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It is well known that the nonlinear Schrödinger (NLS) equation is a very important 
integrable equation. Ablowitz and Musslimani introduced and investigated an 
integrable nonlocal NLS equation through inverse scattering transform. Very 
recently, we proposed an integrable nonlocal modified Korteweg–de Vries equation 
(mKdV) which can also be found in the papers of Ablowitz and Musslimani. We 
have constructed the Darboux transformation and soliton solutions for the nonlocal 
mKdV equation. In this paper, we will investigate further the nonlocal mKdV 
equation. We will give its exact solutions including soliton and breather through 
inverse scattering transformation. These solutions have some new properties, which 
are different from the ones of the mKdV equation.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

As is well known, the nonlinear Schrödinger (NLS) equation

iqt(x, t) = qxx(x, t) ± 2|q(x, t)|2q(x, t) (1)

has been investigated deeply since the important work of Zakharov and Shabat [31]. In physics, the NLS 
equation can characterize plenty of models in varies aspects, such as nonlinear optics [6], plasma physics 
[18], deep water waves [8] and in pure mathematics like motion of curves in differential geometry [25]. The 
NLS equation can be derived from the theory of deep water wave, and also from the Maxwell equations.

It should be noted that the NLS equation is parity-time-symmetric (PT-symmetric), which has become 
an interesting topic in quantum mechanics [7], optics [24,26], Bose–Einstein condensates [9] and quantum 
chromodynamics [23], etc.
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A nonlocal NLS equation has been introduced by Ablowitz and Musslimani in [2]:

iqt(x, t) = qxx(x, t) ± 2q2(x, t)q∗(−x, t). (2)

It can be yielded from the famous AKNS system. Ablowitz and Musslimani gave its infinitely many conser-
vation laws and solved it through the inverse scattering transformation [2]. Eq. (2) has different properties 
from Eq. (1), e.g., Eq. (2) contains both bright and dark soliton [27] and solutions with periodic singu-
larities [2]. But, like the NLS equation (1), the nonlocal NLS equation (2) is also PT-symmetric. This is 
a very important property of the nonlocal NLS equation (2). This implies possible physical application 
of the nonlocal NLS equation (2) [10,20,21]. It has been demonstrated in [7] that in the spectrum of the 
Hamiltonian, the PT-symmetry has considerable influences. Recent progress on nonlinear wave dynamics in 
PT-symmetric systems is comprehensively reviewed in [16]. It has been shown that PT-symmetric systems 
possess new properties and phenomena apart from traditional conservative or dissipative systems. Ref. [22]
shows applications of PT-symmetry to invisibility. The constant-intensive wave solutions to a PT-symmetric 
system due to the advantage of the balance of gain and loss potentials and their modulation instability are 
discussed [22].

Very recently, motivated by the work of nonlocal NLS equation due to Ablowitz and Musslimani, we 
proposed and investigated a nonlocal modified Korteweg–de Vries (mKdV) equation in [14],

qt(x, t) + 6q(x, t)q(−x,−t)qx(x, t) + qxxx(x, t) = 0. (3)

Its Lax integrability, Darboux transformation, and soliton solution have been discussed in our paper [14]. 
We should remark here that the nonlocal mKdV equation (3) and its soliton solutions also appeared in 
the papers of Ablowitz and Musslimani [3,4]. The mKdV equation can be derived from Euler equation and 
has applications in varies physical fields [15,19]. Wadati used inverse scattering transformation to study 
mKdV equation and obtained explicit solutions, including N -solitons, multiple-pole solutions and solutions 
derived from PT-symmetric potentials [28–30]. Hirota also obtained N -solitons by bilinear technique and 
investigated multiple collisions of solitons [12]. The possible physical application of the nonlocal mKdV 
equation (3) is discussed in [20].

In this paper, we will investigate further the new integrable nonlocal mKdV equation (3). We will con-
struct exact solutions of the nonlocal mKdV equation (3) including soliton and breather through inverse 
scattering transformation. These solutions have some new properties, which are different from the ones of 
the mKdV equation. We remark here that the main content of this paper appeared in [13].

2. Inverse scattering transformation on nonlocal mKdV equation

The invention of inverse scattering transformation (IST) is due to the pioneering work of Gardner, Greene, 
Kruskal, and Miura for the Cauchy problem of KdV equation [11]. IST has been developed into a systematic 
method to construct exact solutions for integrable nonlinear systems [1,5,17]. In this section, we will give 
the IST for the nonlocal mKdV equation (3). Start with the following linear problem,

ϕx = Uϕ = (−ikσ3 + Q)ϕ, (4)

ϕt = Vϕ = (−4ik3σ3 + 4k2Q − 2ikV1 + V2)ϕ, (5)

with

σ3 =
(

1 0
0 −1

)
, Q =

(
0 q(x, t)

r(x, t) 0

)
,

V1 = (Q2 + Qx)σ3, V2 = −Qxx + 2Q3 + QxQ − QQx,
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where ϕ = (ϕ1(x, t), ϕ2(x, t))T, and k is the spectral parameter. The compatibility condition of system (4)
and (5) Ut − Vx + [U, V] = 0 leads to

qt(x, t) + qxxx(x, t) − 6q(x, t)r(x, t)qx(x, t) = 0,

rt(x, t) + rxxx(x, t) − 6q(x, t)r(x, t)rx(x, t) = 0.
(6)

Nonlocal mKdV equation (3) is obtained from system (6) under the reduction

r(x, t) = −q(−x,−t). (7)

Next, following the standard procedure of inverse scattering transformation (e.g. see [1,3,5]), we will give the 
inverse scattering for nonlocal mKdV equation. Assume q(x, t) and its derivatives with respect to x vanish 
rapidly at infinity. So does r(x, t). Fix time t = 0. Define φ(x, k) and φ̄(x, k) as a pair of eigenfunctions of 
Eq. (4), which satisfy the following boundary conditions,

φ(x, k) ∼
(

1
0

)
e−ikx, φ̄(x, k) ∼

(
0
1

)
eikx, x → −∞. (8)

Similarly, ψ(x, k) and ψ̄(x, k) are defined as another pair of eigenfunctions of Eq. (4) satisfying a different 
boundary conditions,

ψ(x, k) ∼
(

0
1

)
eikx, ψ̄(x, k) ∼

(
1
0

)
e−ikx, x → +∞. (9)

Note that, in this paper, we denote the complex conjugation of φ by φ∗ instead of φ̄. Furthermore, φ and 
ψ are required to be analytic in upper half k-plane, while φ̄ and ψ̄ are required to be analytic in lower half 
k-plane. For a solution u(x, k) and v(x, k) to Eq. (4), their Wronskian W [u, v] = u1v2 −u2v1 is independent 
of x. Since {φ, φ̄} and {ψ, ψ̄} are linearly dependent, we set

φ(x, k) = a(k)ψ̄(x, k) + b(k)ψ(x, k),

φ̄(x, k) = ā(k)ψ(x, k) + b̄(k)ψ̄(x, k).
(10)

The scattering data therefore can be expressed as

a(k) = W [φ(x, k), ψ(x, k)],b(k) = W [ψ̄(x, k), φ(x, k)],

ā(k) = W [ψ̄(x, k), φ̄(x, k)],b̄(k) = W [φ̄(x, k), ψ(x, k)].
(11)

One can prove that φeikx, ψe−ikx and a(k) are analytic functions in upper half k-plane; φ̄e−ikx, ψ̄eikx
and ā(k) are analytic functions in lower half k-plane [5]. Define ρ(k) = b(k)/a(k) and ρ̄(k) = b̄(k)/ā(k) as 
reflection coefficients. Assume km (m = 1, 2, · · · , N), the zeros of a(k) in upper half k-plane, are single, 
as well as k̄n (n = 1, 2, · · · , N̄) denoted as the zeros of ā(k) in lower half k-plane. When a(km) = 0, by 
Eq. (11), it yields that φ(x, km) and ψ(x, km) are linearly dependent, i.e. there exist constants γm such that 
φ(x, km) = γmψ(x, km). Similarly, denote γ̄n such that φ̄(x, ̄kn) = γ̄nψ̄(x, ̄kn). The normalizing coefficients 
{cm, ̄cn} are defined by

c2m = iγm (m = 1, 2, · · · , N); c̄2n = iγ̄n
˙ ¯ (n = 1, 2, · · · , N̄). (12)
ȧ(km) ā(kn)
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We should note here, under the reduction (7), the scattering data obeys b(k) = −b̄(−k∗), a(k) = a∗(−k∗)
and ā(k) = ā∗(−k∗), when q(x) is a real function. That means the eigenvalues are pure imaginary or appear 
in pairs {km, −k∗m} and {k̄n, −k̄∗n}.

Suppose eigenfunctions ψ and ψ̄ hold for the following form:

ψ(x, k) =
(

0
1

)
eikx +

∞∫
x

K(x, s)eiksds,

ψ̄(x, k) =
(

1
0

)
e−ikx +

∞∫
x

K̄(x, s)e−iksds,

(13)

where K(x, s) = (K1(x, s), K2(x, s))T and K̄(x, s) = (K̄1(x, s), K̄2(x, s))T, x < s. Substituting Eq. (13) into 
Eq. (4) yields that K1(x, s) and K2(x, s) satisfy a Goursat problem, which means the solution exists and is 
unique. Moreover, one can get the relations between potentials and K(x, y) and K̄(x, y):

q(x) = −2K1(x, x), r(x) = −2K̄2(x, x). (14)

Let

Fc(x) = 1
2π

∫ +∞
−∞ ρ(k)eikxdk, Fd(x) =

∑N
m=1 c

2
meikmx, F (x) = Fc(x) − Fd(x),

F̄c(x) = 1
2π

∫ +∞
−∞ ρ̄(k)e−ikxdk, F̄d(x) =

∑N̄
n=1 c̄

2
ne

−ik̄nx, F̄ (x) = F̄c(x) − F̄d(x).
(15)

Through Eq. (10), one arrives at Gel’fand–Levitan–Marchenko integral equation (GLM):

K̄(x, y) +
(

0
1

)
F (x + y) +

∞∫
x

K(x, s)F (s + y)ds = 0,

K(x, y) +
(

1
0

)
F̄ (x + y) +

∞∫
x

K̄(x, s)F̄ (s + y)ds = 0.

(16)

The time evolution of scattering data {ρ(k, t), ρ̄(k, t)} and normalizing coefficients {c2m, ̄c2n} are given by

ρ(k, t) = ρ(k, 0)e8ik3t, c2m(t) = c2m(0)e8ik3
mt (m = 1, 2, · · · , N),

ρ̄(k, t) = ρ̄(k, 0)e−8ik̄3t, c̄2n(t) = c̄2n(0)e−8ik̄3
nt (n = 1, 2, · · · , N̄).

(17)

Then, putting Eq. (17) into Eq. (15) and solving GLM Eq. (16) yields K(x, y) and K̄(x, y). Finally, q(x, t)
and r(x, t) are constructed.

Next, we consider the reflectionless inverse scattering problem for Eq. (3). Assume ρ(k, t) = ρ̄(k, t) ≡ 0. 
Denote IN or IN̄ is an N -dimensional or N̄ -dimensional unit matrix. Introduce N × 1 column vectors

g(x, t) = (g1(x, t), · · · , gm(x, t), · · · , gN (x, t))T, h(x, t) = (h1(x, t), · · · , hm(x, t), · · · , hN (x, t))T,

N̄ × 1 column vectors

ḡ(x, t) = (ḡ1(x, t), · · · , ḡn(x, t), · · · , ḡN̄ (x, t))T, h̄(x, t) = (h̄1(x, t), · · · , h̄n(x, t), · · · , h̄N̄ (x, t))T,

and matrix E(x, t) = (epj)N̄×N , where
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hm(x, t) = cm(t)eikmx, h̄n(x, t) = c̄n(t)e−ik̄nx, enm(x, t) = hm(x, t)h̄n(x, t)
km − k̄n

.

Suppose K1(x, y), K̄2(x, y) have the following expressions:

K1(x, y, t) = h̄(y, t)Tḡ(x, t), K̄2(x, y, t) = h(y, t)Tg(x, t). (18)

Start from the reflectionless GLM Eq. (16), we have

0 = K(x, y, t) −
(

1
0

)
F̄d(x + y, t) −

∞∫
x

⎡
⎣( 0

1

)
Fd(x + s, t) +

∞∫
x

K(x, z, t)Fd(z + s, t)dz

⎤
⎦ F̄d(s + y, t)ds,

and

0 = K1(x, y, t) − F̄d(x + y, t) −
∞∫
x

K1(x, z, t)

⎛
⎝ ∞∫

x

Fd(z + s, t)F̄d(s + y, t)ds

⎞
⎠ dz.

Note that
∞∫
x

Fd(z + s, t)F̄d(s + y, t)ds =
N∑
j=1

N̄∑
p=1

ic2j (t)c2p(t)
kj − k̄p

eikj(x+z)−ik̄p(x+y).

We thus obtain

N̄∑
n=1

c̄n(t)ḡn(x, t)e−ik̄ny −
N̄∑

n=1
c̄2n(t)e−ik̄n(x+y)

−
N̄∑

p=1

N∑
j=1

N̄∑
n=1

∞∫
x

c̄p(t)ḡp(x, t)e−ik̄pz
ic2j (t)c2n(t)
kj − k̄n

eikj(x+z)−ik̄n(x+y)dz = 0.

This gives

ḡn(x, t) − c̄n(t)e−ik̄nx +
N̄∑

p=1

N∑
j=1

ḡp(x, t)epj(x, t)enj(x, t) = 0, n = 1, 2, · · · , N̄ ,

which can be written in a vector form,

ḡ(x, t) − h̄(x, t) + E(x, t)E(x, t)Tḡ(x, t) = 0.

So, we obtain

K1(x, y, t) = h̄(y, t)Tḡ(x, t)

= h̄(y, t)T(IN̄ + E(x, t)E(x, t)T)−1h̄(x, t)

= tr
[
(IN̄ + E(x, t)E(x, t)T)−1h̄(x, t)h̄(y, t)T

]
.

Do the similar work on K̄2(x, y, t) for r(x, t). Finally, q(x, t) and r(x, t) can be written

q(x, t) = −2tr
[
(IN̄ + E(x, t)E(x, t)T)−1h̄(x, t)h̄(x, t)T

]
,

r(x, t) = −2tr
[
(I + E(x, t)TE(x, t))−1h(x, t)h(x, t)T

]
.

(19)

N
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When eigenvalues {km, ̄kn} are suitably selected and Eq. (19) satisfies the constraint (7), q(x, t) becomes 
the solution of Eq. (3) with initial data {cm(0), ̄cn(0)}.

We should emphasize here that the scattering problem for nonlocal mKdV equation is different from 
the one of the classical mKdV equation. Note that the spatial part of the Lax pair in the two equations 
are distinct. The boundary conditions of the eigenfunctions are derived from the spatial part of the Lax 
pair. Therefore, different eigenfunctions in the two equations leads to the different scattering data. So, the 
scattering data in the nonlocal case perform different properties with ones in the classical problem. The 
scattering coefficients a(k) and ā(k) for the nonlocal case have no relations, while ones of classical problems 
have. This leads to that eigenvalues kj , ̄kj are not related, either. The normalizing coefficients cj, ̄cj depend 
on the eigenvalues kj , ̄kj in the nonlocal case, which will be mentioned in the next section, rather than being 
free parameters in the classical case. In the classical case, eigenfunctions, which are analytic in the upper 
k-plane, are related to those being analytic in the lower k-plane. But, this property does not hold anymore 
in the nonlocal case. This is the most important difference between these two cases, which is also mentioned 
in [3]. Again, We emphasize that though the procedure described above of solving nonlocal mKdV equation 
seems same as the one for the classical mKdV equation, there exist important differences between these two 
cases.

At the last of this section, we present the conservation laws of Eq. (3). From the Lax pair of nonlocal 
mKdV equation (3), one can derive infinite number of conservation quantities {Hk}. Here, we list first few 
conservation laws as follows:

H1 =
+∞∫

−∞

q(x, t)q(−x,−t)dx, H2 =
+∞∫

−∞

q(x, t)qx(−x,−t)dx,

H3 =
+∞∫

−∞

[q(x, t)qxx(−x,−t) − q2(x, t)q2(−x,−t)]dx.

3. Some solutions and their analysis

In this section, we will derive soliton solutions of integrable nonlocal mKdV equation (3) from the explicit 
formula (19).

Case 1. One-soliton solutions
Let N = N̄ = 1 and the eigenvalues be pure imaginary. From formula (19) and the symmetry reduction 

(7), it can be derived that c1(0), ̄c1(0) and k1, ̄k1 has the following constraints:

(k1 − k̄1)2 + [c1(0)]4 = 0, (k1 − k̄1)2 + [c̄1(0)]4 = 0. (20)

Denote k1 = iα and k̄1 = −iβ, where α, β > 0. Substituting the above constraints into Eq. (19) yields the 
one-soliton solution

q(x, t) = 2(α + β)
e−2α(x−4α2t) + σe2β(x−4β2t) , (21)

where σ = ±1. If σ = 1, q can be written as

q(x, t) = (α + β)e(α−β)x−4(α3−β3)t sech((α + β)x− 4(α3 + β3)t). (22)

It is obvious that for arbitrary fixed t, q(x, t) → 0 as |x| → ∞. This solution q(x, t) of nonlocal mKdV 
equation is a soliton solution, but it has different property from the one of classical mKdV equation. We 
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Fig. 1. (a) One-soliton-like solution given by Eq. (22) with α = 3/5 and β = 1/3. The amplitude decays exponentially as t increases; 
(b) one-soliton-like solution given by Eq. (22) with α = 1/3 and β = 3/5. The amplitude increases exponentially as t increases.

Fig. 2. p(x, t) � q(x, t)q(−x,−t) given by Eq. (23) with α = 3/5 and β = 1/3.

note that, when x and t satisfy x/t = k+o(t−1) (t → ∞), where k is a constant between 4α2 and 4β2, q(x, t)
goes to infinity along these directions as t → +∞ for α < β, or t → −∞ for α > β. It indicates q(x, t) evolves 
like a solitary wave with its amplitude increasing or decaying exponentially. Fig. 1 depicts this property. 
We can see that q(x, t) is a usual soliton in the case of α = β. Notice that in this case q(x, t) = q(−x, −t), 
and k̄1 = k∗1 . This means that q(x, t) is also a soliton solution to mKdV equation. It is interesting to note 
that q(x, t)q(−x, −t) is exactly the mode of a classical one-soliton solution,

q(x, t)q(−x,−t) = (α + β)2 sech2((α + β)x− 4(α3 + β3)t), (23)

which is shown in Fig. 2. It follows from Eq. (23) that the behavior of exponential increase or decrease in 
the amplitude of q(x, t) is counteracted by the one of q(−x, −t). If σ = −1,

q(x, t) = −(α + β)e(α−β)x−4(α3−β3)t csch((α + β)x− 4(α3 + β3)t). (24)

So, q(x, t) possesses singularity at the line {(x, t)|x = 4(α2 − αβ + β2)t}.

Case 2. Two-soliton solutions
Set N = N̄ = 2. First, we obtain the constraints between normalizing coefficients and eigenvalues via 

Eq. (19) and Eq. (7) by direct calculations:
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[c1(0)]4 + (k̄1 − k1)2(k̄2 − k1)2

(k1 − k2)2
= 0, [c2(0)]4 + (k̄1 − k2)2(k̄2 − k2)2

(k1 − k2)2
= 0,

[c̄1(0)]4 + (k1 − k̄1)2(k2 − k̄1)2

(k̄1 − k̄2)2
= 0, [c̄2(0)]4 + (k1 − k̄2)2(k2 − k̄2)2

(k̄1 − k̄2)2
= 0.

(25)

Then, the general expression of a two-soliton solutions is

q(x, t) = −2iF (x, t)
G(x, t) ,

F (x, t) = σ̄1(k1 − k̄1)(k2 − k̄1)
k̄1 − k̄2

eξ̄1 + σ̄2(k1 − k̄2)(k2 − k̄2)
k̄1 − k̄2

eξ̄2

− σ1σ̄1σ̄2(k̄1 − k2)(k̄2 − k2)
k1 − k2

eξ1+ξ̄1+ξ̄2 − σ2σ̄1σ̄2(k̄1 − k1)(k̄2 − k1)
k1 − k2

eξ2+ξ̄1+ξ̄2 ,

G(x, t) = 1 − (k1 − k̄2)(k2 − k̄1)
(k1 − k2)(k̄1 − k̄2)

(
σ1σ̄1e

ξ1+ξ̄1 + σ2σ̄2e
ξ2+ξ̄2

)

− (k1 − k̄1)(k2 − k̄2)
(k1 − k2)(k̄1 − k̄2)

(
σ1σ̄2e

ξ1+ξ̄2 + σ2σ̄1e
ξ2+ξ̄1

)
+ σ1σ2σ̄1σ̄2e

ξ1+ξ2+ξ̄1+ξ̄2 ,

(26)

where σj , ̄σj = ±1 (j = 1, 2) and

ξj = 2ikj(x + 4k2
j t), ξ̄j = −2ik̄j(x + 4k̄2

j t), (j = 1, 2).

Here, we focus on the case of {kj, ̄kj}2
j=1 being pure imaginary. Set kj = iαj , k̄j = −iβj , where αj , βj > 0, 

and σj = σ̄j = 1 (j = 1, 2). For (α1 − α2)(β1 − β2) > 0, Eq. (26) is simplified to

q(x, t) = 2F1(x, t)
G1(x, t)

,

F1(x, t) = A[(α1 + β1)eu2− cosh(u2+ + θ2) + (α2 + β2)eu1− cosh(u1+ + θ1)],

G1(x, t) = eu1−+u2− [(α2 − α1)(β2 − β1) cosh(u1+ + u2+)

+ (α1 + β1)(α2 + β2) cosh(u1− − u2−) + (α1 + β2)(α2 + β1) cosh(u1+ − u2+)],

(27)

where

uj± = 1
2(ξj ± ξ̄j), A =

√
(α2 − α1)(β2 − β1)(α1 + β2)(α2 + β1),

eθ1 = A

|α2 − α1|(α2 + β1)
, eθ2 = A

|α2 − α1|(α1 + β2)
.

This is a two-soliton solution. In Fig. 3, we describe such a solution with α1 < β1 and α2 = β2. In this 
case, we see that the amplitude of one solitary wave in the solution shown has exponential increase as 
t → +∞, and the other amplitude is stable but has a change during the collisions of two solitary waves. 
Furthermore, after the interaction of two solitary waves, there is a shift of phase and no change in the 
velocity of them. Fig. 4 gives the case of α1 < β1 and α2 > β2, i.e., the amplitude of a solitary wave 
increases exponentially, and the one of another solitary wave decreases exponentially. The all solutions 
above belong to the interactions of bright–bright solitons. Interactions of bright–dark solitons can be found 
by setting σ2 = −1 and σ̄2 = −1. The results are similar with the bright–bright case. In Fig. 5, we give 
an example of the increase–increase case, i.e. the amplitudes of both two solitary waves have exponential 
increase as t → +∞, and the amplitude below zero increases faster than the one above zero. During the 
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Fig. 3. Two-soliton-like solution of bright–bright kind given by Eq. (27) with α1 = 1/4, β1 = 3/4 and α2 = β2 = 3/2. Only one of 
the amplitudes increases exponentially as t increases.

Fig. 4. Two-soliton-like solution of bright–bright kind given by Eq. (27) with α1 = 3/16, β1 = 3/8, α2 = 3/4 and β2 = 9/16. One 
of the amplitudes increases exponentially and the other decrease exponentially as t increases.

interaction, both two solitary waves have a shift of phase respectively and no changes in velocity. In the case 
of αj = βj , i.e., k̄j = k∗j , (j = 1, 2), the solution is a usual two-soliton solution to nonlocal mKdV equation 
(3) as well as to mKdV equation. Similar with the case of one-soliton solutions, q(x, t)q(−x, −t) is exactly 
the mode of a typical two-soliton solution. In fact, we have

q(x, t)q(−x,−t) = 4F1(x, t)F1(−x,−t)
G1(x, t)G1(−x,−t) ,

F1(x, t)F1(−x,−t) = A2[(α1 + β1)2 cosh(u2+ + θ2) cosh(u2+ − θ2)

+ (α2 + β2)2 cosh(u1+ + θ1) cosh(u1+ − θ1)

+ (α1 + β1)(α2 + β2)(eu1−−u2− cosh(u1+ + θ1) cosh(u2+ − θ2) (28)

+ eu2−−u1− cosh(u1+ − θ1) cosh(u2+ + θ2))
]
,

G1(x, t)G1(−x,−t) = [(α2 − α1)(β2 − β1) cosh(u1+ + u2+)
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Fig. 5. Two-soliton solution of bright–dark kind given by Eq. (26) with σ1 = 1, σ2 = −1, σ̄1 = 1 and σ̄2 = −1, k1 = i/2, k̄1 = −i/3, 
k2 = i/4 and k̄2 = −3i/5.

Fig. 6. p(x, t) � q(x, t)q(−x,−t) defined by Eq. (28) with α1 = 3/16, β1 = 3/8, α2 = 3/4 and β2 = 9/16.

+ (α1 + β1)(α2 + β2) cosh(u1− − u2−)

+ (α1 + β2)(α2 + β1) cosh(u1+ − u2+)]2.

Both the amplitudes of two waves in q(x, t)q(−x, −t) do no longer change exponentially as in q(x, t). We 
present an example in Fig. 6. For the case of (α1−α2)(β1−β2) < 0, the solution always contains singularity 
at some sites.

Case 3. Breather solution
Let us consider the case of k1 = −k∗2 and k̄1 = −k̄∗2 , where k1 and k̄1 are denoted by k1 = η1 + iζ1

and k̄1 = η2 − iζ2, (ηj , ζj > 0 j = 1, 2), and σ1σ2 = −1 and σ̄1σ̄2 = −1. In this case, the solution has the 
expression,
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Fig. 7. Breather solution given by Eq. (30) with μ = 2/3.

q(x, t) = 2F2(x, t)
G2(x, t)

,

F2(x, t) = η1[(η2
1 − η2

2 + (ζ1 + ζ2)2) sin v2+ − 2η2(ζ1 + ζ2) cos v2+]e−v1−

+ η2[(η2
1 − η2

2 − (ζ1 + ζ2)2) sin v1+ − 2η1(ζ1 + ζ2) cos v1+]ev2− ,

G2(x, t) = 2η1η2 cosh(v1− + v2−) + 2η1η2 cos v1+ cos v2+

+ [η2
1 + η2

2 + (ζ1 + ζ2)2] sin v1+ sin v2+,

(29)

where

vj+ = 2ηj [x + 4(η2
j − 3ζ2

j )t], vj− = −2ζj [x + 4(3η2
j − ζ2

j )t], (j = 1, 2).

The solution possesses singularity if η1 �= η2 and ζ1 �= ζ2. But, selecting η1 = η2 = ζ1 = ζ2 in Eq. (29) yields 
an interesting solution,

q(x, t) = 4μ sinh(ξ+) sin(ξ−) − cosh(ξ+) cos(ξ−)
cosh2(ξ+) + sin2(ξ−)

, (30)

where ξ± = −2μ(x ± 8μ2t) with μ > 0. We view q(x, t) as a function with respect to new variables ξ±. 
Apparently, q(ξ+, ξ−) has a period of 2π with respect to ξ−, i.e. q(ξ+, ξ−) = q(ξ+, ξ− + 2π). Thus, q is a 
breather solution along ξ−, as is shown in Fig. 7.

4. Conclusions and discussions

In this paper, we have investigated a new integrable equation—nonlocal mKdV equation through inverse 
scattering method. We have obtained its solutions in the general form. We have presented its one-soliton, 
two-soliton and breather solutions. The analysis of the properties of these solutions has been given. We have 
demonstrated that these solutions for the nonlocal mKdV equation have some different properties from ones 
of mKdV equation. Very recently, in Ref. [4], Ablowitz and Musslimani introduced new reverse space–time 
and reverse time nonlocal nonlinear integrable equations. For these nonlocal nonlinear integrable equations, 
Lax pairs, conservation laws, inverse scattering transformation and one soliton solutions were discussed [4]. 
We hope to construct richer solutions for these nonlocal nonlinear integrable equations in the future work.
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