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In this paper the global dynamics of a cubic Liénard system with a cusp is studied 
to follow Wang and Kooij (1992) [13], who proved that the maximum number of 
limit cycles is 2 and stated two conjectures about the curves of the cuspidal loop 
bifurcation and the double limit cycle bifurcation. We give positive answers to 
those two conjectures and further properties of those bifurcation curves such as 
monotonicity and smoothness. Finally, associated with previous results we obtain 
the complete bifurcation diagram and all phase portraits, and demonstrate some 
numerical examples.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The planar Liénard system, a representation in the two-dimensional form of the Liénard equation ẍ +
f(x)ẋ + g(x) = 0, is one of the classical mechanical systems. The research of its dynamical behaviors can 
be found in many monographs (see, e.g., [4,8,14]) and many interesting results are given in journal papers 
(see, e.g., [5,7,10,12,13]). A cubic Liénard system

{
ẋ = y + μ1x

2 + x3,

ẏ = μ2x
2 − x3 (1.1)

has been introduced in [1,11,13] to study the viscous flow structures of a three-dimensional system near 
a planar wall. The origin O is the unique equilibrium when μ2 = 0. Besides O, system (1.1) has another 
equilibrium E : (μ2, −μ1μ

2
2 − μ3

2) and O is a cusp when μ2 �= 0. Since the form of (1.1) is invariant under 
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the change (x, y, μ1, μ2) → (−x, −y, −μ1, −μ2), we only need to consider (μ1, μ2) in G := {(μ1, μ2) ∈ R
2 :

μ1 ≥ 0}.
In [13] the global dynamical analysis of system (1.1) is done for (μ1, μ2) ∈ G. It is proved that the 

maximum number of limit cycles is 2. The existence of the cuspidal loop bifurcation curves is given as 
well as the existence of the double limit cycle bifurcation curves. Moreover, the uniqueness of the cuspidal 
loop bifurcation curves is also proved and the unique one is denoted by μ1 = ϕ(μ2). However, there is no 
answer to the uniqueness of the double limit cycle bifurcation curves. On the other hand, as stated in [13, 
Theorem 5] ϕ(μ2) ≥ ψ1(μ2) := max{μ1 : (μ1, μ2) lies on the double limit cycle bifurcation curves} for any 
fixed μ2. But we do not know if there exists a point (μ1, μ2) lying on both the cuspidal loop bifurcation 
curve and one of the double limit cycle bifurcation curves, i.e., the location relation of the cuspidal loop 
bifurcation curve and the double limit cycle bifurcation curves is another unsolved question. Hence, in [13]
there are two conjectures:

Conjecture (a) ϕ(μ2) > ψ1(μ2).
Conjecture (b) The double limit cycle bifurcation curve is unique.

Note that the bifurcation diagram, shown in [13, Figure 5], is given based on that both these conjectures
have positive answers. As indicated in the proof of [13, Theorem 5], the stability of the cuspidal loop if it 
exists is equivalent to ϕ(μ2) > ψ1(μ2) because the semistability of the cuspidal loop means ϕ(μ2) = ψ1(μ2). 
Thus, Conjecture (a) is actually equivalent to conjecture that the cuspidal loop is stable.

Following the work of [13], we continue to study the global dynamical behaviors of system (1.1). Our 
main purpose is to answer Conjectures (a) and (b) so that the bifurcation diagram can be given strictly and 
to investigate the monotonicity of those bifurcation curves as well as their smoothness. To help the readers 
and keep the completeness of results, associated with some results of [13, Theorem 5] we give our main 
result in the following theorem, where large (resp. small) limit cycles mean periodic orbits surrounding two 
equilibria (resp. a single equilibrium).

Theorem 1.1. As shown in Fig. 1, the global bifurcation diagram of (1.1) consists of the following bifurcation 
curves:

(1) generalized transcritical bifurcation curve GT = {(μ1, μ2) ∈ G : μ2 = 0};
(2) Hopf bifurcation curve H = {(μ1, μ2) ∈ G : μ1 = −3μ2/2 > 0} for E;
(3) cuspidal loop bifurcation curve CL = {(μ1, μ2) ∈ G : μ1 = ϕ(μ2) > 0};
(4) double limit cycle bifurcation curve DL = {(μ1, μ2) ∈ G : μ2 = ψ(μ1) < 0};

where ϕ ∈ C∞(R−, R+) is decreasing, ψ ∈ C0(R+, R−) and

−μ2 < min{μ1 : μ2 = ψ(μ1)} ≤ max{μ1 : μ2 = ψ(μ1)} < ϕ(μ2) < −3μ2/2. (1.2)

The complete classification of phase portraits is also given in Fig. 1, where

I := {(μ1, μ2) ∈ G : μ2 > 0} ;

II :=
{

(μ1, μ2) ∈ G : 0 <
−3μ2

2 < μ1

}
;

III :=
{

(μ1, μ2) ∈ G : ϕ(μ2) < μ1 <
−3μ2

2

}
;

IV :=
{
(μ1, μ2) ∈ G : ψ(μ1) < μ2 < ϕ−1(μ1)

}
;
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Fig. 1. The global bifurcation diagram and global phase portraits of system (1.1).

Table 1
Limit cycles and cuspidal loops of system (1.1).

Subsets of G Large limit cycles Small limit cycles Cuspidal loops
I, V,GT1, GT2 0 0 0
II,H 1, unstable 0 0
III 1, unstable 1, stable 0
IV 2, the inner one is stable, the outer one is unstable 0 0
CL 1, unstable 0 1, stable
DL 1, semistable 0 0

V := {(μ1, μ2) ∈ G : μ2 < ψ(μ1)} ;

GT1 :=
{

(μ1, μ2) ∈ G : μ2 = 0, μ1 <
√

2
}

;

GT2 :=
{

(μ1, μ2) ∈ G : μ2 = 0, μ1 ≥
√

2
}
.

Moreover, all results about limit cycles and cuspidal loops are listed in Table 1.

By Theorem 1.1 we give positive answers to Conjectures (a) and (b) because (1.2) holds and the unique 
double limit cycle bifurcation curve is exactly determined by μ2 = ψ(μ1). Remark that function ψ(μ1) may 
be not monotonic. That is, the double limit cycle bifurcation curve may be as shown in Fig. 2, i.e., ψ−1(μ2)
may be multi-valued. On the other hand, by the phase portraits shown in Fig. 1 a large limit cycle occurs 
when (μ1, μ2) crosses GT from I to II because of the change of the stability of E. Thus, in such sense GT

can also be called a generalized Hopf bifurcation curve.
This paper is organized as follows. In Section 2, we recall some qualitative results of (1.1) given in [13]

including the qualitative properties of equilibria and limit cycles, which are used in following sections. In 
Section 3, we prove the stability of the cuspidal loop if it exists, the monotonicity and C∞ smoothness of the 
cuspidal loop bifurcation curve, the uniqueness and continuity of the double limit cycle bifurcation curve. 
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Fig. 2. The double limit cycle bifurcation curve is not monotonic.

Fig. 3. Equilibria at infinity.

In Section 4, Theorem 1.1 is proved by those results given in Section 3 and in [13], and some numerical 
examples are given to show our theoretical results. In the last section, we give some concluding remarks 
about Conjectures (a), (b) and the orbits connecting the cusp O and the equilibria at infinity.

2. Preliminaries

In order to investigate the global dynamics of (1.1), we need to know the qualitative properties of 
equilibria, the location and number of limit cycles and cuspidal loops. In [13, Section 3] the information
about all equilibria is given as follows.

Proposition 2.1. When μ2 = 0, the unique equilibrium O of (1.1) is an unstable degenerate focus if μ1 <
√

2, 
a degenerate equilibrium with an elliptic sector if μ1 ≥

√
2; When μ2 �= 0, system (1.1) has two equilibria O

and E, where O is a cusp and E is an antisaddle. The qualitative behavior of (1.1) at infinity is given in
Fig. 3, where the equilibria lie on y-axis and the line y = −x.

Actually, further analysis shows that E is either a focus or a node as given in Table 2 when μ2 �= 0. In 
[13, Theorem 5], the results about limit cycles and cuspidal loops are given as follows.

Proposition 2.2. When μ2 ≥ 0, system (1.1) has no closed orbits. When μ2 < 0, there exist functions ϕ(μ2), 
ψ1(μ2), ψ2(μ2) such that −μ2 < ψ2(μ2) ≤ ψ1(μ2) ≤ ϕ(μ2), −4μ2/3 ≤ ϕ(μ2) < −3μ2/2 and

(1) for μ1 ≥ −3μ2/2 system (1.1) has no small limit cycles and exactly one large limit cycle, which is 
unstable;
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Table 2
The type of E.

μ2 �= 0 μ1 ≥ 0 Type of E

μ2 > 0 μ1 > −3μ2/2 + 1 unstable node
μ1 = −3μ2/2 + 1 unstable proper node
−3μ2/2 < μ1 < −3μ2/2 + 1 unstable focus

μ2 < 0 μ1 > −3μ2/2 + 1 stable node
μ1 = −3μ2/2 + 1 stable proper node
−3μ2/2 < μ1 < −3μ2/2 + 1 stable focus
μ1 = −3μ2/2 stable weak focus of order one
−3μ2/2 − 1 < μ1 < −3μ2/2 unstable focus
μ1 = −3μ2/2 − 1 unstable proper node
μ1 < −3μ2/2 − 1 unstable node

(2) for ϕ(μ2) < μ1 < −3μ2/2 (resp. μ1 = ϕ(μ2)) system (1.1) has exactly one large limit cycle and exactly 
one small limit cycle (resp. one cuspidal loop), where the large limit cycle is unstable and the small one 
(resp. cuspidal loop) is stable;

(3) for ψ1(μ2) < μ1 < ϕ(μ2) system (1.1) has no small limit cycles and exactly two large limit cycles, where 
outer one is unstable and the inner one is stable;

(4) for ψ2(μ2) < μ1 < ψ1(μ2) (resp. either μ1 = ψ1(μ2) or μ1 = ψ2(μ2)) system (1.1) has no small limit 
cycles and at most two large limit cycles (resp. a unique large limit cycle, which is semistable);

(5) for μ1 < ψ2(μ2) system (1.1) has no limit cycles.

Note that, as indicated in the proof of [13, Theorem 5], the stability of the cuspidal loop given in (2)
of Proposition 2.2 (denoted by Theorem 5 in [13]) is based on the fact that Conjecture (a) has a positive 
answer, i.e., ϕ(μ2) > ψ1(μ2).

3. Bifurcations of cuspidal loops and double limit cycles

The existence and the uniqueness of the cuspidal loop bifurcation curve are given in Proposition 2.2. The 
existence of the double limit cycle bifurcation curves is also given in Proposition 2.2 but, there is no result 
about its uniqueness. In this section we study the monotonicity and smoothness of those curves, prove the 
stability of the cuspidal loop and the uniqueness of the double limit cycle bifurcation curve.

Lemma 3.1. The cuspidal loop of (1.1) is stable if it exists.

Proof. From Proposition 2.2, we obtain 0 < −4μ2/3 ≤ μ1 < −3μ2/2 if there exists a cuspidal loop. By 
(x, y, t) → (x + μ2, −y − μ1μ

2
2 − μ3

2, −t), system (1.1) is transformed into
{

ẋ = y + μ1μ
2
2 + μ3

2 − μ1(x + μ2)2 − (x + μ2)3 =: y − F (x),
ẏ = −(μ2 + x)2x =: −g(x).

(3.1)

Clearly, xg(x) > 0, both F (x), F ′(x) have unique zeros respectively for all x ∈ (−∞, 0) ∪ (0, −μ2) and 
F ′(−2μ1/3 − μ2) = 0. Thus, (i) and (ii) of [3, Proposition 2.3] hold. Let

s := x̂1 + x̂2 + 2μ2, (3.2)

where x̂1 < 0 < x̂2 ≤ −μ2. If

F (x̂1) = F (x̂2), (3.3)

then



H. Chen, X. Chen / J. Math. Anal. Appl. 445 (2017) 884–897 889
0 ≤ (x̂1 + μ2)(x̂2 + μ2) = μ1s + s2, (3.4)

implying s ≤ −μ1. If

g(x̂1)
F ′(x̂1)

= g(x̂2)
F ′(x̂2)

, (3.5)

then 3s2 +5μ1s −2μ1μ2 = 0, which has a unique root in (−∞, −μ1]. Further, by (3.2) and (3.4) both x̂1 + x̂2
and x̂1x̂2 have unique values respectively, implying that equations (3.3) and (3.5) have at most one solution 
(x̂1, ̂x2) such that x̂1 < 0 < x̂2 ≤ −μ2. Thus, (iii) of [3, Proposition 2.3] holds. Straight computations show 
that

F (x)F ′(x)
g(x) = [2μ1 + 3(x + μ2)][2μ1μ2 + 3μ2

2 + (μ1 + 3μ2)x + x2]
x + μ2

,

which is decreasing for x ∈ (−∞, −2μ1/3 −μ2) because both [2μ1 + 3(x +μ2)]/(x + μ2) and 2μ1μ2 + 3μ2
2 +

(μ1 +3μ2)x +x2 are decreasing and positive. Thus, (iv) of [3, Proposition 2.3] holds. Therefore, the cuspidal 
loop is stable if it exists by [3, Proposition 2.3]. �

As mentioned in the last paragraph of Section 2, the stability of the cuspidal loop given in Proposition 2.2
is based on the fact that Conjecture (a) has a positive answer. If Conjecture (a) has a negative answer, then 
the cuspidal loop is semi-stable. In Lemma 3.1 we prove the stability of the cuspidal loop strictly. Thus, 
Lemma 3.1 actually gives a positive answer to Conjecture (a).

By Proposition 2.2, the cuspidal loop and limit cycles do not exist when μ2 ≥ 0. Thus, in the following 
we only consider the case that μ2 < 0. By the global homeomorphism transformation and time rescaling

x → −μ2x, y → μ2
2y − μ1μ

2
2x

2 + μ3
2x

3, t → − t

μ2
, (3.6)

system (1.1) can be rewritten as
{

ẋ = y,

ẏ = −x2 − x3 + (2μ1x− 3μ2x
2)y.

(3.7)

Transformation (3.6) changes the curve y = F (x) of (1.1) to the x-axis of (3.7). As indicated in [14, 
Chapter 4], the phase portrait of (1.1) is homeomorphic globally with that of (3.7). It is easy to check that 
(3.7) has exactly two equilibria at (−1, 0) and (0, 0). Here (0, 0) is a cusp. In the following lemma, for (3.7)
we give the changes of the invariant manifolds of the cusp and orbits crossing through y-axis with respect 
to μ1, μ2.

Lemma 3.2. For fixed μ1 (resp. μ2) in (3.7), xA decreases continuously and xB increases continuously as μ2
(resp. μ1) increases, where xA, xB are the abscissas of points A, B respectively as shown in Fig. 4.

Proof. The idea of the proof follows [2] but, we still write the whole proof here for its completeness. Assume 
that μ1 is fixed. Let W s

0 and Wu
0 be the stable manifold and the unstable one of system (3.7) at the 

cusp (0, 0), respectively; W s
ε and Wu

ε be the stable manifold and the unstable one of system (3.7)|μ2→μ2+ε

(a perturbation of (3.7)) at the cusp (0, 0), respectively, where 0 < |ε| 
 1; xA(ε), xB(ε) be the abscissas 
of intersection points of W s

ε and Wu
ε on the negative x-axis as xA, xB , respectively. Denote the points on 

W s
0 , W s

ε for x ∈ (δ, 0) as (x, ys0(x)), (x, ysε (x)) respectively, where δ := max(xA, xA(ε)). Let z1(x) be the 
difference between ysε (x) and ys0(x), i.e., z1(x) := ysε (x) − ys0(x). Clearly, z1(0) = 0. For (3.7) and all x in 
(δ, 0),
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Fig. 4. The stable and unstable manifolds depend on μ1 and μ2.

z1(x) = z1(x) − z1(0) = {ysε (τ) − ys0(τ)} |τ=x
τ=0

=
x∫

0

{
−τ2 − τ3 +

(
2μ1τ − 3(μ2 + ε)τ2) ysε (τ)

ysε (τ) +
τ2 + τ3 −

(
2μ1τ − 3μ2τ

2) ys0(τ)
ys0(τ)

}
dτ

= H1(x) +
x∫

0

z1(τ)H2(τ)dτ, (3.8)

where H1(x) := −εx3, H2(τ) := (τ2 + τ3)/(ys0(τ)ysε (τ)). It follows from (3.8) that

H2(x)z1(x) = H1(x)H2(x) + H2(x)
x∫

0

z1(τ)H2(τ)dτ.

Then,

dH3(x)
dx

−H2(x)H3(x) = H1(x)H2(x), (3.9)

where H3(x) :=
∫ x

0 z1(τ)H2(τ)dτ . Solving H3 from (3.9) we obtain

H3(x) =
x∫

0

H1(τ)H2(τ) exp

⎧⎨
⎩

x∫
τ

H2(η)dη

⎫⎬
⎭dτ. (3.10)

Hence, by (3.8) and (3.10),

z1(x) = H1(x) +
x∫

0

H1(τ)H2(τ) exp

⎧⎨
⎩

x∫
τ

H2(η)dη

⎫⎬
⎭dτ

= H1(0) exp

⎧⎨
⎩

x∫
0

H2(η)dη

⎫⎬
⎭ +

x∫
0

H ′
1(τ) exp

⎧⎨
⎩

x∫
τ

H2(η)dη

⎫⎬
⎭ dτ

= −3ε
x∫
τ2 exp

⎧⎨
⎩

x∫
H2(η)dη

⎫⎬
⎭ dτ
0 τ
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=
{

> 0, if ε > 0,

< 0, if ε < 0,
(3.11)

implying that W s
ε lies above W s

0 when ε > 0. Thus, for (3.7) xA decreases as μ2 increases.
Denote the points on Wu

0 , Wu
ε for x ∈ (δ̃, 0) as (x, yu0 (x)), (x, yuε (x)) respectively, where δ̃ :=

max(xB, xB(ε)). Let z2(x) be the difference between yuε (x) and yu0 (x), i.e., z2(x) := yuε (x) −yu0 (x). Similarly 
to z1(x), we obtain

z2(x) = −3ε
x∫

0

τ2 exp

⎧⎨
⎩

x∫
τ

Ĥ2(η)dη

⎫⎬
⎭ dτ =

{
> 0, if ε > 0,

< 0, if ε < 0
(3.12)

for x ∈ (δ̃, 0), where Ĥ2(x) := (x2 + x3)/(yu0 (x)yuε (x)). Thus, xB increases as μ2 increases.
We can similarly study how xA and xB change with respect to μ1 for fixed μ2. Let W̃ s

γ and W̃u
γ be the 

stable and unstable manifolds of system (3.7)|μ1→μ1+γ at the cusp (0, 0), respectively, where 0 < |γ| 
 1. 
Denote the point on W̃ s

γ for x ∈ (δ̂, 0) by (x, ysγ(x)), where δ̂ := max(xA, xA(γ)). Let z̃1(x) := ysγ(x) − ys0(x)
be the difference between ysγ(x) and ys0(x). Similarly to z1(x) given in (3.11), we obtain

z̃1(x) = 2γ
x∫

0

s exp

⎧⎨
⎩

x∫
s

H̃2(τ)dτ

⎫⎬
⎭ ds =

{
> 0, if γ > 0,

< 0, if γ < 0,
(3.13)

where H̃2(x) := (x2 + x3)/(ys0(x)ysγ(x)). Thus, xA decreases as μ1 increases. Denote the point on W̃u
γ for 

x ∈ (δ̄, 0) by (x, yuγ (x)), where δ̄ := max(xA, xA(γ)). Let z̃2(x) := yuγ (x) − yu0 (x) be the difference between 
yuγ (x) and yu0 (x). Similarly to (3.13), we obtain

z̃2(x) = 2γ
x∫

0

s exp

⎧⎨
⎩

x∫
s

H̄2(τ)dτ

⎫⎬
⎭ ds =

{
> 0, if γ > 0,

< 0, if γ < 0
(3.14)

for x ∈ (δ̄, 0). Here H̄2(x) := (x2 + x3)/(yu0 (x)yuγ (x)). Thus, xB increases as μ1 increases. �
Assume that points P, Q lie on the positive y-axis and the negative y-axis for system (3.7) respectively 

and points C, D are the first intersection points on the positive x-axis of the orbits starting from P, Q
as t → +∞ and t → −∞ respectively. Let xC , xD be the abscissas of C, D respectively. We remark 
that for fixed μ1 the value of xC (resp. xD) decreases (resp. increases) continuously as μ2 increases as 
shown in Fig. 5(a) by the same method used in the proof of Lemma 3.2 or by the Comparison Theorem 
(see [9, Corollary 6.3 of Chapter 1]). The changes of intersection points on the negative x-axis also can be 
obtained as shown in Fig. 5(a). Similarly, we get their changes depending on μ1 as shown in Fig. 5(b) when 
μ2 is fixed.

Proposition 2.2 states the existence of the cuspidal loop bifurcation curve, determined by μ1 = ϕ(μ2). In 
the following lemma we consider its monotonicity and smoothness.

Lemma 3.3. The cuspidal loop bifurcation curve μ1 = ϕ(μ2) is decreasing and C∞.

Proof. To prove the smoothness of ϕ(μ2), we consider the equivalent system (3.7) of (1.1) when μ1 = ϕ(μ2), 
i.e., there is a cuspidal loop. Let (x1, 0) be the intersection point of the cuspidal loop on the negative x-axis. 
Taking (μ1, μ2) → (μ1, μ2 + ε), we assume that x1 − δ1 and x1 + δ2 are abscissas of the closest intersection 
points near (x1, 0) of the stable manifold and the unstable one on the negative x-axis. Furthermore, taking 
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Fig. 5. Orbit changing for perturbations of system (3.7).

(μ1, μ2 + ε) → (μ1 − γ, μ2 + ε) we assume that x1 − δ1 + δ3 and x1 + δ2 − δ4 are abscissas of the closest 
intersection points near (x1, 0) of the stable manifold and the unstable one on the negative x-axis, and 
μ1 − γ = ϕ(μ2 + ε). We firstly consider that ε > 0. Consequently, γ > 0 by Lemma 3.2. From (3.11)–(3.14), 
we obtain

z1(x) = K1(x, μ1, μ2)ε + o(ε),

z2(x) = K2(x, μ1, μ2)ε + o(ε),

z̃1(x) = (K3(x, μ1, μ2) + O(ε)) γ + o(γ),

z̃2(x) = (K4(x, μ1, μ2) + O(ε)) γ + o(γ),

where

K1(x, μ1, μ2) := −3
x∫

0

τ2 exp

⎧⎨
⎩

x∫
τ

H∗
2 (η)dη

⎫⎬
⎭ dτ,

K2(x, μ1, μ2) := −3
x∫

0

τ2 exp

⎧⎨
⎩

x∫
τ

H∗∗
2 (η)dη

⎫⎬
⎭ dτ,

K3(x, μ1, μ2) := 2
x∫

0

s exp

⎧⎨
⎩

x∫
s

H∗
2 (τ)dτ

⎫⎬
⎭ ds,

K4(x, μ1, μ2) := 2
x∫

0

s exp

⎧⎨
⎩

x∫
s

H∗∗
2 (τ)dτ

⎫⎬
⎭ ds,

(3.15)

H∗
2 (x) := (x2 +x3)/(ys0(x))2, H∗∗

2 (x) := (x2 +x3)/(yu0 (x))2 and ys0, y
u
0 correspond to the orbits on the stable 

manifold and on the unstable one of (3.7) respectively.
In the following we compute δ1. It is easy to obtain

δ1 =
x1∫

x1−δ1

dx =
z1(x1)∫
0

dx

dy
dy =

z1(x1)∫
0

y

ḡ(x) − f̄(x)y
dy,

where ḡ(x) := −x2 − x3, f̄(x) := −2μ1x + 3μ2x
2. Then
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δ1 =
z1(x1)∫
0

y

ḡ(x1 − δ1) + O(y) − f̄(x1 − δ1)y − o(y)
dy =

[
y2

2ḡ(x1 − δ1)
+ Γ1(y)

]∣∣∣∣
y=z1(x1)

y=0
,

where Γ1(y) = o(y2). Thus,

δ1 = z2
1(x1)

2ḡ(x1 − δ1)
+ Γ1(z1(x1)) = K2

1 (x1, μ1, μ2)
2ḡ(x1 − δ1)

ε2 + o(ε2). (3.16)

Similarly to δ1, we compute δi (i = 2, 3, 4) and obtain

δ2 = K2
2 (x1 + δ2, μ1, μ2)

2ḡ(x1)
ε2 + o(ε2),

δ3 = K2
3 (x1 − δ1 + δ3, μ1, μ2 + ε)

2ḡ(x1 − δ1)
γ2 + o(γ2),

δ4 = K2
4 (x1 + δ2, μ1, μ2 + ε)
2ḡ(x1 + δ2 − δ4)

γ2 + o(γ2).

(3.17)

From ϕ(μ2 + ε) = μ1 − γ, we obtain δ1 − δ3 = −δ2 + δ4. Then, from (3.16) and (3.17)
(
K2

1 (x1, μ1, μ2)
2ḡ(x1 − δ1)

+ K2
2 (x1 + δ2, μ1, μ2)

2ḡ(x1)

)
ε2 + o(ε2)

=
(
K2

3 (x1 − δ1 + δ3, μ1, μ2 + ε)
2ḡ(x1 − δ1)

+ K2
4 (x1 + δ2, μ1, μ2 + ε)
2ḡ(x1 + δ2 − δ4)

)
γ2 + o(γ2),

which implies

lim
ε→0+

ϕ(μ2 + ε) − ϕ(μ2)
ε

= lim
ε→0+

−γ

ε

= − lim
ε→0+

√
K2

1 (x1,μ1,μ2)
2ḡ(x1) + K2

2 (x1,μ1,μ2)
2ḡ(x1)√

K2
3 (x1,μ1,μ2)

2ḡ(x1) + K2
4 (x1,μ1,μ2)

2ḡ(x1)

+ Γ̂(ε)

= −
√

K2
1 (x1, μ1, μ2) + K2

2 (x1, μ1, μ2)
K2

3 (x1, μ1, μ2) + K2
4 (x1, μ1, μ2)

.

(3.18)

Here Γ̂(ε) → 0 as ε → 0 and all Ki’s are given in (3.15). Note that ḡ(x1) > 0, x1 is analytic in μ1, μ2 and 
μ1 = ϕ(μ2). It is easy to check that the expression of the right-hand side of (3.18) is continuous in μ2. 
Similarly to (3.18),

lim
ε→0−

ϕ(μ2 + ε) − ϕ(μ2)
ε

= −
√

K2
1 (x1, μ1, μ2) + K2

2 (x1, μ1, μ2)
K2

3 (x1, μ1, μ2) + K2
4 (x1, μ1, μ2)

= lim
ε→0+

ϕ(μ2 + ε) − ϕ(μ2)
ε

.

Thus, ϕ(μ2) is C1 and decreasing. Continuing this process, we find that ϕ(μ2) and ϕ′(μ2) have the smooth-
ness, implying the C∞ smoothness of ϕ. �

The results for μ1 > ϕ(μ2) given in Proposition 2.2 are proved in [13, Theorem 5]. As mentioned in the 
last paragraph of Section 2, when μ1 = ϕ(μ2), the stability of the cuspidal loop given in Proposition 2.2 is 
based on the fact that Conjecture (a) has a positive answer and is proved strictly in Lemma 3.1. However 
the discussion for the case μ1 < ϕ(μ2) in Proposition 2.2 is not complete because it is unknown if there 
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exist two double limit cycle bifurcation curves or a unique one, i.e., no answer to Conjecture (b). In order to 
study the dynamical behaviors clearly of system (1.1) for the case μ1 < ϕ(μ2) we give the following lemma, 
while a positive answer to Conjecture (b) is given.

Lemma 3.4. There exists a continuous function ψ(μ1) for μ1 > 0 such that −μ1 < ψ(μ1) < ϕ−1(μ1) and

(1) for ψ(μ1) < μ2 < ϕ−1(μ1) system (1.1) has no small limit cycles and exactly two large limit cycles, 
where the outer one is unstable and the inner one is stable;

(2) for μ2 = ψ(μ1) system (1.1) has a unique limit cycle, which is large and semistable;
(3) for μ2 < ψ(μ1) system (1.1) has no limit cycles.

Proof. In this proof we still consider the equivalent system (3.7) of (1.1) and assume that μ1 = ϕ(μ2). Having 
Lemma 3.1, the result for μ1 = ϕ(μ2) given in Proposition 2.2 holds strictly, i.e., (3.7) has exactly one large 
limit cycle and a cuspidal loop. Moreover, the large limit cycle is unstable and the cuspidal loop is stable. By 
the orbit changing indicated after the proof of Lemma 3.2 and Proposition 2.2, system (3.7)|μ2→ϕ−1(μ1)−ε

(ε > 0) has exactly one large unstable limit cycle Γ1 near the original one and exactly one large stable limit 
cycle Γ2 near the original cuspidal loop. Continuing this process, i.e., μ2 continues to decrease, the distance 
between the two intersection points of the outer large limit cycle on x-axis is decreasing and the distance 
for the inner one is increasing by the orbit changing indicated after the proof of Lemma 3.2. On the other 
hand, there are no limit cycles when μ2 = −μ1 by Proposition 2.2 and ϕ−1(μ1) > −μ1 by −μ2 < ϕ(μ2)
given in Proposition 2.2. Thus, there exist values of μ2 in (−μ1, ϕ−1(μ1)) such that there is exactly one 
large limit cycle, which is semi-stable. We claim the uniqueness of these values. In fact, let ψ(μ1) be the 
maximum of these values, i.e., there are exactly two large limit cycles when μ2 ∈ (ψ(μ1), ϕ−1(μ1)). Define 
the Poincaré return map Π(ρ, μ1, μ2) for ρ > 0 by the orbit passing through (ρ, 0) and its successor function 
h(ρ, μ1, μ2) := Π(ρ, μ1, μ2) − ρ. Thus, h(ρ, μ1, ψ(μ1)) ≥ 0 because of the semi-stability of the unique large 
limit cycle and there exists a unique ρ∗ such that h(ρ∗, μ1, ψ(μ1)) = 0, which corresponds to the unique 
large limit cycle. Clearly, h(ρ, μ1, μ2) is decreasing strictly for μ2 ∈ (−μ1, ϕ−1(μ1)) as a function of μ2 by 
the orbit changing indicated after the proof of Lemma 3.2. Then, h(ρ, μ1, μ2) > h(ρ, μ1, ψ(μ1)) ≥ 0 when 
μ2 < ψ(μ1). Thus, there are no large limit cycles when μ2 < ψ(μ1), implying ψ(μ1) is the unique value 
for μ2 such that there is exactly one large limit cycle. The results about large limit cycles of this lemma are 
proved.

Now we prove the continuity of ψ(μ1). As mentioned in last paragraph, h(ρ, μ1, ψ(μ1)) ≥ 0 and there 
exists a unique ρ∗ such that h(ρ∗, μ1, ψ(μ1)) = 0. By the orbit changing depending on μ1 indicated after the 
proof of Lemma 3.2, h(ρ, μ1+γ, ψ(μ1)) ≥ δ, where |γ|, |δ| are sufficiently small and δ → 0 as γ → 0. Further, 
for given γ there exists a unique ε such that h(ρ, μ1 + γ, ψ(μ1) + ε) ≥ 0 and h(ρ∗∗, μ1 + γ, ψ(μ1) + ε) = 0 by 
the monotonic change of orbits depending on μ2, where ρ∗∗ is unique and near ρ∗, ε → 0 as γ → 0. Thus, 
ψ(μ1 + γ) = ψ(μ1) + ε, implying the continuity of ψ.

To finish this proof, we only need to prove that there are no small limit cycles for μ2 < ϕ−1(μ1). Since 
ϕ−1(μ1) < −2μ1/3 by ϕ(μ2) < −3μ2/2 given in Proposition 2.2, equilibrium E is unstable by Table 2. On 
the other hand, the orbits between the stable manifold and the unstable one approach either a large limit 
cycle or an equilibrium at infinity when t → +∞ by the stability of the equilibria at infinity and the internal 
stability of the inner large limit cycle if it exists. Thus, the number of small limit cycles is even, where a 
n-multiple limit cycle is considered as n limit cycles. Therefore, there are no small limit cycles because the 
number of small limit cycles is at most 1 by [13, Theorem 5]. �

In Lemma 3.4 all dynamical behaviors are analyzed for the case that μ1 < ϕ(μ2). On the other hand, 
from Lemma 3.4 there exists a semi-stable limit cycle if and only if μ2 = ψ(μ1). Thus, the double limit 
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cycle bifurcation curve is unique, i.e., the curve determined by μ2 = ψ(μ1). That is, Conjecture (b) has a 
positive answer.

4. Proof of Theorem 1.1 and numerical examples

In this section, we prove Theorem 1.1 and demonstrate some numerical examples.

Proof of Theorem 1.1. All information about the equilibria of system (1.1) is obtained in Proposition 2.1
and Table 2, from which we see that a generalized transcritical bifurcation happens when μ2 crosses 0. 
Thus, Conclusion (1) is proved. By Proposition 2.1 the stable weak focus E of order 1 becomes an unstable 
rough focus as μ1 changes from −3μ2/2 to −3μ2/2 − ε, where ε > 0 is sufficiently small. Thus, a Hopf 
bifurcation happens in this process, i.e., H is the Hopf bifurcation curve for E and Conclusion (2) is proved. 
Conclusions (3) and (4) follow directly from Lemmas 3.3 and 3.4. By −μ1 < ψ(μ1) < ϕ−1(μ1) given in 
Lemma 3.4 and ϕ(μ2) < −3μ2/2 given in Proposition 2.2, we obtain (1.2). All phase portraits given in this 
theorem are obtained by (1), (2) of Proposition 2.2 and Lemma 3.1 for μ1 ≥ ϕ(μ2) and by Lemma 3.4 for 
μ1 < ϕ(μ2). �

In the following we give some numerical examples. Fixing μ2 = −1 and taking different values for 
μ1, we draw the corresponding phase portraits of system (1.1) by Matlab and show them in Fig. 6. For 
(μ1, μ2) = (1.5, −1) ∈ H there is a unique limit cycle and it is unstable and large as shown in Fig. 6(a), 
which is consistent with Fig. 1(II or H). For (μ1, μ2) = (1.43, −1) there are exactly one small limit cycle 
and one large limit cycle as shown in Fig. 6(b), which is consistent with Fig. 1(III). Thus, (1.43, −1) ∈ III. 
For (μ1, μ2) = (1.421807, −1) there are exactly one large limit cycle and one small limit cycle as shown in 
Fig. 6(c), which is very similar to Fig. 1(CL). Moreover, the small one crosses a small neighborhood of the 
cusp. Thus, ϕ(−1) ≈ 1.421807. For (μ1, μ2) = (1.4215, −1) there are exactly two large limit cycles as shown 
in Fig. 6(d), which is consistent with Fig. 1(IV ). Thus, (1.4215, −1) ∈ IV . For (μ1, μ2) = (1.421182, −1)
there are exactly two large limit cycles and they are very close to each other as shown in Fig. 6(e), which 
is very similar to Fig. 1(DL). Thus, ψ(1.421182) ≈ −1. For (μ1, μ2) = (1.4, −1) there are no limit cycles as 
shown in Fig. 6(f), which is consistent with Fig. 1(V ). Thus, (1.4, −1) ∈ V .

5. Concluding remarks

As mentioned in Section 1, Conjecture (a) is equivalent to the stability of the cuspidal loop. A positive 
answer is given to Conjecture (a) by Lemma 3.1. In the Remark given at the end of [13, Section 4], it is 
stated that Conjecture (b) is equivalent to ψ1(μ2) = ψ2(μ2), where ψ1(μ2) is defined in Section 1 as the 
maximum of {μ1 : (μ1, μ2) lies on the double limit cycle bifurcation curves} for any fixed μ2 and ψ2(μ2)
being the minimum of this set. However, this equivalence is incorrect because the condition ψ1(μ2) = ψ2(μ2)
is sufficient, but not necessary, to the uniqueness of the double limit cycle bifurcation curves. Actually, by 
Theorem 1.1 there exists a unique double limit cycle bifurcation curve, which is exactly the graph of 
function ψ(μ1). That is, we determine the unique double limit cycle bifurcation curve via a function of μ1, 
not a function of μ2 as tried in [13]. On the other hand, as mentioned in Section 1 the monotonicity of ψ(μ1)
is still open, which actually is equivalent to ψ1(μ2) = ψ2(μ2). By [13, p. 1617], a possible way to prove this 
monotonicity is to prove system (3.1) (system (5) in [13]) has no limit cycles intersecting the vertical line 
x = −2μ2 because the vector field of system (3.1) is rotated with respect to μ1 in the strip −∞ < x < −2μ2.

By Proposition 2.1 there are four equilibria at infinity. Let A+ (resp. A−) be the equilibria at infinity 
on the positive (resp. negative) y-axis and B+ (resp. B−) be the equilibria at infinity in the second (resp. 
forth) quadrant. Each phase portrait shown in Fig. 1(I,V) means four possibilities because of the connection
between the unstable manifold of the cusp O and the equilibria at infinity. It is difficult to split region I
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Fig. 6. Phase portraits for different values of μ1 and fixed μ2 = −1.

or V into four subsets such that the connection is fixed for all (μ1, μ2) in each one of them. The following 
examples show that different possibilities of those four ones can happen even for different points (μ1, μ2)
on a line lying in V . By the P4 program (see [6, Chapter XI]), the ω-limit of the unstable manifold is B+, 
B−, A− when (μ1, μ2) = (0.5, −0.5), (0.6, −0.6), (0.555727, −0.555727) respectively.

Recently, in [3] the global dynamics of

{
ẋ = y − (ax + 2bx2 + bx3),
ẏ = −x(x + 1)2

(5.1)

is investigated. By (x, y, t) → (−x − 1, y, −t), system (5.1)|a=b>0 is rewritten as
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{
ẋ = y + b(−1 + x)x2,

ẏ = −x2(x + 1).
(5.2)

On the other hand, system (1.1)|μ1=−μ2=b>0 is also transformed into (5.2) by (x, y, t) → (μ1x, μ2
2y, t/μ1). 

By Theorem 1.1 system (5.2) has a phase portrait, which is topologically equivalent to the phase portrait 
shown in Fig. 1(V). This is consistent with the phase portrait given in [3, Figure 2].
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