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1. Introduction

An n-dimensional manifold M is called a locally product space if it admits a separating coordinate system
(see [25]). This means that the manifold M is covered by a system of coordinate neighbourhoods such that
in any intersection of two coordinate neighbourhoods (U, u”) and (U, u"") we have

u =u? (u?), u =u® (), det|0uu | £0, det|dyu” |0, (1.1)

where the indices a, b, ¢ run over the range 1,2,...,p and the indices z,y, z run over the range p+ 1,p +
2,...,p+qg=n.

A locally product space is said to be a hyperbolic Kdihler space if there is given a positive definite
Riemannian metric and an affinor structure F* # 6 satisfying the conditions
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h _ sh
FhFP = b,
9o FYF) = =g, (1.2)
ViF! =0,

where V is the operator of covariant differentiation with respect to the Levi-Civita connection of the
metric g;;.

As is well-known, Kéhler manifolds are related to the algebra of complex numbers. In 1948, Rasevskij
was the first to consider a similar kind of manifolds, this time related to the algebra of double numbers and
such space is called a hyperbolic Kéhler space. Latterly, in 1949 Rozenfeld gave the explicit definition of
para-Kéahler manifolds. He compared Rasevskij’s definition with Kéhler’s definition in the complex case and
remarked that Rasevskij’s spaces are (local) real models of para-Kéhler manifolds. Much more historical
remarks on para-Kédhler manifolds are given in the survey paper [1].

The theory of holomorphically projective mappings between classical Kéhler manifolds was started by
the Japanese geometers Otsuki and Tashiro, and for a certain period of time it was one of the main research
directions of the Japanese and Soviet differential geometric schools. Among Soviet geometers, some of the
significant contributions to this theory have been made by Mikes [2,5,7,8,10,9]. The theory of holomorphi-
cally projective (HP) transformations between locally product spaces was started by Prvanovié¢ [19]. As
a particular case one can consider such transformations between locally decomposable Riemannian spaces
and hyperbolic Kéhler spaces, [21]. Among other things Prvanovi¢ [19] introduced the paraholomorphic
projective curvature tensor and gave the explicit expression of the curvature tensor for spaces with constant
paraholomorphic sectional curvature. Note that we have respected Prvanovié’s terminology by using the
word “holomorphically,” but strictly speaking one should use the word “paraholomorphically,” to avoid any
possible confusion.

Eisenhart, in his contributions to general relativity, proposed a generalization of Riemannian spaces [3.,4].
This generalization consisted in using a non-symmetric basic tensor and play a fundamental role in Moffat’s
non-symmetric gravitational field theory [18]. Although, as is well-known, Moffat’s theory is a controversial
one, some modifications have improved it. Thus some hopes, based among others on results on dark matter
and dark energy, have been pointed out, see for instance Janssen and Prokopec [6]. Equitorsion geodesic
mappings between Eisenhart’s generalized Riemannian spaces were considered in the papers [15,26,27]. So
far, generalized (classical) Kéhler spaces as a particular case of Eisenhart’s generalized Riemannian spaces
were defined and holomorphically projective mappings between such spaces were considered in the papers
[16,22-24].

In the present paper we define generalized hyperbolic Kéhler spaces. Also, we consider equitorsion holo-
morphically projective mappings between generalized hyperbolic Kéhler spaces and find some invariant
geometric objects with respect to these mappings. Geometric objects analogous to the Thomas projective
parameter in the theory of geodesic mappings and the paraholomorphic curvature tensor in the theory of
holomorphically projective mappings are examined.

2. Generalized hyperbolic Kahler spaces

On a manifold M with non-symmetric linear connection V another non-symmetric linear connection Y
1

can be defined in the following way [20]
YxY = VyX +[X,Y], X,Y € T,(M),

where as usual [-, -] denotes the Lie bracket.
M. Prvanovié¢ [20] considered four curvature tensors of a non-symmetric linear connection and explained
the geometric meaning of them in terms of parallel displacement with respect to the non-symmetric linear
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connections Y and Y, whereas S.M. Minci¢ examined various Ricci type identities on a space with non-

symmetric affine connection [11] and recently he reobtained these identities considering curvature tensors as
polylinear mappings [14]. S.M. Min¢ié [13] showed that among the twelve curvature tensors which appeared
in the Ricci type identities, five of them are linearly independent:

Fei(Xv Y)Z = gxyyz - YY?XZ - Y[X,Y]Zv 0=1,2

BOCY)Z = Yy 2 =YY + Tgvx? ~ Ygar 2

ey w

(X, Y)Z = nyyz - YYYXZ + YYYXZ - YYXYZ§ (2.1)
1

BXYZ =5 (YxYrZ = YrYxZ +YxYrZ = YrYxZ

+VvxZ + YivxZ)-

Let (U, u), u = (ul,...,u™) be a local chart at the point p € M. Local coordinates u',...,u™ give rise
to the vector fields

0 0

Aul’ T un’

which form a basis of the tangent space T),(M).
Throughout this paper we shall use the following notation

0 0 0
x=2 y=2 z=-2
out’ oul’ Ouk’
therefore [X,Y] = 0, and consequently
YXY = YyX.

Also, a non-symmetric linear connection Y can be described thorough its symmetric part V and the torsion

tensor 1; as

1
VxY = VxY + ST(X.Y),

where the symmetric part V of a non-symmetric linear connection Y is given by

VxY = (YXY + YYX)7

1
2
and the torsion tensor 11“ is defined by

?(X,Y) = YXY — YyX.

A generalized Riemannian space in Eisenhart’s sense [3] is a differentiable manifold M equipped with a
non-symmetric metric g. Therefore the metric g can be written as

9(X,Y) =g(X7Y)+g(X,Y),

where g denotes the symmetric part of the metric g and g denotes the skew-symmetric part of g, i.e.
= v
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1 1
g(X,Y) =3(g(X,¥) +g(¥, X)) and g(X,¥) = 5 (g(X,Y) —g(¥, X)).

A non-symmetric linear connection Y of a generalized Riemannian manifold with the metric g is explicitly
defined by

1
§(YxY, 2) = 5(Xg(¥. 2) + Yg(Z,X) — Zg(¥, X)), (2.2)
or in local coordinates by
» 1
ik = 9l = 5(9jik = 9w + Giney)- (2.3)

Here the functions I'; j, and I‘;k are called generalized Cristoffel symbols of the first kind and the second
kind, respectively.
The symmetric linear connection V and the non-symmetric linear connections Y and Y induce covariant

derivatives of tensors:

i i P i

Vmaj =i = m Fmp J ij P’

i _ i P i

Ymaj =Qjim = mt Fpm j FJm P’
1

i i _ i I

Ymaj = i = Gjm T Pmpaj ij P

Here aJ m denotes the partial derivative of a tensor a§- with respect to ™ and mp signifies a symmetrization

i . 1 i .
with division, i.e. F;"J =5 + Thm)-
Moreover, we can consider two more kinds of covariant differentiation [12]:

i _ @ i P g

Y = QG = G+ Lyl = Ty,
1

i d i P g

Ymaj = @jjm = m + Tinp@y = T

Generalized classical (elliptic) Kéhler spaces were introduced in [16]. Analogously, we define generalized
hyperbolic Kéhler spaces.

Definition 2.1. A generalized Riemannian space (M, g) is called a generalized hyperbolic Kihler space if there
exists a (1,1) tensor F' on M such that

F?=1, (2.4)
g(FX,FY)=—g(X,Y), (2.5)
YF =0 and YF:O, (2.6)
where I denotes the identity operator.
Theorem 2.1. The curvature tensors {0%, 0 =1,...,4 and the torsion tensor Zf of a generalized hyperbolic

Kahler space (M, g, F) satisfy the next relations:

(i) T(X,Y) = F(T(FX,Y)),
(i) R(X,Y)FZ = F(R(X,Y)Z),



M.Z. Petrovié / J. Math. Anal. Appl. 447 (2017) 435-451 439

(iii) R(X.Y)FZ = F(R(X,Y
(iv) R(X,Y)FZ = F(R(X,Y
(v) RIX.Y)FZ + F(R(Y,X)Z) = F(YxT(Z,Y) - YvT(X,2) + T(X,T(Z,Y)) - T(T(X, 2),Y)).

Proof. (i) From (2.6) we obtain that
T(FU.Y) = F(T(U.Y).

By putting U = FX in the previous relation and using (2.5) we get part ().
(i¢) From (2.6) we get

YZYyFX - YyYZFX = 0.
After applying the first Ricci type identity (Eq. (9) from [11]) we obtain that
~F(R(X,Y)Z) + R(X,Y)FZ = Vyvx) FZ =0, (2.7)
ie.
~F(R(X,Y)Z) + R(X,Y)FZ =0, (2.8)

where we used YF =0.
(#ii) To prove this part we use the second Ricci type identity (Eq. (13) from [11]), i.e.

YZYYFX — YyYZFX = JQ%(Z, Y)FX — F(é%(Z,Y)X) + YT(Y,Z)FX- (2.9)
1
By taking into account that YF =0, and YZYyFX — ngZFX = 0, equation (2.9) becomes

which completes the proof of part (éi).
(iv) By applying an appropriate Ricci type identity (Eq. (58") from [11]), one has

VzVyFX - VyYzFX = R(ZY)FX - F(R(Z,Y)X),

and using (2.6) we get (iv).
(v) From (2.6) and the definition of the covariant derivative of the third and fourth kind we get

YyFX = F(Z;(X, Y)) and YZFX = F(T;(Z,X)),
which further implies

V2YrFX = F(Y2T(X,Y)) + F(T(Z,T(X,Y))
and

VY2 FX = F(YyT(2,X)) + F(T(T(Z,X),Y)).
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On the other hand, the Ricci type identity (Eq. (56) from [12]) reads
YZYyFX - YyYZFX = {;Z(Z, Y)FX + F(]g%(Y, 2)X).
From the last three relations we get part (v). O
We denote the curvature tensor of type (0,4) by
JQ%(X,Y,Z, W) = g(]a%(X, YVZ,W), 6=1,...,4,
and the torsion tensor of type (0, 3) by
7;(X,Y, Z) = Q(X,?(Y, Z)).

Corollary 2.1. The curvature (0,4)-tensors 1;3, 0 = 1,...,4 and the torsion tensor 1; of type (0,3) of a
generalized hyperbolic Kihler space (M, g, F) satisfy the next relations:

(i) RX,Y,Z,FW) + R(X,Y,FZ,W) =0,
(i) R(X,Y,Z,FW)+ R(X,Y,FZ,W) =
(iii) R(X,Y,Z,FW)+ R(X,Y,FZ,W) =0
(iv) R(X.Y,Z,FW) + R(Y.X,FZ,W) = YyT(FW,X,2) = YxT(FW,2,Y) + T(FW,T(X.2),Y) ~
T(FW,X,T(Z,Y)),
(v) R(X,Y,Z,FW) = R(Y.X,Z,FW) = YyT(FW,X,Z) - YxT(FW,2,Y) + T(FW.T(X,2),Y) -
T(FW.X,T(Z,Y)).

Proof. The proof directly follows from Theorem 2.1. O

The relations between the curvature tensors {0%(9 =1,...,5) and the Riemannian curvature tensor R

corresponding to the symmetric linear connection VxY = %(Y XY—l—YyX ) are examined in [13], obtaining
1 1 1
1
- ZT(T(Za X)7 Y)v

R(X,Y)Z = R(X.Y)Z - %VXT(Z Y)+ VyT(Z X)— iT( (Z,Y),X)

1
1 1 1
1 1

R(X,Y)Z = R(X,Y)Z + %VX?( Y) + VyT(Z X) - iT( (Z,Y),X)

—_

+ 4 T(T(Z,X),Y) + %?({(K X),2);

W

R(X,Y)Z =R(X,Y)Z + izl’q(z, Y), X)+ i?(?(Z,X), Y).
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For an arbitrary tensor field B we will use the symbols ZC’A(-,-) and ZCS(_’.) to denote

> B(X,Y,Z)=B(X,Y,Z) - B(X,Z,Y),

CA(Y,Z)
and
Y B(X,Y,Z)=B(X,Y,Z)+ B(X,Z2Y),
CS(Y,2)
respectively.

Theorem 2.2. The Ricci tensors le%ic(X, Y)= ’I‘r(U — g(U,X)Y),H =1,...,5 on a generalized hyperbolic
Kdhler space (M, g, F), have the following properties:

. . 1 1
Rie(FX, FY) = —Rie(X,Y) + Tr(U - CA(EX:U) (5VU§(Y, X)+ S T(T(Y, X), U)))

1 1
+Tr (U > (EVU?(FY, FX) + {T(T(FY,FX), U))),
CA(FX,U)

Ric(FX, FY) = —Ric(X,Y) — Tr(U -y (—VUT(Y X)+ 1T( T(Y, X), U)))
2 2 CA(X,U) 41

1 1
—Tr (U -y (EVU?(FY, FX)+ [ T(T(FY, FX), U))),
CA(FX,U)

Ric(FX, FY) = —Rie(X,Y) + 5Tr<U - Y VUZI“(Y,X))

CS(U,X)
L (v Y, X),0)) + (U VuT(FY, FX
_Zr< — Z 1(1(’ ), ))—|—§r( — Z Ul( ’ ))
CA(U,X) CS(U,FX)
1 1
- ZTr(U = T(T(FY, FX), U)) - 5Tr(U - T(T(X,U), ))
CA(U,FX)
1
— 5T (U= T(T(FX,0) ))
1
Ric(FX, FY) = —Ric(X,Y) + 5Tr<U = Y VT, X))
CS(U,X)
L (v (T, X),0)) + 21 (U VuT(FY, FX
_Zr( — Z 1(1( ) )a ))"’5 I‘( — Z Ul( ) ))
CA(U,X) CS(U,FX)

_ iTr(U N CA%:FX)T(T(FY, FX), U)) + Tr(U = T(T(X,0), ))

1
ST (U = T(T(FX,0), FY)),
1
Ric(FX, FY) = —Ric(X,Y) + ZT&r(U - CA§(UX){(?(Y7X), U))

1
+ 1Tr(U — Y T(I(FYFX), U)).
CA(U,FX)
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Proof. The main idea of the proof is to use the relations between the curvature tensors 19% (#=1,...,5) and

the Riemannian curvature tensor R and the well-known property of the Ricci tensor on a usual hyperbolic
Kahler space.
From (2.10) it follows that

. , 1
Ric(Y, Z) = Ric(Y, Z) + 5I&r(U = Y VuT(Z,Y))
CA(Y,U)

1
+{T(U = Y T(T(ZY).0),
CA(Y,U)

hence

1
Ric(FX, FY) = Ric(FX, FY) + §Tr(U - > VuT(FY,FX))
CA(FX,U)

1
+ ZTr(U - > T(T(FY,FX),U)).
CA(FX,U)

The Ricci tensor satisfies [19]
1
Rie(FX, FY) = —Ric(X,Y) = —Rie(X,Y) + ;Tr(U = Y VuT(¥.X))
CA(X,U)

1
JrZTr(U% > T(T(Y,X),U)).
CA(X,U)

From the last two relations we obtain the proof of the first statement of this theorem. The verification of
the other statements of this theorem is left to the reader. 0O

By taking the cyclic sum of the relations between Ricci tensors from Theorem 2.2 we obtain Corollary 2.2.

Corollary 2.2. The Ricci tensors IG{iC(X, Y) = Tr(U — IO%(U,X)Y),H =1,...,5 on a generalized hyperbolic
Kdhler space (M, g, F) have the following properties:

> Ric(FX, FY) - > Ric(X,Y) ~ —Tr(U — T(T(FX,U),FY))
CS(X,Y) CS(X)Y)

—%Tr(U—>T( (X,U0),Y)),

> Ric(FX, FY) - > Ric(X,Y) — —TY(U ~+ T(T(FX,U),FY))
CS(X,Y) CS(X,Y)

f%Tr(U%T( (X,U),Y)),

> Rie(FX,FY)=- > Ric(X,Y)- 1T]r(U — T(T(FX,U),FY))
CS(X.,Y) CS(X,Y) ’ 2
- —Tr(U - T(T(X,0), Y)),

> Rie(FX,FY)=- Y Ric(X,Y) + §Tr(U ~ T(T(FX,U),FY))
CS(X,Y) CS(X,Y)
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£ 20U - T ) Y),

}:fmFXFY X:RmXYH—ﬁW%T(WXU) Y))
CS(X,Y) CS(X,Y)

1
+2ﬂwaT(aU)»
3. Holomorphically projective mappings between generalized hyperbolic Kahler spaces

As in the case of classical (elliptic) generalized Kéahler spaces, a holomorphically planar curve in a gen-
eralized hyperbolic Kdhler space is determined by an ODE of second order in the Euler form.

Definition 3.1. [19,21] A curve [ : I — M in a generalized hyperbolic Kéahler space (M, g, F') satisfying the
regularity condition A(t) = dl t) #0,t € 1, is called a holomorphically planar curve if for some functions p;
and po of a parameter ¢ the followmg ODE holds

VamAlt) = p1(0A(L) + p2 (1) FA(L),
where V denotes the Levi-Civita connection corresponding to the symmetric part g of the metric g.

Let (M,g,F) and (M,g, F) be two generalized hyperbolic Kéhler spaces of dimension n (n > 2), such
that M and M are diffeomorphic under the diffeomorphism f : M — M. We can consider the common
coordinate system on M and M with respect to f. In this coordinate system the corresponding points p € M
and f(p) € M have the same coordinates. Therefore we can suppose M = M and we can put

P=V -V,
1 1 1

where If is a tensor field of type (1,2), called the difference tensor of the linear connections ? and Y with

respect to the mapping f.

Definition 3.2. [19,21] Let (M, g, F) and (M, g, F) be two generalized hyperbolic Kéhler spaces of dimension
n (n > 2). A diffeomorphism f : M — M is called a holomorphically projective mapping if each holomor-
phically planar curve in (M, g, F) is mapped onto a holomorphically planar curve in the space (M, g, F).

It is not difficult to prove that if a mapping f : M — M is holomorphically projective, then the structure
F is preserved. Also, the next theorem holds.

Theorem 3.1. [19.21] Let (M, g, F) and (M,g, F) be two generalized hyperbolic Kéihler spaces of dimension
n (n > 2). A diffeomorphism f : M — M is a holomorphically projective mapping if and only if

]f(X, Y)=¢v(X)YY +v(VX +(FX)FY +¢(FY)FX +&£(X,Y), (3.1)
where X, Y € T,(M), v is a linear form and £ is an anti-symmetric tensor field of type (1,2).
In the tensor index notation, (3.1) reads
Tl =Tl + 9l + Yp FOF) + &, (3.2)

where F?j and F?j are generalized Cristoffel symbols of the second kind, 1; is a covector and f{; is an
anti-symmetric tensor.
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Generalized Cristoffel symbols of the first kind satisfy the relations [17], page 11

Dijk + ik = gigke» Lijk + Thij = gik,j - (3.3)
Therefore,
lglk = 19192 gijk = lglg” (Tij + Tjix) = lg(T%, + )
i.e.
9l &
Gk _pp
20gl

Analogously, by using the second relation in (3.3) one can prove that [17]

9l k

< — Fp
2gf
which further implies
7;%1) = I‘Zp — ng =0. (3.4)

Anti-symmetrization in (3.2) with respect to i and j yields

1= — 1
ho_ h h h h
i = 5T —T5) = 5 (0% = T5)- (3:5)
From the previous two relations one concludes that
1 —
P o_ P D _
=3[ - Th) =0 (3.6)

By contracting relation (3.2) with respect to h and j and using (3.6) and F} = 0, we obtain that
7, — T, = (n+2)¢;. (3.7)

Now, from (3.2), (3.5) and (3.7) we have

1
h h h s
rh — _(F”.d- + 1?6, +ngF(€Fj))

. n42\v P 2 (3 8)
=h L —pch \ 70 sh , T h .
=Ty- (T:07 +Tp;00 + TLFGE),

where ij signifies a symmetrization with division.
According to the fact that the affinor structure F' is preserved under a holomorphically projective map-
ping, we have proved the next theorem.

Theorem 3.2. Let (M, g, F) and (M,q, F) be two generalized hyperbolic Kihler spaces of dimensionn (n > 2)
and f: M — M be a holomorphically projective mapping, then the geometric object

1
h h h h
UG~ o (U507 + 13507 + TG FGE ) (3.9)

is invariant with respect to the mapping f.



M.Z. Petrovié / J. Math. Anal. Appl. 447 (2017) 435-451 445

Remark 3.1. The geometric object (3.9) is analogous to the Thomas projective parameter in the theory of
geodesic mappings.

3.1. Equitorsion holomorphically projective mappings

Equitorsion holomorphically projective mappings between generalized (classical) Kéahler spaces were con-
sidered in the papers [22-24]. In this subsection we shall consider equitorsion holomorphically projective
mappings between generalized hyperbolic Kahler spaces.

Definition 3.3. A mapping f : M — M between generalized hyperbolic Kihler spaces is said to be an

equitorsion mapping if it preserves the torsion 71’, ie. 11’ = T

If f: M — M is an equitorsion holomorphically projective mapping between generalized hyperbolic
Kahler spaces, then the anti-symmetric tensor field £ from (3.1) vanishes identically. Indeed,

26(X,Y) = P(X,Y) - P(Y, X)

VXY) = YY) = T X) + TOX)
=T

(X,Y) - I;(X7 Y)=0.
Thus the difference tensor If with respect to the mapping f is a symmetric bilinear form given by
lf(X, Y)=9(X)Y +y(V)X +(FX)FY +¢(FY)FX. (3.10)

Theorem 3.3. Let (M, g, F) and (M,g, F) be two generalized hyperbolic Kéhler spaces and f : M — M be
an equitorsion holomorphically projective mapping, then the geometric objects given by

f%k §Uk+ iz{( @w Sh(R U—Qm+ﬁﬂ§mq—%wﬂ
Fk( ng)Fp+Fh( ka)
- Fﬁ(( ~ Qu)FL ~ (B~ Qu)FY) (3.11)
+(-1)~ 1(T I3, +6hF;sT‘;k
+ BT 5 FY T FUTY Fh)], 0=1,2,

ps™ q

where

psljz n—2 1Ja st 1%q- TS

<_1>0_1 D D s T
Qi = T(zré T s F + —FqT T8, F)
6

2n — 2 2
—5 Db Fy T3, F + — T I T F)
2 TS S T
+ 5 (FTL,Fj U5 + DL FYTLET) ) )) 0=1,2,

are invariant with respect to the mapping f.
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Proof. The curvature tensors 11% and ? of the generalized hyperbolic Kihler spaces (M, g, F) and (M, g, F),

respectively, satisfy the relation [15]

(3.12)
Let us denote
VX Y) = Yy y(X) + 9(X)¢(Y) + (FX)Y(FY).
Substituting (3.10) into (3.12) we obtain that
R(X,Y)Z = R(X,Y)Z +Y)(Z,X) - X¢(Z V+2Z > zp (X,Y)
! cAx,y) !
— FXY(FZ,Y)+ FYY(FZ,X) - FZ(Y(FX,Y) — w(FY, X))
1 1 1
FT(Y,X)(Z) + ZO(T(Y. X)) + F(D(Y. X)0(FZ) + 6(F(T(Y. X)) FZ.
The last relation in local coordinates reads
R”k ]1%}:‘]‘19 + 5?11%% - 51}511%‘ + 5?1{’[%]
= FQps Y + B ooy = FY (i FY = Gy ) (3.13)
+ Tkt + 60 T + Fp Thtba Y + Up FY TG P
Contracting on the indices h and k in (3.13) and by using (3.4) we get
Rij = Rij =i + iy + P FUEY
(3.14)

P P r q r
+ wp?ji + Fg?jqwrFi + d’ngI;eri )

where ]1%” = }Elsz and ?ij = ?’;jp are components of the Ricci tensors 111ic(X7 Y) and Elic(X7 Y'), respec-

tively.

Anti-symmetrization in (3.14) with respect to the indices ¢ and j gives

(n+ 2)1/’[11 = [m] R[ij] + 21/’1)??1‘ + qujl“‘;’quFT Fqu wTFT

(3.15)
+ U FY T — 0 FTS FY
By symmetrization in (3.14) with respect to ¢ and j we obtain that
Riijy = Baij) = 1) + 2000 FYE] + BTS00 FY + FYT5 0, Y 16)

U FPTYF + 0, FYTL ),

and by composing with F} and FJ in the last relation we obtain that
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?(pq)Fingq = ll%(pq)Fingg - m/’(pq)FpF + 295 + FpTrijer (3.17)
+ Fg’ll—‘qu[’le + prg?ng]r + prgll—’ngzr'
In local coordinates, the first relation from Corollary 2.2 reads
R, FPF! = —R;. 1TpT F'F? 1Tqu (3.18)
1)t Hj T TN T gy reypsti Yy T 9 iq pio )
and the same relation is valid on the space (M, g, F), that is
R, F F!=—-R 1w T4 F,F, _ Lo (3.19)
1Tt T TRWE) T ey psti 971ty pi ’

By using the fact that the torsion tensor and the affinor structure F' are preserved under an equitorsion
holomorphically projective mapping and by substituting (3.18) and (3.19) into (3.17) we obtain that

~Rei) == Ry = oo FUFY + 20 + FYT3 Fji + FYTI,E
(3.20)
A EYTYET 4 4, FITY .

Summing (3.16) and (3.20) yields

1 T T
Vo FLF] = —bay) + o5 (BT B + b FY T, F G

r q r
+ Fpr,pF] Vi + ¢pF”TMF] )(z‘j)'

After substituting (3.21) into (3.20) we get

(n+ 20y = Buag) — Boag) + 7 (FITS e Y + 0, FUTHET)
) (3.22)
s (FPT, F s+ FYTLEY )

Now, by summing (3.15) and (3.22) we get

(n+2)i; = Rij — Rij + 24, T5; +

P T
ng{“iqd)er
2n

prp??rFi" + —n — prFg’J;;?TFjT
2 T T
+ (FpT;%ij i+ Py T ) i)
By using (3.7) the last relation can be written in the form

(n+ 2)11%‘ = @z‘j — ?ij + ?ij - ?ija (3.23)

where @Q;; is defined by
1
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1 S 2 P S T P S Id

Q= — (21“pszlrﬂ + FQTqursFl n —FqTZqFTsF
Mm—2_, o2 i

+ T FYTYF] + T} FITYLF) (3.24)

n —

Fqu O B FPTIF

+n72( pstq i ])(ij))’

and @ij is defined in the same manner for the space (M, g, 7)

1
Finally, after changing (3.7) and (3.23) in (3.13), we get

ph. =P

mk z]k?

where the geometric object P U 18 defined by (3.11) and Ph U 18 defined in the same manner. Since the

generalized Christoffel symbolb are not tensors, this geometrlc object is not a tensor. Analogously, we can
consider the case § =2. O

Theorem 3.4. Let (M, g, F) and (M,g, F) be two generalized hyperbolic Kéhler spaces and f : M — M be
an equitorsion holomorphically projective mapping, then the geometric objects given by

1 S S
Pz]k fef”k +— n+2 [ j ( — Qik — Tkops) + 5?(R[jk] - Q[jk] - r‘ffkr:ﬂs)]
_5k( Qw) ( QPJ)FP+Fh( ka )sz
- th(( QPJ) (ﬁpk - ka - ?kaZs)Ff)
h h s h s _
+TU TG+ TS + ThFITS B+ T F,frquj] 0= 3,4,

where

1 S T S T S
Qij:n—H(QszFpé—kT FIT3 = T FET FY

2n
T’“ Fp s Fq—i——T’” FPre Fl

T n — gs— T — 21 Jp gs—r
n+ 2 qs 2 s qs
T FYFITS, + —quF;’F rs),

are invariant with respect to the mapping f.

Proof. The curvature tensors l? and E of the generalized hyperbolic Kéhler spaces (M, g, F) and (M, g, F),

respectively, satisfy the relation [15]

R(X,Y)Z =R(X,Y)Z+VxP(Z,Y) - VyP(X,Z)+ P(X,P(Z,Y))
3 3 271 171 1 1 (325)
- ?(I?(X7Z)7Y) +,{(]13(X3Y)7Z)

Let us denote
zg(X, Y) = Vyo(X) + o (X)9(Y) + (FX)P(FY), 6 = 1,2.

Then, by using the definition of the covariant derivative, we conclude that
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YXY) = (X Y) + Y(T(X,Y)). (3.26)

After substituting (3.10) into (3.25) and by using (3.26) we obtain that

RX,Y)Z=RX.V)Z+YY(Z,X)+YO(T(ZX)+2Z > (Y, X)
3 3 ! ! cax,y)t

+ ZH(T(, X)) = XY(Z,Y) = FXG(FZ,Y)
+ FYY(FZ,X) + FY(T(FZ, X)) = FZ(U(FX,Y) = $(FY, X))
+ FZY(T(FY, X)) + T(Y, Z)(X) + T(X, 2)¢(Y) + T(FY, Z)y(FX)
+ T(FX, Z)Y(FY).
The rest of the proof is analogous to the proof of Theorem 3.3. O

Theorem 3.5. Let (M, g, F) and (M, g, F) be two generalized hyperbolic Kéhler spaces and f : M — M be
an equitorsion holomorphically projective mapping, then the tensor given by

Plh= B+ —— [ = Rijof + Rind) — Ry FYF + RynFUF) + 2R, FYFY |, (3.27)
1s invariant with respect to the mapping f.

Proof. The curvature tensors }5% and ? of the generalized hyperbolic Kéhler spaces (M, g, F) and (M, g, F),

respectively, are related by [15]

BX,Y)Z = BX,V)Z + 5 (YxP(ZY) - Yy P(Z,X) + VxP(Y, 2) - Yy P(X,2)
+€(113(Z7Y)7X) - ?(Y,?(Z,X)) + If(Xaj?(Ya Z)) - ]f(]lj(X,Z),Y))

Since the mapping f is an equitorsion mapping, the bilinear form ]f is symmetric, therefore the last relation

can be rewritten as

B(X.Y)Z = BOXY)Z 4 (Yx + TPV Z) — L(Fy + ) P(X. 2)

+ P(P(Z,Y),X) ~ P(Y, P(Z, X))
ie.
E(X,Y)Z = éZ(X, Y)Z + VXIT(K Z) — Vyf(X, Z)
+ P(P(2,Y),X) ~ PY, P(Z, X))
After changing (3.10) in the last relation we obtain that
E(X, Y)Z = ]S%(X, NZ - XYY, Z)+YY(X,Z) - FXyY(Y,FZ) 3.25)

+FYY(X,FZ)+2y(X,FY)FZ,

where we have denoted
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P(X,Y) = Vyd(X) + p(X)P(Y) + P (FX)(FY).
In local coordinates, equation (3.28) reads
R = Bl — 00i + 0)bns — FRbjp FY + Fj'up FY + 20 FY FY' (3.29)

By contracting the last relation with respect to h and k we get

?ij = Rij — (n+2)vji. (3.30)
Plugging (3.30) in (3.29) we obtain that
h  _ ph
f;ijk = ];ijlm

where the tensor IE—:’Zk is defined by (3.27) and the tensor ?Zk is defined in the same manner. This proves

the theorem. 0O
4. Concluding remarks

In the case when the generalized (non-symmetric) Riemannian metric ¢ is symmetric i.e. has vanishing
skew-symmetric part g, a generalized hyperbolic Kéhler space reduces to a usual hyperbolic Kéhler space.
v

Then the curvature tensors lé%, 0 =1,...,5reduce to the Riemannian curvature tensor R and the geometric
objects Zg?jk, #=1,...,4 and the tensor ];Zk reduce to the paraholomorphic curvature tensor [19]
1
Pl = Rl + —— (B8} = Ruydl. + Ry FVF) — Ry FYE} + 2Ry FYFL).

All these invariant geometric objects can be quite interesting for further investigations.

We have already mentioned that there exist twelve curvature tensors which appeared in various Ricci
type identities obtained by Minci¢ in [11,12], and that he showed in [13] that five of them are linearly
independent. In this paper we started with the mentioned five linearly independent curvature tensors and
obtained one tensor I;Zk which is analogous to the paraholomorphic curvature tensor. An open question
is: Does there exist any other tensor which would be reduced to the paraholomorphic curvature tensor in
the usual hyperbolic Kéhler space and, if the answer is affirmative, which is the maximum number of such
tensors?
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