1

1

	2(m− 	)2
=

m−k+1∑
�=1

m2

	2(m− 	)2
=

m−1∑
�=1

(
1

	
+

1

m− 	

)2

≤ 2
m−1∑
�=1

(
1

	2
+

1

(m− 	)2

)
≤ 4

∞∑
�=1

1

	2
=

2π2

3
.

Therefore ∑
m1+···+mk=m

mi≥1

1

m2
1 . . .m

2
k

≤
(
2π2

3

)k−1

,

which proves the lemma.�

We claim that

||um||δ ≤ μ

m2

(
B

1− δ

)m

, for all m = 1, 2, . . . , (3.7)

where μ = 3
4C0π2 and B = 2e2AC0. To prove this fact, we proceed by induction on m. For

m = 1, we know that u1 = F (u0). Then it follows from (3.3) that

||u1||δ = ||F (u0)||δ ≤ A

1− δ
≤ μB

1− δ

which is true since μB = 3e2A
2π2 ≥ A. For m ≥ 2, we select ν = 1−δ

m+1 > 0. We notice that

0 < δ < δ + ν < 1 and
1

1− (δ + ν)
=

(
m+ 1

m(1− δ)

)
. (3.8)

Thus, by using (3.6), the induction hypothesis and (3.8) we obtain

(m+ 1)||um+1||δ ≤
m∑
k=1

∑
m1+···+mk=m

ACk
0

1

ν
||um1 ||δ+ν . . . ||umk

||δ+ν

≤ m+ 1

1− δ

m∑
k=1

∑
m1+···+mk=m

ACk
0μ

k

m2
1 . . .m

2
k

(
B

1− δ

)m(
1 +

1

m

)m

.

We then have

||um+1||δ ≤ AC0eμB
m

m2(1− δ)m+1

m∑
k=1

(
2C0μπ

2

3

)k−1

=
AC0eμB

m

m2(1− δ)m+1

m∑
k=1

(
1

2

)k−1

,

since μ = 3
4C0π2 . Hence,

||um+1||δ ≤ 2AC0eμB
m

m2(1− δ)m+1
≤ 2AC0e

2μBm

(m+ 1)2(1− δ)m+1
=

μ

(m+ 1)2

(
B

1− δ

)m+1

,

since B = 2AC0e
2. The proof of the claim is complete.

Therefore, for T = 1
2e2AC0

= B−1 and for |t| ≤ T (1− δ) the series
∞∑

m=0

umtm converges absolutely

in Xδ for the unique solution to our Cauchy problem. �
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4. The k-abc-equation

In this section we apply the power series method for the k-abc-equation. For this we rewrite this

equation in the following nonlocal form:

∂tu = F (u)=̇− (1− ∂2
x)

−1∂x

[ b+ 1

k + 1
uk+1 + (c− k)uk−1u2x − ukuxx + 3auk−2u2xuxx

]
− (1− ∂2

x)
−1

[
[k(k + 2)− 9a− b− c(k + 1)]uk−2u3x − 3a(k − 2)uk−3u3xuxx

]
(4.1)

We shall prove that there exist positive constants A,C0 such that

||DjF (u0)(v1, . . . , vj)||δ′,s+2 ≤ ACj
0j!

δ − δ′
||v1||δ,s+2 . . . ||vj ||δ,s+2, (4.2)

for all (v1, . . . , vj) ∈ Gδ,s+2 and j = 0, 1, . . . , k + 1 since for j ≥ k + 2 we have

||DjF (u0)(v1, . . . , vj)||δ′,s+2 = 0.

For simplicity, we shall provide estimate (4.2) only for the term

F1(u) = (1− ∂2
x)

−1
[
3a(k − 2)uk−3u3xuxx

]
,

since the other terms can be estimated analogously. By using the following formula for the

Frechet derivative of F of order j, 1 ≤ j ≤ k + 1, at the point u0,

DjF (u0)(v1, . . . , vj) =
d

dτj
· · · d

dτ1

{
F (u0 +

j∑
i=1

τivi)
}∣∣∣

τ1=···=τj=0
,

we obtain, for v� ∈ Gδ,s+2, 	 = 1, . . . , j,

Dj (uk−3u3xuxx)
∣∣∣
u0

(v1, . . . , vj) =

=
(k − 3)!

(k − 3− j)!
uk−3−j
0 (∂xu0)

3(∂2
xu0)v1v2 · · · vj (4.3)
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+
(k − 3)!

(k − 2− j)!
uk−2−j
0 (∂xu0)

3
j∑

i=1

(∂2
xvi)ṽi (4.4)

+3
(k − 3)!

(k − 2− j)!
uk−2−j
0 (∂xu0)

2(∂2
xu0)

j∑
i=1

(∂xvi)ṽi (4.5)

+3
(k − 3)!

(k − 1− j)!
uk−1−j
0 (∂xu0)

2
j∑

i=1

j∑
�=1
�	=i

(∂2
xvi)(∂xv�)ṽi,� (4.6)

+6
(k − 3)!

(k − 1− j)!
uk−1−j
0 (∂xu0)(∂

2
xu0)

j∑
i=1

j∑
�=1
i<�

(∂xvi)(∂xv�)ṽi,� (4.7)

+6
(k − 3)!

(k − j)!
uk−j
0 (∂xu0)

j∑
i=1

j∑
�=1
�	=i

j∑
m=1
�<m

(∂2
xvi)(∂xv�)(∂xvm)ṽi,�,m (4.8)

+6
(k − 3)!

(k − j)!
uk−j
0 (∂2

xu0)

j∑
i=1

j∑
�=1
i<�

j∑
m=1
�<m

(∂xvi)(∂xv�)(∂xvm)ṽi,�,m (4.9)

+6
(k − 3)!

(k + 1− j)!
uk+1−j
0

j∑
i=1

j∑
�=1
�	=i

j∑
m=1
�<m

j∑
n=1
m<n

(∂2
xvi)(∂xv�)(∂xvm)(∂xvn)ṽi,�,m,n (4.10)

where we are using the notation ṽi1,...,ip to express the product of all the vectors v1, . . . , vj , except

vi1 , . . . , vip , for 1 ≤ i1, . . . , ip ≤ j distinct from each other and 1 ≤ p ≤ j − 1, and ṽi1,...,ij = 1.

Also, the term (4.3) appears only for j = 1, . . . , k − 3, the terms (4.4) and (4.5) appear only for

j = 1, . . . , k − 2, the terms (4.6) and (4.7) appear only for j = 2, . . . , k − 1 the terms (4.8) and

(4.9) appear only for j = 3, . . . , k and finally, the term (4.10) appears only for j = 4, . . . , k + 1.

Without loss of generality, for this term, we will assume that 4 ≤ j ≤ k − 3 since in this case all

terms in formulas (4.3) - (4.10) make sense and for j ∈ {0, 1, 2, 3} we can do the computation

separately and we obtain an estimate compatible with the case 4 ≤ j ≤ k− 3. By using formula

(2.3) in Lemma 3 and triangle inequality, for v1, . . . , vj ∈ Gδ,s+2 we have

‖DjF1(u0)(v1, . . . , vj)‖δ′,s+2 ≤ 3|a|(k − 2)

[
(k − 3)!

(k − 3− j)!
‖uk−3−j

0 (∂xu0)
3(∂2

xu0)v1 · · · vj‖δ′,s

+
(k − 3)!

(k − 2− j)!
‖uk−2−j

0 (∂xu0)
3

j∑
i=1

(∂2
xvi)ṽi‖δ′,s

+3
(k − 3)!

(k − 2− j)!
‖uk−2−j

0 (∂xu0)
2(∂2

xu0)

j∑
i=1

(∂xvi)ṽi‖δ′,s

+3
(k − 3)!

(k − 1− j)!
‖uk−1−j

0 (∂xu0)
2

j∑
i=1

j∑
�=1
�	=i

(∂2
xvi)(∂xv�)ṽi,�‖δ′,s
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+6
(k − 3)!

(k − 1− j)!
‖uk−1−j

0 (∂xu0)(∂
2
xu0)

j∑
i=1

j∑
�=1
i<�

(∂xvi)(∂xv�)ṽi,�‖δ′,s

+6
(k − 3)!

(k − j)!
‖uk−j

0 (∂xu0)

j∑
i=1

j∑
�=1
�	=i

j∑
m=1
�<m

(∂2
xvi)(∂xv�)(∂xvm)ṽi,�,m‖δ′,s

+6
(k − 3)!

(k − j)!
‖uk−j

0 (∂2
xu0)

j∑
i=1

j∑
�=1
i<�

j∑
m=1
�<m

(∂xvi)(∂xv�)(∂xvm)ṽi,�,m‖δ′,s

+ 6
(k − 3)!

(k + 1− j)!
‖uk+1−j

0

j∑
i=1

j∑
�=1
�	=i

j∑
m=1
�<m

j∑
n=1
m<n

(∂2
xvi)(∂xv�)(∂xvm)(∂xvn)ṽi,�,m,n‖δ′,s

⎤
⎥⎥⎦ .

Now, from the algebra property in Lemma 4 and (2.2) in Lemma 3, we obtain

‖DjF1(u0)(v1, . . . , vj)‖δ′,s+2 ≤

≤ 3|a|cks(k − 2)

[
(k − 3)!

(k − 3− j)!
‖u0‖k−3−j

δ′,s ‖∂xu0‖3δ′,s‖∂2
xu0‖δ′,s‖v1‖δ′,s · · · ‖vj‖δ′,s

+
(k − 3)!j

(k − 2− j)!
‖u0‖k−2−j

δ′,s ‖∂xu0‖3δ′,s‖v1‖δ′,s+2 · · · ‖vj‖δ′,s+2

+3
(k − 3)!j

(k − 2− j)!
‖u0‖k−2−j

δ′,s ‖∂xu0‖2δ′,s‖∂2
xu0‖δ′,s‖v1‖δ′,s+1 · · · ‖vj‖δ′,s+1

+3
(k − 3)!j(j − 1)

(k − 1− j)!
‖u0‖k−1−j

δ′,s ‖∂xu0‖2δ′,s‖v1‖δ′,s+2 · · · ‖vj‖δ′,s+2

+6
(k − 3)!j(j − 1)

(k − 1− j)!
‖u0‖k−1−j

δ′,s ‖∂xu0‖δ′,s‖∂2
xu0‖δ′,s‖v1‖δ′,s+1 · · · ‖vj‖δ′,s+1

+6
(k − 3)!j(j − 1)(j − 2)

(k − j)!
‖u0‖k−j

δ′,s ‖∂xu0‖δ′,s‖v1‖δ′,s+2 · · · ‖vj‖δ′,s+2

+6
(k − 3)!j(j − 1)(j − 2)

(k − j)!
‖u0‖k−j

δ′,s ‖∂2
xu0‖δ′,s‖v1‖δ′,s+1 · · · ‖vj‖δ′,s+1

+
6e−1

δ − δ′
(k − 3)!j(j − 1)(j − 2)(j − 3)

(k + 1− j)!
‖u0‖k+1−j

δ′,s ‖v1‖δ′,s+1 · · · ‖vj‖δ′,s+1

]
.

Finally, by using lemmas 3 and 4, for 0 < δ′ < δ ≤ 1 and v1, . . . , vj ∈ Gδ,s+2, with s > 1/2, we

can estimate

‖DjF1(u0)(v1, . . . , vj)‖δ′,s+2

≤ 3|a|cks(k − 2)e−1

δ − δ′
‖u0‖k−j+1

1,s+2 ‖v1‖δ,s+2 · · · ‖vj‖δ,s+2

[
(k − 3)!

(k − 3− j)!
+

+
4(k − 3)!j!

(j − 1)!(k − 2− j)!
+

9(k − 3)!j!

(j − 2)!(k − 1− j)!
+

12(k − 3)!j!

(j − 3)!(k − j)!
+

6(k − 3)!j!

(j − 4)!(k + 1− j)!

]
.
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By using the fact that (k − 2) ≤ 2k−3 for k ∈ {3, 4, . . . } we obtain

‖DjF1(u0)(v1, . . . , vj)‖δ′,s+2

≤ 36|a|cks2k−3e−1j!

δ − δ′
‖u0‖k−j+1

1,s+2 ‖v1‖δ,s+2 · · · ‖vj‖δ,s+2

[(
k − 3

j

)
+

(
k − 3

j − 1

)

+

(
k − 3

j − 2

)
+

(
k − 3

j − 3

)
+

(
k − 3

j − 4

)]
.

Since (
k − 3

j

)
+

(
k − 3

j − 1

)
+

(
k − 3

j − 2

)
+

(
k − 3

j − 3

)
+

(
k − 3

j − 4

)
≤ 2k−3,

if we take C0 =
1

‖u0‖1,s+2
and A1 = |a|ckse−122k‖u0‖k+1

1,s+2 then we have that

‖DjF1(u0)(v1, . . . , vj)‖δ′,s+2 ≤ A1C
j
0j!

δ − δ′
‖v1‖δ,s+2‖v2‖δ,s+2 · · · ‖vj‖δ,s+2. (4.11)

We can now do similar computations for the other terms of F (u) and get

‖DjF (u0)(v1, . . . , vj)‖δ′,s+2 ≤ ACj
0j!

δ − δ′
‖v1‖δ,s+2‖v2‖δ,s+2 · · · ‖vj‖δ,s+2, (4.12)

where A = (2|a|+ |b+ 1|+ 2|c|+ |9a+ b|+ 3)cks2
3k+2e−1‖u0‖k+1

1,s+2.

Therefore, by Theorem 2 we conclude that the Cauchy problem for the k-abc-equation (1.1) with

initial condition u(x, 0) = u0(x) has a unique solution, which for 0 < δ < 1 is a holomorphic

function in the disc D(0, T (1− δ)) valued in Gδ,s+2. Moreover, the lifespan T is given by

T =
1

2e2AC0
=

1

c‖u0‖k1,s+2

, where c = e(2|a|+ |b+ 1|+ 2|c|+ |9a+ b|+ 3)cks2
3k+3. (4.13)

The proof of Theorem 1 is now complete. �

Acknowledgements. This work was partially supported by a grant from the Simons Foundation

(#246116 to Alex Himonas). The third author was partially supported by CNPq and Fapesp.

Also, the authors would like to thank the referees of the paper for constructive reports.

References

[BG1] M. S. Baouendi and C. Goulaouic, Remarks on the abstract form of nonlinear Cauchy-Kovalevsky theo-

rems, Comm. in Partial Differential Equations, 2(11), (1977), 1151–1162.

[BG2] S. Baouendi and C. Goulaouic, Sharp estimates for analytic pseudodifferential operators and application

to Cauchy problems, J. Differential Eqns 48 (1983).

[BHP1] R. Barostichi, A. Himonas and G. Petronilho, A Cauchy-Kovalevsky theorem for nonlinear and nonlocal

equations. PROMS Springer-Verlag series, Analysis and Geometry, Volume 127, (2015), 59–68.

[BHP2] R. Barostichi, A. Himonas and G. Petronilho, Autonomous Ovsyannikov theorem and applications to

nonlocal evolution equations and systems. J. Funct. Anal. 270 (2016), 330-358.

[BSS] R. Beals, D. Sattinger and J. Szmigielski, Multipeakons and the classical moment problem. Adv. Math.

154 (2000), 229-257.

[B] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to non-

linear evolution equations. Part II: The KdV equation. Geom. Funct. Anal. 3 (1993), 209-262.



14 The Power Series Method for nonlocal and nonlinear evolution equations

[BC] A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation. Arch. Rat.

Mech. Anal. 183 (2007), 215-239.

[C] R. Caflisch, A simplified version of the abstract Cauchy-Kowalewski theorem with weak singularities. Bull.

Amer. Math. Soc. (N.S.) 23 (1990), no. 2, 495–500.

[CH] R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71

(1993), 1661-1664.

[CHT] C. Cao, D. Holm and E. Titi, Traveling wave solutions for a class of one-dimensional nonlinear shallow

water wave models. J. Dyn. Diff. Eqs 16 (2004), 167-178.

[CK] G. Coclite and K. Karlsen, On the well-posedness of the Degasperis-Procesi equation. J. Funct. Anal. 233

(2006), 60-91.

[CKSTT] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well posedness for KdV and

modified KdV on R and T. J. AMS 16 (2003), 705-749.

[CL] A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi

equations. Arch. Ration. Mech. Anal. 192 (2009), 165-186.

[CM] A. Constantin and H. McKean, A shallow water equation on the circle. Comm. Pure Appl. Math. 52

(1999), 949-982.

[CS] A. Constantin and W. Strauss, Stability of peakons. Comm. Pure Appl. Math. 53 (2000), 603-610.

[DP] A. Degasperis and M. Procesi, Asymptotic integrability, in “Symmetry and perturbation theory”, edited

by A. Degasperis and G. Gaeta, World Sci. Publ., 1999.

[EY] J. Escher and Z. Yin, Well-posedness, blow-up phenomena, and global solutions for the b-equation. J.

Reine Angew. Math. 624 (2008), 51-80.

[F] A.S. Fokas, On a class of physically important integrable equations. Phys. D 87 (1995), 145-150.

[FF] B. Fuchssteiner and A.S. Fokas, Symplectic structures, their Bäklund transformations and hereditary
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