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1. Introduction

In this paper we address several questions related to the following open problem (cf. [3], Problem 3.2, 
p. 125):

Problem 1. Suppose that 2 ≤ k ≤ n − 1 and that K and L are convex bodies in En such that the projection 
K|H is directly congruent to L|H for all subspaces H in En of dimension k. Is K a translate of ±L?

Here, we say that two sets A and B in the Euclidean space Ek are directly congruent if there exists a 
rotation φ ∈ SO(k), such that φ(A) is a translate of B.

We refer the reader to [5], [3] (pp. 100–110), [6] (pp. 126–127), [13,15,2] for history and partial results 
related to this problem. In particular, V.P. Golubyatnikov considered Problem 1 in the case k = 2 and 
obtained the following result.

Theorem 1.1 ([5], Theorem 2.1.1, p. 13). Consider two convex bodies K and L in En, n ≥ 3. Assume that 
their projections on any two-dimensional plane passing through the origin are directly congruent and have 
no direct rigid motion symmetries, then K = L + b or K = −L + b for some b ∈ E

n.
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Here a set A ⊂ E
2 has a direct rigid motion symmetry if it is directly congruent to itself.

In this paper we study a functional equation related to Problem 1 in the case k = 2. To formulate our 
main result we define an analogue of the notion of a direct rigid motion symmetry for functions on the unit 
circle S1 in E2. We say that a function h on S1 satisfies a direct rigid motion symmetry equation if there 
exists a non-trivial rotation φ ∈ SO(2) and a ∈ E

2, such that

h(φ(u)) + a · u = h(u) for any u ∈ S1. (1)

Our main result is

Theorem 1.2. Let f and g be two twice continuously differentiable real-valued functions on Sn−1 ⊂ E
n, 

n ≥ 3. Assume that for any 2-dimensional plane α passing through the origin there exists a vector aα ∈ α

and a rotation φα ∈ SO(2, α), such that the restrictions of f and g onto the large circle Sn−1 ∩ α satisfy 
the equation

f(φα(u)) + aα · u = g(u) ∀u ∈ Sn−1 ∩ α. (2)

Then there exists b ∈ E
n such that for all u ∈ Sn−1 we have g(u) = f(u) + b · u or g(u) = f(−u) + b · u, 

provided that the restrictions of f , g onto any such large circle Sn−1 ∩ α do not satisfy the direct rigid 
motion symmetry equation.

If f and g are the support functions of convex bodies K and L in En, n ≥ 3, respectively, we reproduce 
the aforementioned result of V.P. Golubyatnikov, [5]. Our approach is based on his ideas together with 
an application of the connection between twice continuously differentiable functions on the unit sphere 
and support functions of convex bodies. It allows, in particular, to get rid of the convexity assumption on 
functions.

In the case when the orthogonal transformations φξ degenerate into identity or reflection with respect to 
the origin, we show that the assumptions on the lack of symmetries and smoothness are not necessary. We 
have

Theorem 1.3. Let 2 ≤ k ≤ n −1 and let f , g be two continuous real-valued functions on Sn−1 ⊂ E
n. Assume 

that for any k-dimensional plane α passing through the origin and some vector aα ∈ α, the restrictions of 
f and g onto Sn−1 ∩ α satisfy at least one of the equations

f(−u) + aα · u = g(u) for all u ∈ α ∩ Sn−1, or

f(u) + aα · u = g(u) for all u ∈ α ∩ Sn−1.

Then there exists b ∈ E
n such that for all u ∈ Sn−1 we have g(u) = f(u) + b · u or g(u) = f(−u) + b · u.

As one of the applications of Theorem 1.2 we also obtain a result about the classical hedgehogs, which 
are geometrical objects that describe the Minkowski differences of arbitrary convex bodies in En.

The idea of using Minkowski differences of convex bodies may be traced back to some papers by 
A.D. Alexandrov and H. Geppert in the 1930’s (see [1,4]). Many notions from the theory of convex bodies 
carry over to hedgehogs and quite a number of classical results find their counterparts (see, for instance, [10]). 
Classical hedgehogs are (possibly singular, self-intersecting and non-convex) hypersurfaces that describe dif-
ferences of convex bodies with twice continuously differentiable support functions in En. We refer the reader 
to works of Y. Martinez-Maure, [9,11,12], for more information on this topic.
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We have

Theorem 1.4. Consider two classical hedgehogs Hf and Hg in En, n ≥ 3. Assume that their projections on 
any two-dimensional plane passing through the origin are directly congruent and have no direct rigid motion 
symmetries, then Hg = Hf + b or Hg = −Hf + b for some b ∈ E

n.

It remains unclear if Theorem 1.2 holds without the assumption that the restrictions of f and g to any 
equator do not satisfy the direct rigid motion equation.

2. Notation, auxiliary definitions and general remarks

We denote by Sn−1 the set of all unit vectors in the Euclidean space En. SO(n) is defined to be the set 
of all linear orthogonal transformations of En that can be represented as matrices with determinant equal 
to 1. For any unit vector ξ ∈ Sn−1 we denote ξ⊥ to be the orthogonal complement of ξ in En, i.e. the set of 
all x ∈ E

n such that x · ξ = 0. For any function h, he and ho stand for its even and odd parts respectively,

he(u) = h(u) + h(−u)
2 and h0(u) = h(u) − h(−u)

2 . (3)

Observe that functions in equation (1) can be considered up to translations. Namely, if instead of the 
function f(v) on Sn−1 we consider f1(v) = f(v) + y · v for any y ∈ E

n, then f1(v) satisfies equation (1) with 
some other vector bα = aα − φT

α(y|α) ∈ α,

f1(φα(v)) + bα · v = f(φα(v)) + y · φα(v) + (aα − φT
α(y|α)) · v = g(v). (4)

Here, φT
α stands for the conjugate of φα, and y|α is the projection of y on α.

In the case n = 3, for any two-dimensional plane α passing through the origin there exists ξ ∈ S2, 
such that ξ⊥ = α. In this case, we will denote φα by φξ. It is well-known that any rotation in SO(3) is 
determined by an axis of rotation and an angle of rotation (Euler’s rotation theorem). Following [5], for 
a fixed orientation in E3 we consider the map Φ : S2 → SO(3), defined as Φ(ξ) = (ξ, ϕξ), i.e. Φ(ξ) is a 
rotation around the direction ξ by the angle ϕξ, whose restriction to ξ⊥ coincides with the rotation φξ

in equation (1). Here ϕξ ∈ [−π, π] is the least angle of rotation (in absolute value), corresponding to the 
rotation φξ; φξ = Φ(ξ)|ξ⊥ and we write φξ ∈ (SO(2), ξ⊥). We identify the ends of the interval [−π, π], since 
the plane rotations by the angle π and −π coincide. We see that ϕ−ξ = −ϕξ and instead of Φ we will 
consider the map ϕ : S2 → [−π, π], ϕ(ξ) = ϕξ.

Also, for any β ∈ [−π, π] denote ϕ−1(β) = {ξ ∈ S2 : ϕξ = β}. For convenience, any great circle on S2

orthogonal to u will be denoted by E(u) = S2 ∩ u⊥.
Given any twice continuously differentiable real-valued function h(u) on Sn−1, the classical hedgehog Hh

with support function h is defined as the envelope Hh ⊂ E
n of the family of hyperplanes determined by 

h(u) = x · u for any x ∈ E
n. A projection of a classical hedgehog Hh onto a subspace α is the envelope of 

hyperplanes in α defined by h|α(u) = x · u for u ∈ α ∩ Sn−1 and x ∈ α, which is also a classical hedgehog 
Hh|α ⊂ α (see [10]).

3. Proof of the main result in the case n = 3

3.1. Idea of the proof

The main idea of the proof of Theorem 1.2 is to reduce the matter to the case or translations and 
reflections only, i.e. to show that the rotations φξ in (1) can only be trivial or by angle π.
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3.2. Plan of the proof

Our goal is to show that ϕ−1(0) = S2 or ϕ−1(π) = S2.
We start by proving that, without loss of generality, one can assume that the functions in Theorem 1.2

are odd (see Lemma 3.1).
Using our assumption that the restrictions of f and g do not satisfy the direct rigid motion symmetry 

equation in any equator, we will show that the map ϕ is continuous (see Lemma 3.3); and that, due to 
the oddness of ϕ, ϕ−ξ = −ϕξ, one of the sets ϕ−1(0) or ϕ−1(π) is not empty. In fact, we show that if 
S2 	= ϕ−1(0) ∪ ϕ−1(π), then one of the sets ϕ−1(0) or ϕ−1(π) intersects all meridians joining u0 and −u0, 
where u0 ∈ S2 \ (ϕ−1(0) ∪ ϕ−1(π)) (see Lemma 3.4).

In order to show that ϕ−1(0) = S2 or ϕ−1(π) = S2, we will prove that it is enough to consider two cases: 
the set ϕ−1(0) (or ϕ−1(π)) is not a great circle and ϕ−1(0) (or ϕ−1(π)) is a great circle.

If the set ϕ−1(0) (or ϕ−1(π)) is not a great circle on S2, our argument is based on the observation that 
ϕ−1(0) contains three non-coplanar vectors (see Lemma 3.6). This helps to reduce the proof to the case of 
translations and reflections only (see Lemma 3.7 and the argument after it).

If the set ϕ−1(0) (or ϕ−1(π)) is a great circle on S2, we use the result from [16] and reduce condition (1)
to a similar equation on support functions of convex bodies of constant width (see (7) and Lemma 3.9).

We finish the proof in the case n = 3 by showing that, for convex bodies of constant width, Hadwiger’s 
result [6] holds for a circle of directions ϕ−1(0) instead of a cylindrical set of directions.

3.3. Auxiliary lemmata

Our first observation is

Lemma 3.1. If f and g verify equation (1) in the case n = 3, then fe = ge on S2.

Proof. Comparing the even parts of equation (1) we have:

fe(φξ(u)) = ge(u) for any ξ ∈ S2 and u ∈ ξ⊥ ∩ S2.

Applying the Funk transform, and using the invariance of the Lebesgue measure under rotations, we 
obtain:

∫

E(ξ)

fe(φξ(u))dσ(u) =
∫

E(ξ)

fe(u)dσ(u) =
∫

E(ξ)

ge(u)dσ(u).

Since the Funk transform is injective on even functions (see [8], Corollary 2.7, p. 128), we obtain the desired 
result. �

By the previous lemma, from now on we may assume that our functions f and g are odd.
If ϕ ≡ 0, Theorem 1.2 follows from

Lemma 3.2 (cf. [15]). Let f , g be two continuous functions on Sn−1 such that for any ξ ∈ Sn−1 there exists 
aξ ∈ ξ⊥ and

f(u) + aξ · u = g(u) for any u ∈ E(ξ).

Then there exists b ∈ E
n, such that g(u) = f(u) + b · u for any u ∈ Sn−1.
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Proof. For any u ∈ Sn−1, consider F (u) = g(u) − f(u) and extend it to En by homogeneity of degree 1. 
Then F (u) is continuous on Sn−1 and for a fixed ξ ∈ Sn−1 and any x ∈ ξ⊥ we have F (x) = aξ · x.

We claim that F is linear in En. Choose any v1, v2 ∈ Sn−1 and c1, c2 ∈ R. Then,

F (c1v1 + c2v2) = aξ · (c1v1 + c2v2)

for ξ ⊥ span{v1, v2}. On the other hand, we have

c1F (v1) + c2F (v2) = c1 (aξ · v1) + c2 (aξ · v2) ,

since v1 ⊥ ξ and v2 ⊥ ξ. The linearity F (c1v1 + c2v2) = c1F (v1) + c2F (v2) follows. �
Remark 3.1. If ϕ ≡ π, we may consider the function f(−u) instead of f(u) to conclude that g(u) =
f(−u) + b · u.

Lemma 3.3. Let f , g be two continuous functions on S2. If the restrictions of f , g do not satisfy the direct 
rigid motion symmetry equation in any equator, then the map ϕ(ξ) = ϕξ, ϕ : S2 → [−π, π] is continuous 
on S2.

Proof. Let w0 be any point on S2. Consider a sequence of points {wm}m∈N on S2 such that limn→∞ wn = w0, 
and assume that limn→∞ ϕwn

	= ϕw0 . Since S2 is a compact set, there exists a subsequence {wml
}, for which 

liml→∞ ϕwml
= ϕ1 	= ϕw0 . This implies that

f(ϕw0(u)) + bw0 · u = g(u) for any u ∈ w⊥
0 and some bw0 ∈ w⊥

0 ,

and

f(ϕ1(u)) + aw0 · u = g(u) for any u ∈ w⊥
0 and some aw0 ∈ w⊥

0 .

Combining the above two equations, we obtain

f(ϕw0(u)) + (bw0 − aw0) · u = f(ϕ1(u)) for any u ∈ w⊥
0 .

The last equation is the equation of the direct rigid motion symmetry for the function f , that cannot be 
satisfied by the condition of the lemma. Thus, we obtain a contradiction to the assumption of discontinuity 
of the map ϕ. �

Now assume

∃u0 ∈ S2 : 0 < ϕ(u0) < π. (5)

Consider the set of all meridians M(u0) = {mt : t ∈ [0, 2π]} that connect u0 and −u0. Each meridian mt

corresponds to a unique point of intersection with E(u0) and the great circle E(u0) can be parameterized 
by the natural parameter t.

Our next Lemma is Lemma 2.1.2, from [5], p. 15. We give a more detailed proof for the convenience of 
the reader.

Lemma 3.4. Let ϕ be continuous on S2 and assume (5) holds. Then one of the sets ϕ−1(0) or ϕ−1(π)
intersects all the meridians in M(u0).
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Fig. 1. Identifying poles of the meridian m0.

Proof. Parameterize each meridian mt = mt(s) by a natural parameter s ∈ [−π
2 , 

π
2 ], such that for any t we 

have u0 = mt(π2 ) and −u0 = mt(−π
2 ). By the continuity of ϕ, we see that the restriction ϕ|m0 of ϕ to the 

meridian m0 satisfies

Im(ϕ|m0) ∩ {π} 	= ∅ or Im(ϕ|m0) ∩ {0} 	= ∅. (6)

Similarly, one can obtain the analogue of the above for any mt, t ∈ [0, 2π]. The idea of the proof is to use 
the fact that homotopy equivalent spaces (meridians) have isomorphic homology groups (see [7], p. 111). 
Let m̃0 be the meridian m0 with its poles identified, so that it becomes S1 (see Fig. 1). Consider the map

μ0 = ϕ|m̃0 : S1 → “figure eight”∞.

Here, μ0 maps the meridian m̃0 with the identified poles u0 and −u0 into the interval [−π, π], where the 
pair of points −ϕ(u0) and ϕ(u0) and also −π and π are identified respectively, so that it looks like ∞.

It is known (see [7], p. 106, and Exercise 31, p. 158) that the first homology groups H1 of the spaces S1

and ∞ are

H1(S1) ∼= Z and H1(∞) ∼= Z⊕ Z.

For the induced homomorphism homμ0 (see [7], p. 111) corresponding to μ0,

homμ0 : Z → Z⊕ Z,

consider the image of 1 ∈ Z, homμ0(1) = (n1, n2) ∈ Z ⊕ Z. Here, n1 corresponds to number of times we 
loop around the left circle of ∞ (on the picture loop γ1 going clockwise) and n2 corresponds to the number 
of times we loop around the right one (on the picture loop γ2 going counterclockwise). The element 1 ∈ Z

can be thought of as a continuous loop on S1 with the beginning at −u0 and the end at the point u0, where 
these two points are identified.

For each meridian mt we similarly identify the poles −u0 and u0 to obtain m̃t, t ∈ [0, 2π], s ∈ [−π
2 , 

π
2 ]. 

We consider a continuous homotopy T (t, s) = m̃t(s). The homotopy of meridians defines the homotopy μ̃t

of the mapping μ0 as the restriction ϕ|m̃t
,

μ̃t = ϕ|m̃t
: S1 → “figure eight”∞, such that μt(±u0) = ±ϕ(u0).

By [7] (p. 111, Proposition 2.9) we have, homμ0 = homμt
, and we conclude that (n1, n2) does not depend 

on t.
Now we claim that the number n1+n2 is odd. If we start changing the parameter s on m̃t(s) continuously 

(from −π/2 to π/2) then the image of the map μ̃t is a continuous path on ∞ with the beginning at −ϕ(u0)
and the end at ϕ(u0) (which are identified). This path loops around each side of ∞ a number of times. 
Looping once around either side is equivalent to having a path starting at −ϕ(u0) and ending at ϕ(u0), 
looping twice is equivalent to having a path starting at −ϕ(u0) and ending at the same point. The same 
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idea can be extended to any even or odd number of loops: if we loop around either side of ∞ an odd number 
of times we start at the point −ϕ(u0) and end at the point ϕ(u0); if we loop around either side of ∞ an 
even number of times we start and end at the same point −ϕ(u0). By adding the number of loops around 
each side we see that the number of loops n1 + n2 must be odd.

Since n1 + n2 is odd for any t, either n1 or n2 is odd. We conclude that we loop around at least one 
side of ∞. Indeed, assume that {π} is not in the image of μ̃t. Then we do not loop around the left circle of 
∞ at all, in which case n1 = 0. If, on the other hand, {0} is not in the image of μ̃t, then we do not loop 
around the right circle of ∞ at all, in which case n2 = 0. Thus, either {0} or {π} is in the image of μ̃t for 
any t ∈ [0, 2π]. �
Remark 3.2. Since we can reflect the function f by considering f(−u) instead of f(u), u ∈ S2, from now on 
we consider the case when ϕ−1(0) intersects all the meridians in M(u0).

The next observation is needed in Lemma 3.6:

Lemma 3.5 (cf. [5], p. 16, Corollary 2.1.1). If every meridian from M(u0) intersects ϕ−1(0) at a single 
point, then ϕ−1(0) is homeomorphic to a circle.

Proof. Since ϕ is continuous, the set ϕ−1(0) is closed.
Consider the map Π : E(u0) → ϕ−1(0) that maps any point x ∈ E(u0) to the point Π(x) ∈ ϕ−1(0), 

such that x and Π(x) belong to the same meridian from M(u0). The map Π is well-defined according to 
the statement of the lemma. For any point x ∈ E(u0), consider a sequence {xk}k∈N ⊂ E(u0), such that 
limk→∞ xk = x.

Now consider the sequence {Π(xk)}k∈N. If limk→∞ Π(xk) does not exist, then lim supk→∞ Π(xk) 	=
lim infk→∞ Π(xk). Then there exists a meridian that contains the two distinct points lim infk→∞ Π(xk)
and lim supk→∞ Π(xk) of the set ϕ−1(0), which contradicts the assumption of the lemma.

If limk→∞ Π(xk) = z, the point z belongs to the set ϕ−1(0), since ϕ−1(0) is closed. If z 	= Π(x), using 
the same argument as above we obtain a contradiction. Thus Π(x) = z and Π is continuous.

Observe that in the above argument we may interchange the sets ϕ−1(0) and E(u0) to obtain the 
continuity of the map Π−1. Thus ϕ−1(0) is homeomorphic to circle E(u0). �
3.4. Case 1: ϕ−1(0) is not a great circle on S2

Lemma 3.6 (cf. [5], p. 16, Lemma 2.1.3). If ϕ−1(0) is not a great circle on S2, then there exist two non-
parallel vectors u1, u2 ∈ ϕ−1(0), such that for a dense set of parameters t ∈ [0, 2π] the corresponding 
meridians m(t) in M(u0) intersect the set ϕ−1(0) at points that are not coplanar with u1 and u2.

Proof. If there exists a meridian mt1 , such that the number of points of intersection in ϕ−1(0) ∩ mt1 is 
greater than one, then we take any two points in this intersection to be the required u1 and u2. Any other 
meridian, except m−π+t1 , intersects ϕ−1(0) at points that are not coplanar with the above two points.

On the other hand, if every meridian intersects ϕ−1(0) at a single point, then by Lemma 3.5 there exists a 
homeomorphism Π : E(u0) → ϕ−1(0). By the assumption, ϕ−1(0) is not contained in any great circle on S2. 
For any u1 ∈ ϕ−1(0) fixed any great circle E0 passing through u1 and −u1 (see Fig. 2). Then consider the 
family {Es}s∈[0,2π] of all great circles passing through u1 parameterized by the angle s that corresponds to 
the intersection of Es and E0.

Let Ks denote the set Es ∩ ϕ−1(0). Then Ks1 ∩Ks2 = {u1, −u1} if s1 	= s2. This implies that

ϕ−1(0) = ·∪s∈[0,2π](Ks \ ({u1} ·∪ {−u1})) ·∪ {u1} ·∪ {−u1},



S. Myroshnychenko / J. Math. Anal. Appl. 445 (2017) 1492–1504 1499
Fig. 2. The set of directions ϕ−1(0).

where ·∪ stands for a disjoint union. Setting Π−1(Ks \ ({u1} ∪ {−u1})) = Gs ⊂ E(u0), we have that 
E(u0) = Π−1(ϕ−1(0)) = ·∪s∈[0,2π]Gs

·∪ {Π−1(u1)} ·∪ {Π−1(−u1)}. We claim that there exists Gs0 , such that 
Gc

s0 is dense, or equivalently, intGs0 = ∅. Assume not, i.e. for any s ∈ [0, 2π] we have intGs 	= ∅, then Gs

contains an open interval of E(u0), and hence it contains a point that corresponds to a rational value of the 
parameter t on E(u0). Thus we obtain a contradiction, since the number of such values of t is countable, 
but s does not belong to a countable set.

Then the set B = Π(Gc
s0) is the desired set and it is dense in ϕ−1(0), since homeomorphisms preserve 

the property of density. We may take u2 ∈ Bc. By the above, u2 	= ±u1. �
The following lemma is a functional analogue of the result from [5], p. 9, Lemma 1.2.2.

Lemma 3.7. Let f , g be two continuous functions on En, n ≥ 3, and let w1, w2, w3 ⊂ Sn−1 be non-coplanar 
vectors. If for any ui ∈ w⊥

i , i = 1, 2, 3 we have

g(u1) = f(u1), g(u2) = f(u2) and g(u3) = f(u3) + a · u3,

for some a ∈ w⊥
3 , then a = 0.

Proof. For i, j = 1, 2, 3, let Pi,j = w⊥
i ∩ w⊥

j . As in the proof of Lemma 3.2, consider the function F (u) =
g(u) − f(u). For any u1,3 ∈ P1,3 and u2,3 ∈ P2,3 we have

0 = F (u1,3) = a · u1,3 and 0 = F (u2,3) = a · u2,3.

We conclude that a ⊥ P1,3 and a ⊥ P2,3, and so a ⊥ span{P1,3, P2,3}. On the other hand, span{P1,3, P2,3} =
w⊥

3 (this is due to the fact that dimP1,3 = dimP2,3 = n − 2, Pi,3 ⊂ w⊥
3 and P1,3 	= P2,3) and a ∈ w⊥

3 . Thus, 
a = 0. �

We will need the following

Lemma 3.8. Let f , g be two continuous functions on En, n ≥ 3 and let w1, w2 ∈ Sn−1. If for some ai ∈ w⊥
i , 

i = 1, 2, we have
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f(ui) + ai · ui = g(ui) ∀ui ∈ w⊥
i ,

then there exists y ∈ E
n, such that y · ui = ai · ui for any ui ∈ w⊥

i , i = 1, 2.

Proof. For any vector v ∈ w⊥
1 ∩ w⊥

2 we have

f(v) + a1 · v = g(v) = f(v) + a2 · v.

The above implies that (a1−a2) ·v = 0. Since the vector v was chosen arbitrary, we have a1−a2 ⊥ w⊥
1 ∩w⊥

2 , 
i.e. a1 − a2 = tw1 + sw2 for some t, s ∈ R. Then the vector y = a1 − tw1 = a2 + sw2 is the one we need. �

Finally, to obtain a contradiction to our assumption 0 < ϕ−1(0) < π, consider two non-parallel vectors 
u1, u2 ∈ ϕ−1(0) and a point x, which belongs to the dense subset Π−1(B) ⊂ E(u0) defined in Lemma 3.6, so 
that z = Π(x) ∈ ϕ−1(0) is not coplanar with u1 and u2. Define a function G(v) on S2 to be G(v) = f(v) +y·v, 
where y is the vector obtained by applying Lemma 3.8 to the vectors u1 and u2. Then for any v1 ∈ u⊥

1

G(v1) = f(v1) + au1 · v1 = g(v1)

and for any v2 ∈ u⊥
2

G(v2) = f(v2) + au2 · v2 = g(v2).

Recall that, by the argument in (4), the functions f and g satisfy the equation (1) up to a translation. 
Hence, for the function G(u), there also exists az ∈ z⊥, such that G(u) +az ·u = g(u) for any u ∈ z⊥. Using 
Lemma 3.7, we see that az = 0 for any u ∈ z⊥. This implies that G(u) = g(u) for any u ∈ E(z).

Notice also that the set E(u0) ∩ {E(z)}z∈B is dense in E(u0), since B ⊂ ϕ−1(0) is dense by Lemma 3.6. 
Both G and g are continuous functions on the sphere, this implies that G(u) = f(u) + y · u = g(u) for 
any u ∈ E(u0). Thus, ϕ(u0) = 0, since otherwise function f would satisfy a direct rigid motion symmetry 
equation in E(u0). However, the previous contradicts the assumption 0 < ϕ(u0) < π. We have thus proven 
Theorem 1.2 under the hypothesis that ϕ−1(0) is not a great circle.

3.5. Case 2: ϕ−1(0) is a great circle on S2

We use a geometrical approach.

Definition 3.1 ([16], p. 37). The support function hV (x) of a convex subset V of En is defined as hV (x) =
sup{x · v : v ∈ V } for x ∈ E

n.

We are going to use the next result to finish the proof of Theorem 1.2.

Theorem 3.1 ([16], p. 45). If f : Sn−1 → R is a twice continuously differentiable function, there exists a 
convex body K and a number r ≥ 0 such that

f(u) + r = hK(u).

Following the proof of Theorem 3.1, one can conclude that the result holds for any larger constant C ≥ r. 
Then we may add such a large constant C to both sides of (1) and extend the functions to E3 by homogeneity 
of degree 1 to obtain another equation

f̃(ϕξ(x)) + aξ · x = g̃(x) for all x ∈ ξ⊥, ξ ∈ S2, (7)
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where f̃(x) = C|x| + f(x) > 0 and g̃(x) = C|x| + g(x) > 0 are the support functions of some convex bodies 
K1 and K2 respectively.

Lemma 3.9. The bodies K1 and K2 have the same constant width in any direction.

Proof. Recall that, after Lemma 3.1, we assumed that f and g are both odd functions. Let w1(u) =
f̃(u) + f̃(−u) be the width of body K1 in the direction u. Then

w1(u) = C + f(u) + C + f(−u) = 2C.

The same can be done for K2 and function g. �
It is well-known (see [6]) that two convex bodies are translates of each other, provided that their projec-

tions in a cylindrical set of directions are translates of each other. Here, a cylindrical set of directions is the 
set E(u0) 

⋃
{u0} ⊂ S2, for some u0 ∈ S2.

The last part of the proof is based on the observation that for two convex bodies of constant width it is 
enough to consider only a circle of directions E(u0). This is due to the fact that we can translate the bodies 
so that their diameters parallel to u0 coincide.

Without loss of generality, we assume now that ϕ−1(0) = E(e3). Consider two support planes P1 and P2
of K2, which are parallel to e⊥3 . Since K2 has constant width, the points x1 = K2 ∩ P1 and x2 = K2 ∩ P2
belong to the common perpendicular to these planes (see [3], Lemma 7.1.13, p. 275), which implies that 
K1 has a parallel translate K ′

1 tangent to the planes P1 and P2 at the points x1 and x2 respectively. The 
projections of K ′

1 and K2 in the directions of the vectors from e⊥3 coincide, and since ϕ−1(0) intersects all 
the great circles on S2, we obtain that K ′

1 = K2. Observe that any shift of any projection would change 
the values of the support functions on e⊥3 (otherwise the shift would be in the direction orthogonal to e⊥3 , 
which is impossible since the points x1 and x2 are fixed). Similarly, we obtain that −K ′

1 = K2 in the case 
ϕ−1(π) = E(e3).

It is known (see [16], p. 38, Theorem 1.7.1) that if hV1 , hV2 are the support functions of convex subsets 
V1, V2 ⊂ E

n respectively and hV1(u) = hV2(u) for any u ∈ Sn−1, then V1 = V2. Thus, we conclude that 
f̃(u) + b ·u = g̃(u) in the case K ′

1 = K1 + b; or f̃(−u) + b ·u = g̃(u) in the case −K ′
1 = −K1 + b. Subtracting 

the constant C from both sides of both equations we conclude that f(u) +b ·u = g(u) or f(−u) +b ·u = g(u). 
This finishes the proof of Theorem 1.2 in the case n = 3.

4. Proof of the main result in the case n > 3

Theorem 1.2 in the case n > 3 is a consequence of Theorem 1.2 for n = 3 and Theorem 1.3.

4.1. Proof of Theorem 1.3

By induction, it is enough to consider the case k = n − 1, n ≥ 3.
Consider two subsets of Sn−1,

Ξ0 = {ξ ∈ Sn−1 : f(v) + aξ · v = g(v) ∀v ∈ ξ⊥ and some aξ ∈ ξ⊥},
Ξπ = {ξ ∈ Sn−1 : f(−v) + cξ · v = g(v) ∀v ∈ ξ⊥ and some cξ ∈ ξ⊥}.

Lemma 4.1. The sets Ξ0 and Ξπ are closed.

Proof. Following the argument from [14] (p. 3433, Lemma 5) we may show that the sets Ξ0 and Ξπ are 
closed (for the convenience of the reader we briefly repeat the proof).
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Consider a convergent sequence {ξn}n∈N ⊂ Ξ0, ξn → ξ. For any v ∈ ξ⊥ we can find a sequence {vn}n∈N, 
vn ∈ ξ⊥n such that vn → v as n → ∞. For these sequences we have f(vn) + aξn · vn = g(vn) and, by 
compactness, we may assume that aξn → bξ ∈ ξ⊥. Then aξ · v = g(v) − f(v) = bξ · v for any v ∈ ξ⊥, which 
implies aξ = bξ, ξ ∈ Ξ0. A similar argument can be repeated for Ξπ to conclude that both sets Ξ0 and Ξπ

are closed. �
We will also use

Lemma 4.2 ([14], p. 3431, Lemma 1). Let n ≥ 3, let f and g be two continuous functions on Sn−1 and let

Λ0 = {ξ ∈ Sn−1 : f(v) = g(v) ∀v ∈ ξ⊥},
Λπ = {ξ ∈ Sn−1 : f(−v) = g(v) ∀v ∈ ξ⊥}.

If Sn−1 = Λ0 ∪ Λπ, then Sn−1 = Λ0 or Sn−1 = Λπ.

Lemma 4.3. Let f and g be two continuous real-valued functions on Sn−1, such that Sn−1 = Ξ0∪Ξπ, n ≥ 3. 
Then Sn−1 = Ξ0 or Sn−1 = Ξπ.

We will reduce this lemma to Lemma 4.2.

Proof. Since Ξ0 ∪ Ξπ = Sn−1 and since the scalar product v → aξ · v is an odd function on ξ⊥, we have 
fe ≡ ge.

We can assume that int(Ξ0) 	= ∅ and int(Ξπ) 	= ∅. Indeed, if int(Ξ0) = ∅, then for any x ∈ Ξ0 there exists 
a sequence {xn}n∈N ⊂ Ξπ, such that xn → x. Since Ξπ is closed, we obtain x ∈ Ξπ and hence Ξ0 ⊂ Ξπ.

The above implies that there exist two non-parallel vectors u1, u2 ∈ int(Ξ0). There also exists w ∈ int(Ξ0), 
such that w is non-coplanar with u1, u2 (otherwise int(Ξ0) ⊂ Su1,u2 , where Su1,u2 is a great circle on Sn−1

which is spanned by u1 and u2, but that would imply int(Ξ0) = ∅). A similar argument can be used to show 
that there exist three non-coplanar vectors in int(Ξπ).

By Lemma 3.8, we may consider a vector b ∈ E
n, such that the function F (u) = f0(u) + u · b satisfies 

F (v) = g0(v) for any v ∈ u⊥
1 ∪ u⊥

2 . By Lemma 3.7, this implies that F (v) = g0(v) for any v ∈ w⊥, where 
w ∈ Ξ0\Su1,u2 . Since F is continuous on Sn−1, we have F (v) = f0(v) + b · v = g0(v) for any v ∈ w⊥, where 
w ∈ Ξ0 and b is independent of w. This is due to the fact that Su1,u2 is nowhere dense in Sn−1. Similarly, 
we can show that there exists a vector c ∈ E

n, such that f0(−v) + c · v = g0(v) for any v ∈ w⊥, where 
w ∈ Ξπ and c is independent of w.

The intersection Ξ0 ∩Ξπ 	= ∅, since Sn−1 is connected. Consider any ξ ∈ Ξ0 ∩Ξπ and any v ∈ ξ⊥. Then, 
g0(v) = f0(v) + b · v = f0(−v) + c · v or

f0(v) = c− b

2 · v, g0(v) = c + b

2 · v ∀v ∈ ξ⊥, ∀ξ ∈ Ξ0 ∩ Ξπ.

Let f̃0(v) = f0(v) + y · v defined on Sn−1 for any y ∈ E
n. Observe that the set Ξ0 for f0 coincides with 

the set Ξ0 for the function f̃0. This is due to the fact that for any ξ ∈ Ξ0 and bξ = aξ − y|ξ⊥ ∈ ξ⊥ we have

f̃0(v) + bξ · v = f0(v) + y · v + (aξ − (y|ξ⊥)) · v = g0(v) ∀v ∈ ξ⊥. (8)

A similar observation holds for ξ ∈ Ξπ if we put bξ = cξ + y|ξ⊥ . And also, the same holds true for g0, as 
both functions are interchangeable. Hence, by taking f̃0(v) = f0(v) + b−c

2 · v and g̃0(v) = g0(v) − b+c
2 · v, 

we have f̃0(v) = g̃0(v) = 0 for ∀v ∈ ξ⊥, ∀ξ ∈ Ξ0 ∩ Ξπ. Also, f̃0(v) = g̃0(v) for any v ∈ w⊥, w ∈ Ξ0 and 
f̃0(−v) = g̃0(v) for any v ∈ w⊥, w ∈ Ξπ.
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Applying Lemma 4.2 to the functions f̃0 and g̃0 and the sets Λ0 = Ξ0 and Λπ = Ξπ respectively, we finish 
the proof of Lemma 4.3. �

The proof of Theorem 1.3 now follows from the above lemma by induction on k.

4.2. Proof of Theorem 1.2 for n > 3

The proof of Theorem 1.2 in this case is a direct consequence of Theorem 1.3 and the proof of Theorem 1.2
in the case n = 3.

5. Proof of Theorem 1.1 and 1.4

Theorem 1.4 and Theorem 1.1 (under the additional hypothesis that the support functions of K and L
are twice differentiable) are the direct consequences of Theorem 1.2.

Let H ⊂ E
n be a classical hedgehog with support function h = hH defined on Sn−1. Let αk denote a 

k-dimensional plane passing through the origin and α⊥
k be its orthogonal complement in En. Then if H|αk

is the projection of H on αk we have

hH|αk
(u) = hH(u) for any u ∈ αk ∩ Sn−1.

This is due to the fact that for any x ∈ E
n and u ∈ αk ∩ Sn−1 we have hH(u) = max{x · u : x ∈ H} =

max{(x|αk
+ x|α⊥

k
) · u : x ∈ H} = max{x|αk

· u : x ∈ H} = hH|αk
(u).

Since the requirement on the convexity can be weakened, the following two properties (see [3], p. 18) of 
support functions of convex bodies hold true for classical hedgehogs in En.

(1) For any φ ∈ O(n) we have hφ(H)(u) = max{x ·u : x ∈ φ(H)} = max{φ(z) ·u : z ∈ H} = max{z ·φT (u) :
z ∈ H} = hH(φT (u));

(2) For any a ∈ E
n we have hH+a(u) = max{x ·u : x ∈ H + a} = max{x ·u : x ∈ H} + a ·u = hH(u) + a ·u.

To conclude the proof of Theorems 1.1 and 1.4, we observe that the conditions on projections in the 
theorem can be re-written as

hM (ψT
ξ (u)) + aξ · u = hN (u) for any u ∈ E(ξ),

where ψξ is a rotation on ξ⊥ and aξ ∈ ξ⊥; M and N are a pair of hedgehogs in the case of Theorem 1.4 (or 
a pair of two convex bodies in the case of Theorem 1.1) with the support functions hM and hN respectively. 
By taking f = hM , g = hN and φξ = ψT

ξ , we conclude that hN (u) = hM (u) +b ·u or hN (u) = hM (−u) +b ·u
for some b ∈ E

n. In the first case N = M + b, and in the second, N = −M + b.
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