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For functions f(z) = z + a2z2 + a3z3 + · · · in various subclasses of normalized 
analytic functions, we consider the problem of estimating the generalized Zalcman 
coefficient functional φ(f, n, m; λ) := |λanam − an+m−1|. For all real parameters 
λ and β < 1, we provide the sharp upper bound of φ(f, n, m; λ) for functions f
satisfying Ref ′(z) > β and hence settle the open problem of estimating φ(f, n, m; λ)
recently proposed by Agrawal and Sahoo (2016) [1]. For all real values of λ, the 
estimations of φ(f, n, m; λ) are provided for starlike and convex functions of order α
(α < 1) which are sharp for λ ≤ 0 or for certain positive values of λ. Moreover, for 
certain positive λ, the sharp estimation of φ(f, n, m; λ) is given when f is a typically 
real function or a univalent function with real coefficients or is in some subclasses 
of close-to-convex functions.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

Let A be the class of all normalized analytic functions of the form f(z) = z+a2z
2 +a3z

3 + · · · defined on 
the open unit disc D. The subclass of A consisting of univalent functions is denoted by S. Let SR be the class 
of all functions in S with real coefficients. For α < 1, we denote by S∗(α) and K(α), the classes of functions 
f ∈ A satisfying Re

(
zf ′(z)/f(z)

)
> α and Re

(
1 + zf ′′(z)/f ′(z)

)
> α respectively. For 0 ≤ α < 1, these 

classes are subclasses of S and were first introduced by Robertson [22] in 1936. Later, for all α < 1, these 
classes were considered in [23,4]. The classes S∗ := S∗(0) and K := K(0) represent the classes of starlike and 
convex functions respectively. We denote the closed convex hulls of S∗(α) and K(α) by HS∗(α) and HK(α)
respectively. The class of typically real functions, denoted by T , consists of all functions in A which have 
real values on the real axis and non-real values elsewhere. Denote by P, the class of all analytic functions 
p(z) = 1 + c1z + c2z

2 + · · · defined on D such that Rep(z) > 0. The class PR consists of all functions in P
with real coefficients.
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In 1916, Bieberbach conjectured the inequality |an| ≤ n for f ∈ S. Since then, several attempts were 
made to prove the Bieberbach conjecture which was finally proved by de Branges in 1985. In 1960, as an 
approach to prove the Bieberbach conjecture, Lawrence Zalcman conjectured that |a2

n − a2n−1| ≤ (n − 1)2

(n ≥ 2) for f ∈ S. This led to several works related to Zalcman conjecture and its generalized version 
|λa2

n−a2n−1| ≤ λn2−2n +1 (λ ≥ 0) for various subclasses of S [18,20,6,16,5,14] but the Zalcman conjecture 
remained open for many years for the class S. However, for n ≤ 6, Krushkal [11] proved the conjecture for 
the class S by using holomorphic homotopy of univalent functions and with the similar geometric idea, he 
has recently proved it for all n ≥ 2 in his unpublished work [12].

In 1999, Ma [19] proposed a generalized Zalcman conjecture for f ∈ S that

|anam − an+m−1| ≤ (n− 1)(m− 1) (n ≥ 2,m ≥ 2)

which is still an open problem, however he proved it for the classes S∗ and SR. For λ ∈ R, let φ(f, n, m; λ) :=
|λanam−an+m−1| denote the generalized Zalcman coefficient functional over A. For β < 1, the class C(β) of 
close-to-convex functions of order β consists of f ∈ A such that Re

(
zf ′(z)/

(
eiθg(z)

))
> β for some g ∈ S∗

and θ ∈ R. For 0 ≤ β < 1, the class C(β) is a subclass of S and was considered in [17] in a more general 
form. The class of close-to-convex functions is denoted by C := C(0), for details, see [8]. Let F1(β) and 
F2(β) be the subclasses of C(β) (β < 1) corresponding to θ = 0 and the starlike functions g(z) = z/(1 − z)
and g(z) = z/(1 − z2) respectively. For β < 1, let R(β) denote the class of functions f ∈ A satisfying 
Ref ′(z) > β. For 0 ≤ β < 1, R(β) is a subclass of S and was first introduced in [9]. Here, we are interested 
in R(β) for all values of β (β < 1). Recently, for some positive values of λ and 0 ≤ β < 1, Agrawal and 
Sahoo [1] gave the sharp estimation of φ(f, n, m; λ) for the classes R(β) and HK.

In this paper, for all real values of λ, we give the sharp estimation of φ(f, n, m; λ) for f ∈ R(β) (β < 1). 
Also, for f ∈ S∗(α) and f ∈ K(α) (α < 1), the estimations of φ(f, n, m; λ) are given for all real values of λ
which are sharp when λ ≤ 0 or when λ is taking certain positive values. Moreover, for certain positive values 
of λ, the sharp estimations of φ(f, n, m; λ) are provided for the classes T , SR, F1(β) and F2(β) (β < 1).

We prove our results either by applying the well-known estimation of |λcncm − cn+m| for p(z) = 1 +∑∞
n=1 cnz

n ∈ P or by applying some characterization of functions in the class P and that of typically real 
functions in terms of some positive semi-definite Hermitian form, see [13,21]. Earlier, such characterization 
of functions with positive real part in terms of some positive semi-definite Hermitian form [13] was used in 
[3,2,21]. It should be pointed out that in the literature, for various subclasses of S which are invariant under 
rotations, the estimation of φ(f, n, n; λ) is usually obtained by using the fact that the expression φ(f, n, n; λ)
is invariant under rotations and by an application of the Cauchy–Schwarz inequality which requires λ to be 
non-negative. However, we are able to give the sharp estimation of φ(f, n, m; λ) for various subclasses of A
when λ ≤ 0. Moreover, for certain positive λ, our technique is giving the estimation of φ(f, n, m; λ) when 
f is in some subclasses of A which are not necessarily invariant under rotations. We need the following 
lemmas to prove our results.

Lemma 1.1. [21, Lemma 2.3, p. 507] If p(z) = 1 +
∑∞

k=1 ckz
k ∈ P, then for all n, m ∈ N,

|μcncm − cn+m| ≤
{

2, 0 ≤ μ ≤ 1;
2|2μ− 1|, elsewhere.

The result is sharp.
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Lemma 1.2. [13, Theorem 4(b), p. 678] A function p(z) = 1 +
∑∞

k=1 ckz
k ∈ P if and only if

∞∑
j=0

⎧⎨
⎩
∣∣∣∣∣2zj +

∞∑
k=1

ckzk+j

∣∣∣∣∣
2

−
∣∣∣∣∣
∞∑
k=0

ck+1zk+j

∣∣∣∣∣
2
⎫⎬
⎭ ≥ 0

for every sequence {zk} of complex numbers which satisfy lim supk→∞ |zk|1/k < 1.

Lemma 1.3. [13, Theorem 4(f), p. 678] A function f(z) = z +
∑∞

k=2 akz
k ∈ T if and only if

∞∑
j=0

⎧⎨
⎩
∣∣∣∣∣2zj +

∞∑
k=1

(ak+1 − ak−1)zk+j

∣∣∣∣∣
2

−
∣∣∣∣∣
∞∑
k=0

(ak+2 − ak)zk+j

∣∣∣∣∣
2
⎫⎬
⎭ ≥ 0

for every sequence {zk} of complex numbers which satisfy lim supk→∞ |zk|1/k < 1.

Lemma 1.4. Let ν(t) be a probability measure on [0, 2π]. Then for all n, m ∈ N,

∣∣∣∣∣∣λ
2π∫
0

eint dν(t)
2π∫
0

eimt dν(t) −
2π∫
0

ei(n+m)t dν(t)

∣∣∣∣∣∣ ≤
{

1, 0 ≤ λ ≤ 2;
|λ− 1|, elsewhere.

Proof. The function p(z) = 1 +
∑∞

n=1 cnz
n given by the Herglotz representation formula [10, Corollary 3.6, 

p. 30],

p(z) =
2π∫
0

1 + eitz

1 − eitz
dν(t)

is clearly in P. On comparing the coefficients on both sides in the above equation, we obtain

cn = 2
2π∫
0

eint dν(t) (n ≥ 1).

An application of Lemma 1.1 to the function p gives
∣∣∣∣∣∣2μ

2π∫
0

eint dν(t)
2π∫
0

eimt dν(t) −
2π∫
0

ei(n+m)t dν(t)

∣∣∣∣∣∣ ≤
{

1, 0 ≤ μ ≤ 1;
|2μ− 1|, elsewhere.

On substituting λ = 2μ, the desired estimates follow. �
For λ = 2, the above lemma is proved in [19, Lemma 2.1, p. 330].

2. Generalized Zalcman conjecture for S∗(α) and K(α)

For α < 1, define a function f1 : D → C by

f1(z) := z

(1 − z)2(1−α) = z +
∞∑

Anz
n, (1)
n=2
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where

An = 1
(n− 1)!

n−2∏
j=0

(
2(1 − α) + j

)
. (2)

It is known that f1 and its rotations work as extremal functions for the coefficient bounds of functions in 
the class S∗(α) [23, Theorem 5.6, p. 324]. Therefore, they could be the expected extremal functions for the 
upper bound of the generalized Zalcman coefficient functional φ(f, n, m; λ) when f ∈ S∗(α). This is shown 
to be true by the following theorem at least when λ ≥ 2An+m−1/(AnAm) or λ ≤ 0.

Theorem 2.1. If f(z) = z +
∑∞

n=2 anz
n ∈ HS∗(α) (α < 1), then for all n, m = 2, 3, . . .,

|λanam − an+m−1| ≤

⎧⎨
⎩An+m−1, 0 ≤ λ ≤ 2An+m−1

AnAm
;

|λAnAm −An+m−1|, elsewhere,

where An is given by (2). The second inequality is sharp for the function f1 and its rotations where f1 is 
given by the equation (1).

Proof. Since f ∈ HS∗(α) (α < 1), there exists a probability measure ν(t) on [0, 2π] [4, Theorem 3, p. 417]
such that

f(z) =
2π∫
0

z

(1 − eitz)2(1−α) dν(t).

On comparing the coefficients on both sides, we obtain

an = An

2π∫
0

ei(n−1)t dν(t) (n ≥ 2),

where An is given by the equation (2). This implies

|λanam − an+m−1|

= An+m−1

∣∣∣∣∣∣λ
AnAm

An+m−1

2π∫
0

ei(n−1)t dν(t)
2π∫
0

ei(m−1)t dν(t) −
2π∫
0

ei(n+m−2)t dν(t)

∣∣∣∣∣∣ .
An application of Lemma 1.4 to the above equation yields

|λanam − an+m−1| ≤

⎧⎨
⎩An+m−1, 0 ≤ λ ≤ 2An+m−1

AnAm
;

|λAnAm −An+m−1|, elsewhere.
�

For m = n, we have the following sharp result.

Corollary 2.2. If f(z) = z +
∑∞

n=2 anz
n ∈ HS∗(α) (α < 1), then for all n = 2, 3, . . .,

∣∣λa2
n − a2n−1

∣∣ ≤
⎧⎨
⎩A2n−1, 0 ≤ λ ≤ 2A2n−1

A2
n

;

|λA2 −A |, elsewhere,
n 2n−1
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where An is given by (2). The second inequality is sharp for the function f1, given by the equation (1), and 
its rotations whereas the first inequality is sharp for the function of the form

f(z) =
2(n−1)∑
k=1

mkgk(z), (3)

where 0 ≤ mk ≤ 1, 
∑n−1

k=1 m2k =
∑n−1

k=1 m2k−1 = 1/2, gk(z) = e−iθkf1(eiθkz) and θk = (2k + 1)π/(2n − 2).

For α = 0 and λ ≥ 0, the above corollary reduces to the inequalities mentioned in [5, p. 474]. It is a 
well-known result given by Alexander that a function f ∈ A is in K if and only if zf ′(z) ∈ S∗. This implies 
that for α < 1, f ∈ HK(α) if and only if zf ′(z) ∈ HS∗(α) and therefore, we have the following deduction 
from the Theorem 2.1.

Corollary 2.3. If f(z) = z +
∑∞

n=2 anz
n ∈ HK(α) (α < 1), then for all n, m = 2, 3, . . .,

|λanam − an+m−1| ≤

⎧⎪⎪⎨
⎪⎪⎩

An+m−1

n + m− 1 , 0 ≤ λ ≤ 2nmAn+m−1

(n + m− 1)AnAm
;∣∣∣∣λAnAm

nm
− An+m−1

n + m− 1

∣∣∣∣ , elsewhere,

where An is given by the equation (2). The second inequality is sharp for the function f2 and its rotations, 
where

f2(z) =

⎧⎨
⎩

(1 − z)−(1−2α) − 1
1 − 2α , α �= 1/2;

− log (1 − z), α = 1/2.
(4)

For α = 0 and λ ≥ 2, the above corollary reduces to [1, Theorem 2.1, p. 3]. For m = n, we have the 
following sharp result which has been proved in [16] by maximizing the real-valued functional Re(λa2

n −
a2n−1) for the case λ ≥ 0.

Corollary 2.4. If f(z) = z +
∑∞

n=2 anz
n ∈ HK(α) (α < 1), then for all n = 2, 3, . . .,

∣∣λa2
n − a2n−1

∣∣ ≤
⎧⎪⎪⎨
⎪⎪⎩

A2n−1

2n− 1 , 0 ≤ λ ≤ 2n2A2n−1

(2n− 1)A2
n

;∣∣∣∣λA2
n

n2 − A2n−1

2n− 1

∣∣∣∣ , elsewhere,

where An is given by the equation (2). The second inequality is sharp for the function f2, given by (4), and 
its rotations whereas the first inequality is sharp for the function given by the equation (3) with gk(z) =
e−iθkf2(eiθkz).

If λ ≥ 0, the above corollary reduces to [14, Theorem 3.3] and [16, Theorem 4] for α = −1/2 and α = 1/2
respectively. Also, for α = 0 and 0 ≤ λ ≤ 2, the above corollary was proved in [6, Theorem 3, p. 3].

3. Generalized Zalcman conjecture for the class R(β) and for typically real functions

For λ ≥ nm/((1 − β)(n + m − 1)) and 0 ≤ β < 1, the second inequality of the following theorem 
has been recently proved by Agrawal and Sahoo [1] and they proposed it as an open problem for 0 < λ <
nm/((1 −β)(n +m −1)) which has now been settled in the following theorem by making use of the Hermitian 
form for functions in the class P.
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Theorem 3.1. If f(z) = z +
∑∞

n=2 anz
n ∈ R(β) (β < 1), then for all n, m = 2, 3, . . .,

|λanam − an+m−1| ≤

⎧⎪⎪⎨
⎪⎪⎩

2(1 − β)
n + m− 1 , 0 ≤ λ ≤ nm

(1 − β)(n + m− 1) ;∣∣∣∣4λ(1 − β)2

nm
− 2(1 − β)

n + m− 1

∣∣∣∣ , elsewhere.

The result is sharp.

Proof. Since f ∈ R(β), 
(
f ′(z) − β

)
/(1 − β) = 1 +

∑∞
n=1(n + 1)an+1/(1 − β)zn ∈ P which gives

|an| ≤
2(1 − β)

n
(n ≥ 2). (5)

Clearly, the bounds are sharp for the function f0 : D → C defined by

f0(z) = (1 − β)
z∫

0

1 + t

1 − t
dt + βz. (6)

For fixed n, m = 2, 3, . . . , choose the sequence {zk} of complex numbers by zn−2 = λ(1 − β)am, zn+m−3 =
−n(1 − β)/(n + m − 1), zk = 0 for all k �= n − 2, n + m − 3. An application of Lemma 1.2 to the function 
(f ′ − β)/(1 − β) ∈ P gives

n2 |λanam − an+m−1|2

≤
∣∣∣∣
(

2λ(1 − β) − mn

n + m− 1

)
am

∣∣∣∣
2

−
∣∣∣∣ mn

n + m− 1am
∣∣∣∣
2

+ 4n2(1 − β)2

(n + m− 1)2

= 4λ(1 − β)
(
λ(1 − β) − mn

n + m− 1

)
|am|2 + 4n2(1 − β)2

(n + m− 1)2 .

By using the bounds given by (5) in the above inequality, we have

|λanam − an+m−1|2 ≤

⎧⎪⎪⎨
⎪⎪⎩

4(1 − β)2

(n + m− 1)2 , 0 ≤ λ ≤ nm

(1 − β)(n + m− 1) ;(
4λ(1 − β)2

nm
− 2(1 − β)

n + m− 1

)2

, elsewhere.

For 0 ≤ λ ≤ nm/
(
(1 − β)(n + m − 1)

)
, the inequality is sharp for the function

f(z) = (1 − β)
z∫

0

1 + tn+m−2

1 − tn+m−2 dt + βz.

For λ ≤ 0 or λ ≥ nm/
(
(1 − β)(n + m − 1)

)
, the inequality is sharp for the function f0 given by the 

equation (6). �
For β = 0 and 0 < λ ≤ 4/3, the above theorem was proved in [6] by maximizing the real valued functional 

Re(λa2
n − a2n−1) over R(β). Also, we have the following simple result.

Corollary 3.2. If the analytic function f(z) = z +
∑∞

n=2 anz
n satisfies Re(f(z)/z) > β (β < 1) in D, then 

for all n, m = 2, 3, . . .,
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|λanam − an+m−1| ≤

⎧⎨
⎩

2(1 − β), 0 ≤ λ ≤ 1
(1 − β) ;

2(1 − β) |2λ(1 − β) − 1| , elsewhere.

The result is sharp.

The following theorem generalizes [19, Theorem 3.1, p. 335] which was proved for λ = 1 by induction on 
n and m. Although, it can be proved by induction on n and m but here, we are giving it as an application 
of the Hermitian form for typically real functions.

Theorem 3.3. If f(z) = z +
∑∞

n=2 anz
n ∈ T and λ ≥ 1, then

(i) if n = 2 and m is even, the upper bound of |λanam − an+m−1| is
(a) 3 + (2λ − 1)(m − 2) for 1 ≤ λ ≤ 3/2,
(b) 2λm −m − 1 for λ ≥ 3/2;

(ii) if m = 2 and n is even, the upper bound of |λanam − an+m−1| is
(a) 3 + (2λ − 1)(n − 2) for 1 ≤ λ ≤ 3/2,
(b) 2λn − n − 1 for λ ≥ 3/2;

(iii) in the other cases, we have

|λanam − an+m−1| ≤ λmn− n−m + 1.

The bounds given by (i)(b), (ii)(b) and (iii) are sharp whereas the bounds in (i)(a) and (ii)(a) are sharp for 
λ = 1 or the case when n = 2 and m = 2.

Proof. For fixed n, m = 2, 3, . . ., choose the sequence {zk} of real numbers by zn−2 = λam, zn+m−3 = −1, 
zk = 0 for all k �= n − 2, n + m − 3. Since f ∈ T , |an| ≤ n (n ≥ 2). So, by using Lemma 1.3 to the function 
f ∈ T , we have

|(λanam − an+m−1) − (λan−2am − an+m−3)|2 ≤ |(2λ− 1)am + am−2|2 − |am − am−2|2 + 4

= 4λ(λ− 1)a2
m + 4λamam−2 + 4

≤ 4(λm− 1)2. (7)

Since f ∈ T , therefore f(z) =
(
z/(1 − z2)

)
p(z) for some p(z) = 1 +

∑∞
n=1 cnz

n ∈ PR. This gives

a2k = c1 + c3 + · · · + c2k−1 and a2k+1 = 1 + c2 + c4 + · · · + c2k. (8)

By [5, Theorem 1, p. 468], we have λa2
2 − a3 ≤ 4λ − 3. Clearly, λa2

2 − a3 ≥ −a3 ≥ −3. Also, we observe that 
1 ≤ λ ≤ 3/2 is equivalent to 1 ≤ 4λ − 3 ≤ 3. Therefore, we have

|λa2
2 − a3| ≤

{
3, for 1 ≤ λ ≤ 3/2,
4λ− 3, for λ ≥ 3/2.

(9)

The first inequality in (9) is sharp for the function f(z) = z(1 + z2)/(1 − z2)2 and the second inequality 
holds for the Koebe function k(z) = z/(1 − z)2. If n = 2 and m = 2k (k ≥ 2), then

|λa2am − am+1| = |λa2a2k − a2k+1|
= |λc1(c1 + c3 + · · · + c2k−1) − (1 + c2 + c4 + · · · + c2k)|
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= |(λc21 − c2 − 1) + (λc1c3 − c4) + · · · + (λc1c2k−1 − c2k)|
= |(λa2

2 − a3) + (λc1c3 − c4) + · · · + (λc1c2k−1 − c2k)|. (10)

An application of Lemma 1.1 and the inequality (9) in the equation (10) gives

|λa2am − am+1| ≤
{

3 + (2λ− 1)(m− 2), for 1 ≤ λ ≤ 3/2;
2λm−m− 1, for λ ≥ 3/2.

This proves (i).
When m = 2 and n is even, the desired bounds in (ii) follow by interchanging the roles of n and m

in the equation (10) and in the above inequality. For λ = 1, the sharpness in (i)(a) and (ii)(a) follow for 
the function f(z) = z(1 + z2)/(1 − z2)2. Now, it is left to prove the inequality in the case (iii). Since 
λa2

4 − a7 ≤ 16λ − 7 [5, Theorem 1, p. 468] and clearly λa2
4 − a7 ≥ −7 ≥ −9 ≥ −(16λ − 7), we have

|λa2
4 − a7| ≤ 16λ− 7. (11)

For n = 4 and m = 2k (k ≥ 3), by proceeding as in the equation (10), we have

|λa4am − am+3|
= |λa4a2k − a2k+3|
= |λ(c1 + c3)(c1 + c3 + · · · + c2k−1) − (1 + c2 + c4 + · · · + c2(k+1))|

= |(λa2
4 − a7) + λc1(c5 + · · · + c2k−1) + (λc3c5 − c8) + · · · + (λc3c2k−1 − c2k+2)|.

An application of Lemma 1.1 and the inequality (11) in the above equation gives

|λa4am − am+3| ≤ 4λm−m− 3. (12)

Therefore, if n, m are even and n > 4, m > 2, then

|λanam − an+m−1| ≤ |(λanam − an+m−1) − (λan−2am − an+m−3)|
+ |(λan−2am − an+m−3) − (λan−4am − an+m−5)| + · · ·
+ |(λa6am − am+5) − (λa4am − am+3)| + |λa4am − am+3|. (13)

In view of (7), (11) and (12), we have

|λanam − an+m−1| ≤ (λm− 1)(n− 4) + 4mλ−m− 3 = λmn−m− n + 1.

Next, we consider the case when n is even and m is odd. If n = 2 and m = 2k+1 (k ≥ 1), then by proceeding 
similarly as in the equation (10) and applying Lemma 1.1, we obtain

|λa2am − am+1| = |λa2a2k+1 − a2k+2|
= |λc1(1 + c2 + c4 + · · · + c2k) − (c1 + c3 + · · · + c2k+1)|
≤ m(2λ− 1) − 1. (14)

If n = 2k (k > 1) and m is odd, then by proceeding as in the inequality (13) and applying (7) and (14), we 
have
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|λanam − an+m−1| ≤ 2(λm− 1)(k − 1) + m(2λ− 1) − 1 = λmn−m− n + 1.

Finally, we consider the case when n is odd. In this case, we have

|λanam − an+m−1| ≤ |(λanam − an+m−1) − (λan−2am − an+m−3)|

+ |(λan−2am − an+m−3) − (λan−4am − an+m−5)| + · · ·

+ |(λa3am − am+2) − (λa1am − am)| + |λa1am − am| (a1 = 1).

Using inequality (7) and the bound of |am| in the above inequality, we obtain

|λanam − an+m−1| ≤ λmn−m− n + 1.

The sharpness in the cases (i)(b), (ii)(b) and (iii) follow for the Koebe function k(z) = z/(1 − z)2. �
For λ = 1, the following result is given in [19, Theorem 3.2, p. 338].

Corollary 3.4. If f(z) = z +
∑∞

n=2 anz
n ∈ SR and λ ≥ 1, then for n, m = 2, 3, . . .,

|λanam − an+m−1| ≤ λmn− n−m + 1.

The result is sharp.

Proof. Since SR ⊂ S, by using [7, Theorem 2, p. 35], we have

|a2
2 − a3| ≤ 1. (15)

Also, SR ⊂ T , therefore for λ ≥ 1, by [5, Theorem 1, p. 468], we have λa2
2 − a3 ≤ 4λ − 3. For 1 ≤ λ ≤ 3/2, 

an application of the inequality (15) gives λa2
2 − a3 ≥ a2

2 − a3 ≥ −1 ≥ −(4λ − 3). Thus, in view of the 
inequality (9), we must have the sharp inequality

|λa2
2 − a3| ≤ 4λ− 3 (16)

where the sharpness follows for the Koebe function k(z) = z/(1 − z)2. For even m > 2, an application of 
(16) and Lemma 1.1 in the equation (10) gives

|λa2am − am+1| ≤ 2mλ−m− 1.

When m = 2 and n > 2 is even, the desired estimate follows by interchanging the roles of m and n in 
the above inequality. The other cases follow immediately from the Theorem 3.3. The result is sharp for the 
Koebe function. �
4. Generalized Zalcman conjecture for some subclasses of close-to-convex functions

Recall that the classes F1(β) and F2(β) (β < 1) are defined as follows:

F1(β) := {f ∈ A : Re
(
(1 − z)f ′(z)

)
> β}

and
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F2(β) := {f ∈ A : Re
(
(1 − z2)f ′(z)

)
> β}.

For 0 ≤ β < 1, the classes F1(β) and F2(β) are subclasses of C, the class of close-to-convex functions. Define 
the functions f1,β : D → C and f2,β : D → C, in F1(β) and F2(β) respectively, by

f1,β(z) = 2(1 − β)z
1 − z

+ (1 − 2β) log (1 − z) (17)

and

f2,β(z) = z(1 − β)
1 − z2 + β

2 log
(

1 + z

1 − z

)
.

Recently, for certain positive values of λ, the sharp estimation of φ(f, n, n; λ) over C is given in [15] by using 
the fact that C and φ(f, n, n; λ) are invariant under rotations. Note that the classes F1(β) and F2(β) are 
not necessarily invariant under rotations. For instance, F1(0) and F2(0) are not invariant under rotations 
since Re

(
(1 − z)

(
− if1,0(iz)

)′) = −2 at z = 1/2 − i/2 and (1 − z2)
(
− if2,0(iz)

)′ = (1 − z2)2/(1 + z2)2 maps 
D to the whole complex plane except the negative real axis. In this section, for certain positive values of λ, 
we give the sharp estimation of the generalized Zalcman coefficient functional φ(f, n, m; λ) when f ∈ F1(β)
or f ∈ F2(β).

Theorem 4.1. If μ ≥ max {nm/
(
(n + m− 1)(1 − β)

)
, nm/(n + m− 1)} and f(z) = z+

∑∞
n=2 anz

n ∈ F1(β)
(β < 1), then for all n, m = 2, 3, . . .,

|μanam − an+m−1| ≤ μBnBm −Bn+m−1,

where

Bn = 1 + 2(n− 1)(1 − β)
n

(n ≥ 2). (18)

The inequality is sharp.

Proof. Let g(z) := (1 − z)f ′(z). Since f ∈ F1(β), therefore

g(z) − β

1 − β
= 1 +

∞∑
n=1

cnz
n ∈ P,

which gives

cn = (n + 1)an+1 − nan
1 − β

(n ≥ 1)

and

an = 1 + (1 − β)(c1 + c2 + · · · + cn−1)
n

(n ≥ 2). (19)

Since |cn| ≤ 2 (n ≥ 1), the equation (19) gives

|an| ≤ Bn, (20)
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where Bn is given by the equation (18). For fixed n, m = 2, 3, . . . and λ ∈ R, choose the sequence {zk} of 
complex numbers by zn−2 = λ(1 − β)am, zn+m−3 = −(1 − β), zk = 0 for all k �= n − 2, n + m − 3. Then 
Lemma 1.2 yields

∣∣(λnanam − (n + m− 1)an+m−1
)
−

(
λ(n− 1)an−1am − (n + m− 2)an+m−2

)∣∣2
≤ |2λ(1 − β)am −mam + (m− 1)am−1|2 − |mam − (m− 1)am−1|2 + 4(1 − β)2

= 4λ(1 − β)
(
λ(1 − β) −m

)
|am|2 + 4(m− 1)λ(1 − β)Reamam−1 + 4(1 − β)2.

If λ ≥ max {m/(1 − β),m}, then by using equation (20) in the above inequality, we obtain

|
(
λnanam − (n + m− 1)an+m−1

)
−
(
λ(n− 1)an−1am − (n + m− 2)an+m−2

)
|2

≤ 4(1 − β)2 (λBm − 1)2 . (21)

For λ ≥ max {m/(1 − β),m}, consider

|λnanam − (n + m− 1)an+m−1|
≤ |

(
λnanam − (n + m− 1)an+m−1

)
−
(
λ(n− 1)an−1am − (n + m− 2)an+m−2

)
| + · · ·

+ |
(
2λa2am − (m + 1)am+1

)
−
(
λa1am −mam

)
| + |λa1am −mam| (a1 = 1).

By applying the inequality (21) and the bounds given by (20) in the above inequality, we have

(n + m− 1)
∣∣∣∣ λn

n + m− 1anam − an+m−1

∣∣∣∣ ≤ 2(1 − β) (λBm − 1) (n− 1) + (λ−m)Bm.

On substituting μ = λn/(n + m − 1) in the above inequality and simplifying, we obtain

|μanam − an+m−1| ≤ μBnBm −Bn+m−1

where μ ≥ max {nm/
(
(n + m− 1)(1 − β)

)
, nm/(n + m− 1)} and Bn is given by (18). The result is sharp 

for the function f1,β given by (17). �
For β = 0 and m = n, we have the following.

Corollary 4.2. If f(z) = z +
∑∞

n=2 anz
n ∈ F1(0) and μ ≥ n2/(2n − 1), then

|μa2
n − a2n−1| ≤

μ(2n− 1)2

n2 + 3 − 4n
2n− 1 .

The result is sharp.

Theorem 4.3. If μ ≥ max {nm/
(
(n + m− 1)(1 − β)

)
, nm/(n + m− 1)} and f(z) = z+

∑∞
n=2 anz

n ∈ F2(β)
(β < 1), then for all n, m = 2, 3, . . . except when both n and m are even,

|μanam − an+m−1| ≤ μCnCm − Cn+m−1

where, for n ≥ 2,

Cn =

⎧⎨
⎩

1 + (n− 1)(1 − β)
n

, if n is odd;

1 − β, if n is even.
(22)

The result is sharp.
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Proof. Let g(z) := (1 − z2)f ′(z). Since f ∈ F2(β), therefore (g(z) − β)/(1 − β) = p(z) for some p(z) =
1 +

∑∞
n=1 cnz

n ∈ P. This gives

cn = (n + 1)an+1 − (n− 1)an−1

1 − β
,

a2k = (1 − β)(c1 + c3 + · · · + c2k−1)
2k (23)

and

a2k+1 = 1 + (1 − β)(c2 + c4 + · · · + c2k)
2k + 1 . (24)

Since |cn| ≤ 2 (n ≥ 1), the equations (23) and (24) give

|an| ≤ Cn (25)

for all n ≥ 2, where Cn is given by the equation (22). Define a function f3 : D → C by

f3(z) = z(1 − β)
1 − z

+ β

2 log 1 + z

1 − z

= z + C2z
2 + C3z

3 + C4z
4 + C5z

5 + · · · . (26)

Clearly, the bounds given in (25) are sharp for the function f3.
For fixed n, m = 2, 3, . . . and λ ∈ R, choose the sequence {zk} of complex numbers by zn−2 = λ(1 −β)am, 

zn+m−3 = −(1 − β), zk = 0 for all k �= n − 2, n + m − 3. Then Lemma 1.2 yields

∣∣(λnanam − (n + m− 1)an+m−1
)
−

(
λ(n− 2)an−2am − (n + m− 3)an+m−3

)∣∣2
≤ |2λ(1 − β)am −mam + (m− 2)am−2|2 − |mam − (m− 2)am−2|2 + 4(1 − β)2

= 4λ(1 − β)
(
λ(1 − β) −m

)
|am|2 + 4(m− 2)λ(1 − β)Reamam−2 + 4(1 − β)2.

If λ ≥ max {m/(1 − β),m}, then an application of the equation (25) in the previous inequality gives

∣∣(λnanam − (n + m− 1)an+m−1
)
−
(
λ(n− 2)an−2am − (n + m− 3)an+m−3

)∣∣
≤ 2(1 − β) (λCm − 1) . (27)

If n = 2 and m = 2k + 1 (k ≥ 1), then

|2λa2am − (m + 1)am+1| = |2λa2a2k+1 − (2k + 2)a2k+2|

=

∣∣∣∣∣∣
λ(1 − β)
2k + 1 c1

⎛
⎝1 + (1 − β)

k∑
j=1

c2j

⎞
⎠− (1 − β)

k+1∑
j=1

c2j−1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(

λ

m
− 1

)
(1 − β)c1 + (1 − β)

k∑
j=1

(
λ(1 − β)

m
c1c2j − c2j+1

)∣∣∣∣∣∣ .
For λ ≥ max {m/(1 − β),m}, an application of Lemma 1.1 in the above equation gives

|2λa2am − (m + 1)am+1| ≤ (1 − β)
(
2λCm − (1 + m)

)
(28)
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where Cm is given by the equation (22). If n > 2 is even and m is odd, then

|λnanam − (n + m− 1)an+m−1|
≤ |

(
λnanam − (n + m− 1)an+m−1

)
−

(
λ(n− 2)an−2am − (n + m− 3)an+m−3

)
| + · · ·

+ |
(
4λa4am − (m + 3)am+3

)
−

(
2λa2am − (m + 1)am+1

)
| + |2λa2am − (m + 1)am+1|.

For λ ≥ max {m/(1 − β),m}, in view of (27) and (28), we have

(n + m− 1)
∣∣∣∣ λn

n + m− 1anam − an+m−1

∣∣∣∣ ≤ (1 − β)(λnCm − n−m + 1).

On substituting μ = λn/(n + m − 1) in the above inequality and simplifying, we obtain

|μanam − an+m−1| ≤ (1 − β)(μCm − 1)

where μ ≥ max {nm/
(
(n + m− 1)(1 − β)

)
, nm/(n + m− 1)}. Next, we consider the case when n is odd. In 

this case, we have

|λnanam − (n + m− 1)an+m−1|
≤ |

(
λnanam − (n + m− 1)an+m−1

)
−
(
λ(n− 2)an−2am − (n + m− 3)an+m−3

)
| + · · ·

+ |
(
3λa3am − (m + 2)am+2

)
−
(
λa1am −mam

)
| + |λa1am −mam| (a1 = 1).

For λ ≥ max {m/(1 − β),m}, use of the equation (27) and the bound of |am| in the above inequality give

(n + m− 1)
∣∣∣∣ λn

n + m− 1anam − an+m−1

∣∣∣∣ ≤ (n− 1)(1 − β) (λCm − 1) + (λ−m)Cm

where Cm is given by the equation (22). Substitution of μ = λn/(n +m − 1) in the previous inequality and 
simplification give

|μanam − an+m−1| ≤ μCnCm − Cn+m−1,

where μ ≥ max {nm/
(
(n + m− 1)(1 − β)

)
, nm/(n + m− 1)}. The sharpness follows for the function f3

given by the equation (26). �
In the case when μ ≥ max{nm/

(
(n + m − 1)(1 − β)

)
, nm/(n + m − 1)} and n, m are simultaneously 

even, the similar procedure which is used in the above theorem or in the Theorem 3.3 gives an upper bound 
(probably not sharp) of |μanam − an+m−1|, better than the one by the triangle inequality.

For β = 0 and m = n = 2k + 1 (k ≥ 1), we have the following.

Corollary 4.4. If f(z) = z +
∑∞

n=2 anz
n ∈ F2(0) and μ ≥ (2k + 1)2/(4k + 1), then

|μa2
2k+1 − a4k+1| ≤ μ− 1 (k ≥ 1).

The result is sharp.
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