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In this article, we study the stability of weak solutions to a stochastic version of a 
globally modified coupled Cahn–Hilliard–Navier–Stokes model with multiplicative 
noise. The model consists of the globally modified Navier–Stokes equations for the 
velocity, coupled with an Cahn–Hilliard model for the order (phase) parameter. We 
prove that under some conditions on the forcing terms, the weak solutions converge 
exponentially in the mean square and almost surely exponentially to the stationary 
solutions. We also prove a result related to the stabilization of these equations.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

It is well accepted that the incompressible Navier–Stokes (NS) equation governs the motions of single-
phase fluids such as air or water. On the other hand, we are faced with the difficult problem of understanding 
the motion of binary fluid mixtures, that is fluids composed by either two phases of the same chemical species 
or phases of different composition. Diffuse interface models are well-known tools to describe the dynamics of 
complex (e.g., binary) fluids, [16]. For instance, this approach is used in [2] to describe cavitation phenomena 
in a flowing liquid. The model consists of the NS equation coupled with the phase-field system, [3,15–17]. 
In the isothermal compressible case, the existence of a global weak solution is proved in [14]. In the incom-
pressible isothermal case, neglecting chemical reactions and other forces, the model reduces to an evolution 
system which governs the fluid velocity v and the order parameter φ. This system can be written as a NS 
equation coupled with a convective Allen–Cahn equation, [16]. The associated initial and boundary value 
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problem was studied in [16] in which the authors proved that the system generated a strongly continuous 
semigroup on a suitable phase space which possesses a global attractor. They also established the existence 
of an exponential attractor. This entails that the global attractor has a finite fractal dimension, which is 
estimated in [16] in terms of some model parameters. The dynamic of simple single-phase fluids has been 
widely investigated although some important issues remain unresolved, [26]. In the case of binary fluids, 
the analysis is even more complicate and the mathematical studied is still at it infancy as noted in [16]. 
As noted in [15], the mathematical analysis of binary fluid flows is far from being well understood. For 
instance, the spinodal decomposition under shear consists of a two-stage evolution of a homogeneous initial 
mixture: a phase separation stage in which some macroscopic patterns appear, then a shear stage in which 
these patters organize themselves into parallel layers (see, e.g. [21] for experimental snapshots). This model 
has to take into account the chemical interactions between the two phases at the interface, achieved using 
a Cahn–Hilliard approach, as well as the hydrodynamic properties of the mixture (e.g., in the shear case), 
for which a Navier–Stokes equations with surface tension terms acting at the interface are needed. When 
the two fluids have the same constant density, the temperature differences are negligible and the diffuse 
interface between the two phases has a small but non-zero thickness, a well-known model is the so-called 
“Model H” (cf. [18]). This is a system of equations where an incompressible Navier–Stokes equation for the 
(mean) velocity v is coupled with a convective Cahn–Hilliard equation for the order parameter φ, which 
represents the relative concentration of one of the fluids.

The long-time behavior of flows is a very interesting and important problem in the theory of fluid dynamic. 
As the vast literature shows [1,4,5,12,13,19,22,23,26,28], the problem has been receiving very much attention 
over the last three decades.

Another interesting question is to analyze the effects produced on a deterministic system by some stochas-
tic or random disturbances appearing in the problem. This problem has been studied for the NS model, 
[6,7]. In [6], the authors studied the stability of the stationary solutions of the stochastic 2D NS equations. 
In particular, they proved that the weak solutions converge exponentially in the mean square and almost 
surely exponentially to the stationary solutions under some restrictions on the viscosity and the forcing 
terms. In [7], the authors generalized to the results of [6] to a class of dissipative nonlinear systems that 
include the 3D Lagrangian average NS equations.

Our work is motivated by the above references. We study the stability of weak solutions to the stochastic 
3D globally modified CH-NS (GMCHNS) model with multiplicative noise. In particular, we proved that the 
weak solutions converge exponentially in the mean square and almost surely exponentially to the stationary 
solutions under some restrictions on the viscosity and the forcing terms. Let us note that the coupling 
between the Navier–Stokes and the Cahn–Hilliard systems makes the analysis of the control problem more 
involved.

The article is divided as follows. In the next section, we introduce the stochastic 3D GMCHNS model 
and its mathematical setting. The third section studies the stability of weak solutions. As in [6], applying 
the Itô formula, we study the stability of stationary solutions to the stochastic 3D GMCHNS model. We 
also prove in the fourth section a result related to the stabilization of these equations.

2. The stochastic GMCHNS model and its mathematical setting

2.1. Governing equations

In this article, we consider a modified version of the coupled CH-NS model with multiplicative noise. 
More precisely, we assume that the domain M of the fluid is a bounded domain in �3. Then, we consider 
the following coupled CH-NS system
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂v
∂t

− νΔv + (v · ∇)v + ∇p−Kμ∇φ = g1
0(t) + g1

1(v, φ) + g1
2(t, v, φ)Ẇ 1

t ,

div v = 0,
∂φ
∂t

+ v · ∇φ− Δμ = g2
0(t) + g2

1(v, φ) + g2
2(t, v, φ)Ẇ 2

t ,

μ = −εΔφ + αf(φ),

(2.1)

in M × [0, T ].
In (2.1), the unknown functions are the velocity v = (v1, · · · vd) of the fluid, its pressure p and the order 

(phase) parameter φ. The external volume force g1(v, φ) ≡ (g1
1(t, v, φ), g2

1(t, v, φ)), g0(t) ≡ (g1
0 , g

2
0)(t), are 

given. The term g2(t, v, φ)Ẇt ≡ (g1
2(t, v, φ)Ẇ 1

t , g
2
2(t, v, φ)Ẇ 2

t ) represents random external forces depending 
eventually on (v, φ) where Ẇt ≡ (Ẇ 1

t , Ẇ
2
t ) denotes the time derivative of a cylindrical Wiener process. The 

quantity μ is the variational derivative of the following free energy functional

F1(φ) =
∫
M

( ε

2 |∇φ|2 + αF (φ)
)
ds, (2.2)

where, e.g., F (x) =
x∫

0

f(ζ)dζ. Here, the constants ν > 0 and K > 0 correspond to the kinematic viscosity 

of the fluid and the capillarity (stress) coefficient respectively. Here ε, α > 0 are two physical parameters 
describing the interaction between the two phases. In particular, ε is related with the thickness of the 
interface separating the two fluids. Hereafter, as in [16] we assume that ε ≤ α.

A typical example of potential F is that of logarithmic type. However, this potential is often replaced by 
a polynomial approximation of the type F (x) = γ1x

4 − γ2x
2, γ1, γ2 being positive constants. As noted in 

[15], (2.1)1 can be replaced by

∂v

∂t
− νΔv + (v · ∇)v + ∇p̃ = −Kdiv (∇φ⊗∇φ) + g1

0(t) + g1
1(v, φ) + g1

2(t, v, φ)Ẇ 1
t , (2.3)

where p̃ = p − K( ε
2 |∇φ|2 + αF (φ)), since Kμ∇φ = ∇(K( ε

2 |∇φ|2 + αF (φ))) − Kdiv (∇φ ⊗∇φ). The stress 
tensor ∇φ ⊗∇φ is considered the main contribution modeling capillary forces due to surface tension at the 
interface between the two phases of the fluid.

Regarding the boundary conditions for the model, as in [15] we assume that the boundary conditions for 
φ are the natural no-flux condition

∂ηφ = ∂ημ = 0, on ∂M× [0, T ], (2.4)

where ∂M is the boundary of M and η is the outward normal to ∂M. These conditions ensure the mass 
conservation in he deterministic case. In fact, for g2

0 = 0, g2
1 = 0, g2

2 = 0, from ∂ημ = 0 on ∂M × [0, T ], we 
have the conservation of the following quantity

〈φ(t)〉 = 1
|M|

∫
M

φ(x, t)dx, (2.5)

where |M| stands for the Lebesgue measure of M. More precisely, we have

〈φ(t)〉 = 〈φ(0)〉, ∀t ∈ [0, T ]. (2.6)

Hereafter, we assume that g2
0, g2

1 and g2
2 are chosen such that (2.6) is satisfied, which is the case if we assume 

that
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〈g2
0(t)〉 = 0, 〈g2

1(u, ψ)〉 = 0, 〈g2
2(u, ψ)Ẇ 2

t 〉 = 0, ∀t ≥ 0, (u, ψ) ∈ H, (2.7)

where H is defined by (2.25) below.
Concerning the boundary condition for v, we assume the Dirichlet (no-slip) boundary condition

v = 0, on ∂M× (0,∞). (2.8)

Therefore we assume that there is no relative motion at the fluid–solid interface.
The initial condition is given by

(v, φ)(0) = (v0, φ0) in M. (2.9)

Now, we define the function FN : �+ → �+ by

FN (r) = min{1, N/r}, r ∈ �+, (2.10)

for some (fixed) N ∈ �+. We recall from [8] the following properties of FN .

Lemma 2.1. The function FN satisfies:

|FN (p) − FN (r)| ≤ |p− r|
r , ∀p, r ∈ �+, r �= 0,

|FN (‖v1‖) − FN (‖v2‖)| ≤ ‖v1 − v2‖
‖v2‖ , ∀v1, v2 ∈ V1, v2 �= 0,

|FM (p) − FN (r)| ≤ |M −N |
r + |p− r|

r , ∀p, r,M,N ∈ �+, r �= 0.

(2.11)

Now we consider the following 3D GMCHNS

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂v
∂t

− νΔv + FN (‖v‖)[(v · ∇)v] + ∇p−Kμ∇φ = g1
0(t) + g1

1(v, φ) + g1
2(t, v, φ)Ẇ 1

t ,

div v = 0,
∂φ
∂t

+ v · ∇φ− Δμ = g2
0(t) + g2

1(v, φ) + g2
2(t, v, φ)Ẇ 2

t ,

μ = −εΔφ + αf(φ),

(2.12)

in M × (0, +∞), where ‖v‖ is a norm defined below.
The deterministic version of the GMCHNSE (2.12) was studied in [25], where the author proved the 

existence and uniqueness of strong solutions as well as the existence of a global U-attractor. In [24], the 
author proved the existence and final fractal dimension of a pullback attractor in the space U for a three 
dimensional system of a non-autonomous GMCHNSE model. In [11], the authors studied the stochastic 
GMACNSE model (2.12) in a 3D bounded domain and proved the existence and uniqueness of a strong 
solutions in the sense of stochastic analysis and PDE sense.

Let us recall that the GMCHNSE model was inspired from the globally modified Navier–Stokes equations 
(GMNSE) proposed in [8]. As noted in [8] in the case of the GMNSE, the GMCHNSE are indeed globally 
modified. The factors FN (‖v‖) and FN (‖(v, φ)‖U ) depend respectively on the norms ‖v‖ and ‖(v, φ)‖U . They 
prevent large values of ‖v‖ and ‖(v, φ)‖U dominating the dynamics. Just like the GMNSE, the GMACNSE 
violates the basic laws of mechanics, but mathematically the model is well defined. See also [10] for other 
modifications of the nonlinear term in the NSE.
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2.2. Mathematical setting

We first recall from [15] a weak formulation of (2.1), (2.4), (2.8)–(2.9). Hereafter, we assume that the 
domain M is bounded with a smooth boundary ∂M (e.g., of class C2). We also assume that f ∈ C2(�)
satisfies {

lim
|x|→+∞

f ′(x) > 0,

|f (i)(x)| ≤ cf (1 + |x|2−i), ∀x ∈ �, i = 0, 1, 2,
(2.13)

where cf is some positive constant.
We now recall from [15] the functional set up of the model (2.1), (2.4), (2.8), (2.9).
If X is a real Hilbert space with inner product (·, ·)X , we will denote the induced norm by | · |X , while 

X∗ will indicate its dual. We set

V1 = {u ∈ C∞
c (M) : div u = 0 in M}.

We denote by H1 and V1 the closure of V1 in (L2(M))3 and (H1
0 (M))3 respectively. The scalar product in 

H1 is denoted by (·, ·)L2 and the associated norm by | · |L2 . Moreover, the space V1 is endowed with the 
scalar product

((u, v)) =
3∑

i=1
(∂xi

u, ∂xi
v)L2 , ‖u‖ = ((u, u))1/2.

We now define the operator A0 by

A0v = −PΔv, ∀v ∈ D(A0) = H2(M) ∩ V1,

where P is the Leray–Helmotz projector in L2(M) onto H1. Then, A0 is a self-adjoint positive unbounded 
operator in H1 which is associated with the scalar product defined above. Furthermore, A−1

0 is a compact 
linear operator on H1 and |A0 · |L2 is a norm on D(A0) that is equivalent to the H2-norm.

Hereafter, we set

H2 = L2(M), V2 = H1(M), H = H1 ×H2, V = V1 × V2. (2.14)

Then we introduce the linear nonnegative unbounded operator on L2(M)

A1φ = −Δφ, ∀φ ∈ D(A1) = {φ ∈ H2(M), ∂ηφ = 0, on ∂M}, (2.15)

and we endow D(A1) with the norm |A1 · |L2 + |〈 · 〉|L2 , which is equivalent to the H2-norm. Also we define 
the linear positive unbounded operator on the Hilbert space L2

0(M) of the L2-functions with null mean

Bnφ = −Δφ, ∀φ ∈ D(Bn) = D(A1) ∩ L2
0(M). (2.16)

Note that B−1
n is a compact linear operator on L2

0(M). More generally, we can define Bs
n, for any s ∈ �, 

noting that |Bs/2
n ·|L2 , s > 0, is an equivalent norm to the canonical Hs-norm on D(Bs/2

n ) ⊂ Hs(M) ∩L2
0(M). 

Also note that A1 = Bn on D(Bn). If φ is such that φ −〈φ〉 ∈ D(Bs/2
n ), we have that |Bs/2

n (φ −〈φ〉)|L2+|〈φ〉|L2

is equivalent to the Hs-norm. Moreover, we set H−s(M) = (Hs(M))∗, whenever s < 0.
We introduce the bilinear operators B0, B1 (and their associated trilinear forms b0, b1) as well as the 

coupling mapping R0, which are defined from D(A0) × D(A0) into H, D(A0) × D(A1) into L2(M), and 
L2(M) × (D(A1) ∩H3(M)) into H1, respectively. More precisely, we set
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(B0(u, v), w) =
∫
M

[(u · ∇)v] · wdx = b0(u, v, w), ∀u, v, w ∈ D(A0),

(B1(u, φ), ρ) =
∫
M

[(u · ∇)φ]ρdx = b1(u, φ, ρ), ∀u ∈ D(A0), φ, ρ ∈ D(A1),

(R0(μ, φ), w) =
∫
M

μ[∇φ · w]dx = b1(w, φ, μ), ∀w ∈ D(A0), φ ∈ D(A1) ∩H3(M), μ ∈ L2(M).

(2.17)

Note that

R0(μ, φ) = Pμ∇φ.

We recall that B0, B1 and R0 satisfy the following estimates

|b0(u, v, w)| ≤ c|u|1/2L2 ‖u‖1/2|A0v|L2 |w|L2 , ∀u ∈ V1, v ∈ D(A0)), w ∈ H1,

|B0(u, v)|V ∗
1 ≤ c|u|1/4L2 ‖u‖3/4|v|1/4L2 ‖v‖3/4, ∀u, v ∈ V1,

|B0(u, v)|L2 ≤ c‖u‖‖v‖1/2|A0v|1/2L2 , ∀u ∈ V1, v ∈ D(A0),

(2.18)

|b1(u, φ, ψ)| ≤ c|u|1/2L2 ‖u‖1/2|A1φ|L2 |ψ|L2 , ∀u ∈ V1, φ ∈ D(A1)), ψ ∈ H2,

|B1(u, φ)|V ∗
2 ≤ c|u|1/4L2 ‖u‖3/4|φ|1/4L2 ‖φ‖3/4, ∀u ∈ V1, φ ∈ V2,

|B1(v, φ)|L2 ≤ c‖v‖‖φ‖1/2|A1φ|1/2L2 , ∀v ∈ V1, φ ∈ D(A1),

(2.19)

|R0(A1φ, ρ)|V ∗
1 ≤ c‖ρ‖1/2|A1ρ|1/2L2 |A1φ|L2 , ∀φ, ρ ∈ D(A1),

|R0(A1φ, ρ)|L2 ≤ c|A1φ|L2 |A1φ|1/2L2 |A3/2
1 φ|1/2L2 , ∀φ ∈ D(A1), ρ ∈ D(A3/2

1 ).
(2.20)

Hereafter we set

bN0 (u, v, w) = FN (‖v‖)b0(u, v, w), 〈BN
0 (u, v), w〉 = bN0 (u, v, w), ∀u, v, w ∈ V1. (2.21)

It follows from (2.18)–(2.20) and (2.27) that (see [8] for more details)

bN0 (u, v, v) = 0, ∀u, v ∈ V1,

|bN0 (u, v, w)| ≤ cN‖u‖‖w‖, ∀u, v,∈ V1,

‖BN
0 (u, v)‖V ∗

1 ≤ cN‖u‖, ∀u, v ∈ V1.

(2.22)

We recall that (due to the mass conservation) we have

〈φ(t)〉 = 〈φ(0)〉 = M0, ∀t > 0. (2.23)

Thus, up to a shift of the order parameter field, we can always assume that the mean of φ is zero at the 
initial time and, therefore it will remain zero for all positive times. Hereafter, we assume that

〈φ(t)〉 = 〈φ(0)〉 = 0, ∀t > 0. (2.24)

We set

H = H1 ×D(A1/2
1 ). (2.25)
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The space H is a complete metric space with respect to the norm

|(v, φ)|2H = |v|2L2 + ε|∇φ|2L2 . (2.26)

We define the Hilbert space U by

U = V1 ×D(A3/2
1 ), (2.27)

endowed with the scalar product whose associated norm is

‖(v, φ)‖2
U = ‖v‖2 + ε|A3/2

1 φ|2L2 . (2.28)

We will denote by λ1 > 0 a positive constant such that

λ1|(w,ψ)|2H ≤ ‖(w,ψ)‖2
U , ∀(w,ψ) ∈ U . (2.29)

We will also denote by c a generic positive constant that depends on the domain M.
Let (Ω, P, J ) be a probability space on which an increasing and right continuous family {Jt}t∈[0,∞)

of complete sub σ-algebra of J is defined. Let βn(t) (n = 1, 2, 3, · · · ) be a sequence of real valued one-
dimensional standard Brownian motions mutually independent on (Ω, P, J ). We set

Wt(t) =
∞∑

n=1

√
λ′
nβn(t)en, t ≥ 0, (2.30)

where λ′
n (n = 1, 2, 3, · · · ) are nonnegative real numbers such that 

∞∑
n=1

λ′
n < ∞, and {en} (n = 1, 2, 3, · · · ) 

is a complete orthogonal basis in the real and separable Hilbert space K. Let Q ∈ L(K, K) be the operator 
defined by Qen = λ′

nen. The above K-valued stochastic process W (t) is called a Q-Wiener process.
Thus, we consider the stochastic GMCHNS model written in the following abstract mathematical setting:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dv
dt

+ νA0v + BN
0 (v, v) −R0(εA1φ, φ) = g1

0(t) + g1
1(v, φ) + g1

2(t, v, φ)Ẇ 1
t in V ∗

1 ,

dφ
dt

+ A1μ + B1(v, φ) = g2
0(t) + g2

1(v, φ) + g2
2(t, v, φ)Ẇ 2

t , μ = εA1φ + αf(φ) in V ∗
2 ,

(v, φ)(0) = (v0, φ0) ∈ H,

(2.31)

or equivalently
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(t) +
t∫

0

(νA0v(s) + BN
0 (v(s), v(s)))ds = v0 +

t∫
0

R0(εA1φ(s), φ(s)))ds

+
t∫

0

(g1
0(s) + g1

1((v, φ)(s)))ds +
t∫

0

g1
2(s, v(s), φ(s))dW 1

s ,

φ(t) +
t∫

0

(A1μ(s) + B1(v(s), φ(s)) = φ0 +
t∫

0

(g2
0(s) + g2

1((v, φ)(s)))ds +
t∫

0

g2
2(s, v(s), φ(s))dW 2

s ,

μ = εA1φ + αf(φ),

(2.32)

P-a.s, and for all t ∈ [0, T ], where

g0 ≡ (g1
0 , g

2
0) ∈ L2(0,∞,H), g1 ≡ (g1

1 , g
2
1) : U → H, g2 ≡ (g1

2 , g
2
2) : [0,∞) × U → L(K,H). (2.33)
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Remark 2.1. In the formulation (2.31) or (2.32), the term μ∇φ is replaced by A1∇φ. This is justified since 
f ′(φ)∇φ is the gradient F (φ) and can be incorporated into the pressure gradient, see [15] for details.

Definition 2.1. A stochastic process (v, φ)(t), t ≥ 0 is said to be a weak solution to (2.31) or (2.32) if

i) (v, φ)(t) is Jt-adapted,
ii) (v, φ)(t) ∈ L∞(0, T ; H) ∩ L2(0, T ; U) almost surely for all T > 0,
iii) (v, φ) satisfies (2.32) as an identity in U∗, almost surely, for t ∈ [0, ∞).

Note that (2.32) implies that almost surely, (v, φ) ∈ C(0, T ; U∗) and since (v, φ)(·) is also bounded in H, 
as in [26,27] we can check that (v, φ) is almost surely in C(0, T ; Hweak), the space of H-valued weakly 
continuous functions on [0, T ].

Hereafter, we assume that f satisfies the additional condition

〈αA1f(ψ), εA1ψ〉 = 〈αA1/2
1 f(ψ), εA3/2

1 ψ〉 ≥ −κ0ε|A3/2
1 ψ|2L2 , ∀ψ ∈ D(A3/2

1 ),

〈αA1f(φ1) −A1f(φ2), εA1(φ1 − φ2)〉 ≥ −κ0ε|A3/2
1 (φ1 − φ2)|2L2 , ∀φ1, φ2 ∈ D(A3/2

1 ),
(2.34)

where κ0 > 0 is a fixed constant.
We also set

α1 = min(ν, ε− κ0) > 0. (2.35)

3. The exponential stability of solutions

In this section we discuss the moment exponential stability and almost sure exponential stability of weak 
solutions to (2.31) assuming that they exist. We discuss the long-time behavior of the weak solutions (v, φ)(t)
under some conditions. As in [6], applying the Itô formula, we study the stability of stationary solutions to 
the stochastic 3D GMCHNS model.

We will use the notation

‖g2(t, v, φ)‖2
L2(H) ≡ tr(g2(t, v, φ)Qg2(t, v, φ)∗),

〈(x1, x2), (y1, y2)〉 = (x1, y1)L2 + 〈x2, y2〉, ∀(x1, x2), (y1, y2) ∈ H.
(3.1)

In this section, we assume that

g0 = (g1
0 , g

2
0) ∈ H and g1 = (g1

1 , g
2
1) : U → H (3.2)

satisfies

g1(0, 0) = 0, ‖g1(v1, φ1) − g1(v2, φ2)‖U∗ ≤ L1‖(v1, φ1) − (v2, φ2)‖U , ∀(v1, φ1), (v2, φ2) ∈ U , (3.3)

for some fixed constant L1 > 0.
A stationary solution to (2.31) is a (v∗, φ∗) such that

{
νA0v

∗ + BN
0 (v∗, v∗) −R0(εA1φ

∗, φ∗) = g1
0 + g1

1(v∗, φ∗),

εA2
1φ

∗ + αA1f(φ∗) + B1(v∗, φ∗) = g2
0 + g2

1(v∗, φ∗).
(3.4)

To be more precise, by stationary solution, we mean an element u∗ = (v∗, φ∗) ∈ U that satisfies (3.4)1
and (3.4) in V ∗

1 and V ∗
2 respectively.
2
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3.1. Existence and uniqueness of stationary solution

Theorem 3.1. Under the above assumptions and notations, if

α1 − L1 > 0, (3.5)

then (3.4) has at least one solution u∗, which is in fact in D(A0) ×D(A2
1). Moreover, any such stationary 

solution u∗ = (v∗, φ∗) satisfies

‖(v∗, φ∗)‖U ≤ (α1 − L1)−1‖g0‖U∗ ≡ K1. (3.6)

Furthermore, if

α1 − (L1 + 3cK1) > 0, (3.7)

then stationary solution is unique.

Proof. To prove (3.6), by multiplying (3.4)1 by v∗ and (3.4)2 by εA1φ
∗ to derive that

ν‖v∗‖2 + ε2|A3/2
1 φ∗|2L2 + 〈αA1/2

1 f(φ∗), εA3/2
1 φ∗〉 = 〈g1

0 + g1
1(v∗, φ∗), v∗〉 + 〈g2

0 + g2
1(v∗, φ∗), εA1φ

∗〉

≤ ‖g0‖U∗‖(v∗, φ∗)‖U + L1‖(v∗, φ∗)‖2
U ,

(3.8)

which gives (assuming (2.34)1)

(α1 − L1)‖(v∗, φ∗)‖2
U ≤ ‖g0‖U∗‖(v∗, φ∗)‖U , (3.9)

where

α1 = min(ν, ε− κ0) > 0.

We derive that

‖(v∗, φ∗)‖U ≤ (α1 − L1)−1‖g0‖U∗ ≡ K1, (3.10)

and (3.6) is proved
For the existence, let {(wi, ψi), i = 1, 2, 3, · · · } ⊂ U be an orthonormal basis of H, where {wi, i = 1, 2 · · · }, 

{ψi, i = 1, 2 · · · } are eigenvectors of A0 and A1 respectively. We set Um = span{(w1, ψ1), · · · (wm, ψm)}. We 
define the operator Zm : Um → Um by:

〈Zmu1, u2〉 = 〈νA0v1, v2〉 + ε〈A2
1φ1, εA1φ2〉 + 〈BN

0 (v1, v1), v2〉 + 〈B1(v1, φ1), εA1φ2〉

−〈R0(εA1φ1, φ1), v2〉 + 〈αA1f(φ1), εA1φ2〉 − 〈g1
0 + g1

1(v1, φ1), v2〉 − 〈g2
0 + g2

1(v1, φ1), εA1φ2〉,
(3.11)

for u1 = (v1, φ1), u2 = (v2, φ2) ∈ Um.
Since the right hand side is a continuous linear map from Um to �, by the Riesz theorem, each Zmu1 ∈ Um

is well defined. We will check that Zm is continuous.
Let u1 = (v1, φ1), u2 = (v2, φ2) ∈ Um. We set u = (w, ψ) = (v1, φ1) − (v2, φ2). For u3 = (v3, φ3) ∈ Um, we 

have
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〈Zmu1 −Zmu2, u3〉 = 〈νA0w, v3〉 + ε〈A2
1ψ, εA1φ3〉 + 〈BN

0 (v1, v1) −BN
0 (v2, v2), v3〉

+〈B1(v1, φ1) −B1(v2, φ2), εA1φ3〉 − 〈R0(εA1φ1, φ1) −R0(εA1φ2, φ2), v3〉

+〈αA1f(φ1) − αA1f(φ2), εA1φ3〉 − 〈g1
1(v1, φ1) − g1

1(v2, φ2), v3〉 − 〈g2
1(v1, φ1) − g2

1(v2, φ2), εA1φ3〉.

(3.12)

Note that

BN
0 (v1, v1) −BN

0 (v2, v2) = FN (‖v1‖)B0(w, v1) + FN (‖v2‖)B0(v2, w)

+(FN (‖v1‖) − FN (‖v2‖))B0(v2, v1),
(3.13)

and

〈BN
0 (v1, v1) −BN

0 (v2, v2), v3〉 = FN (‖v1‖)b0(w, v1, v3)

+FN (‖v2‖)b0(v2, w, v3) + (FN (‖v1‖) − FN (‖v2‖))b0(v2, v1, v3) ≡ I1 + I2 + I3.
(3.14)

We have

|I1| = FN (‖v1‖)|b0(w, v1, v3)| ≤ cN‖w‖‖v3‖,

|I2| = FN (‖v2‖)|b0(v2, w, v3)| ≤ cN‖w‖‖v3‖,

|I3| = |(FN (‖v1‖) − FN (‖v2‖))b0(v2, v1, v3)| ≤ cN‖w‖‖v3‖‖v1‖,

(3.15)

〈νA0w, v3〉 + ε〈A2
1ψ, εA1φ3〉 ≤ c‖u1 − u2‖U‖u3‖U , (3.16)

|〈B1(v1, φ1) −B1(v2, φ2), εA1φ3〉| = |b1(w, φ1, εA1φ3) + b1(v2, ψ, εA1φ3)|

≤ cε‖w‖|A1φ1|L2 |A1φ3|L2 + cε‖v2‖|A1ψ|L2 |A1φ3|L2 ,
(3.17)

|〈R0(εA1φ1, φ1) −R0(εA1φ2, φ2), v3〉| = |b1(v3, φ1, εA1ψ) + b1(v3, ψ, εA1φ2)|

≤ cε‖v3‖|A1φ1|L2 |A1ψ|L2 + cε‖v3‖|A1ψ|L2 |A1φ2|L2 ,
(3.18)

|〈αA1f(φ1) − αA1f(φ2), εA1φ3〉| = α|〈A1/2
1 (f(φ1) − f(φ2)), εA3/2

1 φ3〉|

≤ εM2(|A1φ1|L2 , |A1φ2|L2)|A3/2
1 φ3|L2 |A3/2

1 ψ|L2 ,
(3.19)

where hereafter M2 denotes some monotone non-decreasing function depending only on the function f .
It follows from (3.12)–(3.19) that

|〈Zmu1 −Zmu2, u3〉| ≤ c [1 + ‖v2‖ + |A1φ1|L2 + |A1φ2|L2 + M2(|A1φ1|L2 , |A1φ2|L2))] ‖u1 − u2‖U‖u3‖U ,
(3.20)

which gives

‖Zmu1 −Zmu2‖U∗ ≤ c [1 + ‖v2‖ + |A1φ1|L2 + |A1φ2|L2 + M2(|A1φ1|L2 , |A1φ1|L2))] ‖u1 − u2‖U , (3.21)

which proves that Zm : Um → U∗ is continuous.
For u = (v, φ) ∈ Um, we have

〈Zmu, u〉 = ν‖v‖2 + ε2|A3/2
1 φ|2L2 + 〈αA1f(φ), εA1φ〉 − 〈g0 + g1(v, φ), (v, εA1φ)〉

≥ (α1 − L1)‖(v, φ)‖2
U − ‖g0‖U∗‖(v, φ)‖U .

(3.22)

Thus, if we take K1 = (α1 − L1)−1‖g0‖U∗ , we obtain 〈Zmu, u〉 ≥ 0, ∀u = (v, φ) ∈ Um with ‖u‖U = K1.
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Consequently by a Corollary of the Brouwer’s fixed point theorem (see page 53 of [20]), for each m ≥ 1, 
there exists um = (vm, φm) ∈ Um such that Zmum = 0 with ‖um‖U ≤ K1.

From (3.4), we have

ν|A0vm|2L2 + ε2|A2
1φm|2L2 = −〈BN

0 (vm, vm), A0vm〉 + 〈R0(εA1φm, φm), A0vm〉

−〈B1(vm, φm), εA2
1φm〉 − α〈A1f(φm), εA2

1φm〉 + 〈g0 + g1(vm, φm), (A0vm, εA2
1φm)〉.

(3.23)

Note that (see [8,15,16,25])

| − 〈BN
0 (vm, vm), A0vm〉| ≤ ν

8 |A0vm|2L2 + c‖vm‖2. (3.24)

Using (2.18)–(2.20) and interpolation, we can check that (see [24,25])

|〈R0(εA1φm, φm), A0vm〉| = |b1(A0vm, φm, εA1φm)| ≤ cε|A0vm|L2‖φm‖1/2|A1φm|1/2L2 |A3/2
1 φm|L2

≤ cε|A0vm|L2‖φm‖3/4|A3/2
1 φm|5/4L2 ≤ cε|A0vm|L2‖φm‖3/4|A1φm|5/8L2 |A2

1φm|5/8L2

≤ cε|A0vm|L2‖φm‖3/4‖φm‖5/16|A3/2
1 φm|5/16L2 |A2

1φm|5/8L2

≤ ν
8 |A0v|2L2 + ε2

8 |A2
1φ|2L2 + c‖φm‖34.

(3.25)

Similarly, we have (see [24,25])

|b1(vm, φm, εA2
1φ)| ≤ cε|vm|1/2L2 ‖vm‖1/2|A1φm|L2 |A2

1φm|L2

≤ cε|v|1/2L2 ‖vm‖1/2‖φm‖21/32|A3/2
1 φm|1/32L2 |A2

1φm|21/16L2

≤ ν
8 |A0vm|2L2 + ε2

8 |A2
1φm|2L2 + c|vm|32/5L2 ‖φm‖42/5.

(3.26)

As in [24,25], we also have

α|〈A1f(φm), εA2
1φm〉| = α|〈f ′′φm)(A1/2

1 φm)2 + f ′(φm)A1φm, εA2
1φm〉| ≤ J1 + J2. (3.27)

We note that from (2.13) with i = 2, we have

J1 ≡ α|〈f ′′(φm)(A1/2
1 φm)2, εA2

1φ〉| ≤ cε

∫
M

|A1/2
1 φm|2|A2

1φm|dx

≤ cε|A1/2
1 φm|2L4 |A2

1φm|L2

≤ cε‖φm‖1/2|A1φm|3/2L2 |A2
1φm|L2

≤ cε‖φm‖5/4|A3/2
1 φm|3/4L2 |A2

1φm|L2

≤ ε2
16 |A

2
1φm|2L2 + c‖φm‖10.

(3.28)

Similarly, we have
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J2 ≡ α|〈f ′(φm)A1φm, εA2
1φm〉| ≤ cε

∫
M

(1 + |φm|)|A1φ||A2
1φm|dx

≤ cε|A1φm|2L2 |A2
1φm|L2 + cε‖φm‖|A1φm|L3 |A2

1φ|L2

≤ cε‖φm‖1/2|A2
1φm|3/2L2 + cε‖φm‖‖φm‖1/2|A2

1φm|7/4L2

≤ ε2
16 |A

2
1φm|2L2 + c‖φm‖2 + c‖φm‖12.

(3.29)

It follows that

α|〈A1f(φm), εA2
1φm〉| ≤ ε2

8 |A2
1φm|2L2 + c‖φm‖10 + c‖φm‖2 + c‖φm‖12. (3.30)

We also have

|〈g1(vm, φm), (A0vm, εA2
1φm)〉| ≡ |〈g1

1(vm, φm), A0vm〉 + 〈g2
1(vm, φm), εA2

1φm〉|

≤ ν
8 |A0vm|2L2 + ε2

8 |A2
1φm|2L2 + c|g1|2L2 ,

(3.31)

|〈g0, (A0vm, εA2
1φm)〉| ≡ |〈g1

0 , A0vm〉 + 〈g2
0 , εA

2
1φm〉|

≤ ν
8 |A0vm|2L2 + ε2

8 |A2
1φm|2L2 + c|g0|2L2 .

(3.32)

It follows from (3.23)–(3.32) that

|A0vm|2L2 + ε2|A2
1φm|2L2 ≤ C, (3.33)

where C > 0 is independent of m ≥ 1.
From (3.33), we deduce that the sequence um = (vm, φm) is bounded in D(A0) ×D(A2

1) and consequently, 
we can extract a subsequence (still) denoted um = (vm, φm) that converges weakly in D(A0) ×D(A2

1) and 
strongly in U to an element u∗ = (v∗, φ∗) ∈ D(A0) ×D(A2

1). As in [8], by passing to the limit in (3.11) we 
can check that u∗ = (v∗, φ∗) is a stationary solution to (3.4).

For the uniqueness, let (v∗1 , φ∗
1), (v∗2 , φ∗

2) be two solutions and (w, ψ) = (v∗1 , φ∗
1) − (v∗2 , φ∗

2). Then (w, ψ)
satisfies

{
νA0w + BN

0 (v∗1 , v∗1) −BN
0 (v∗2 , v∗2) −R0(εA1φ

∗
2, ψ) −R0(εA1ψ, φ

∗
1) = g1

1(v∗1 , φ∗
1) − g1

1(v∗2 , φ∗
2),

εA2
1ψ + αA1f(φ∗

1) − αA1f(φ∗
2) + B1(v∗2 , ψ) + B1(w, φ∗

1) = g2
1(v∗1 , φ∗

1) − g2
1(v∗2 , φ∗

2).
(3.34)

Note that

〈BN
0 (v∗1 , v∗1) −BN

0 (v∗2 , v∗2), w〉 = FN (‖v∗1‖)b0(w, v∗1 , w)

+FN (‖v∗2‖)b0(v∗2 , w, w) + (FN (‖v∗1‖) − FN (‖v∗2‖))b0(v∗2 , v∗1 , w).
(3.35)

As in (3.13)–(3.19), we can check that

|FN (‖v∗1‖)b0(w, v∗1 , w)| ≤ c‖v∗1‖‖w‖2,

|(FN (‖v∗1‖) − FN (‖v∗2‖))||b0(v∗2 , v∗1 , w)| ≤ c‖v∗1‖‖w‖2,
(3.36)

〈R0(εA1ψ, φ
∗
1), w〉 = 〈B1(w, φ∗

1), εA1ψ〉,

|〈BN
0 (v∗1 , v∗1) −BN

0 (v∗2 , v∗2), w〉| ≤ c‖v∗1‖‖w‖2,

|〈R0(εA1φ
∗
2, ψ), w〉| ≤ cε|A1ψ|L2 |A1φ

∗
2|L2‖w‖,

|〈B (v∗, ψ), εA ψ〉| ≤ cε|A ψ|2 ‖v∗‖,

(3.37)
1 2 1 1 L2 2
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|〈αA1f(φ∗
1) − αA1f(φ∗

2), εA1ψ〉| ≥ −κ0ε|A3/2
1 ψ|2L2 (3.38)

|〈g1
1(v∗1 , φ∗

1) − g1
1(v∗2 , φ∗

2), w〉 + 〈g2
1(v∗1 , φ∗

1) − g2
1(v∗2 , φ∗

2), εA1ψ〉| ≡ |〈g1(v∗1 , φ∗
1) − g1(v∗2 , φ∗

2), (w, εA1ψ)〉|

≤ L1‖(w,ψ)‖2
U .

(3.39)

Multiplying (3.34)1 and (3.34)2 by w and εA1ψ respectively and using (3.38)–(3.39) yields

ν‖w‖2 + ε2|A3/2
1 ψ|2L2 − κ0ε|A3/2

1 ψ|2L2 ≤ c(‖v∗1‖ + ε1/2|A1φ
∗
2|L2 + ‖v∗2‖ + L1)‖(w,ψ)‖2

U , (3.40)

which gives

(α1 − (L1 + 3cK1))‖(w,ψ)‖2
U ≤ 0, (3.41)

and ‖(w, ψ)‖U = 0 assuming (3.7). and the theorem is proved. �
Remark 3.1. We note that condition (3.5) is satisfied if L1 > 0, κ0 are small enough and α1 > 0 is large 
enough. Condition (3.7) is satisfied if α1 > 0 is large enough, L1 and |g0|H are small enough.

3.2. Stability of the steady state solutions

We study in this section the stability of the steady state solutions. We assume that conditions (3.5) and 
(3.7) are satisfied so that (3.4) has a unique solution (v∗, φ∗). We first recall from [9] some preliminary 
definitions.

Definition 3.1. We say that a weak solution (v, φ)(t) to (2.31) converges to (v∗, φ∗) ∈ H exponentially in 
the mean square if there exists η > 0 and M0 = M0((v, φ)(0)) > 0 such that

E|(v, φ)(t) − (v∗, φ∗)|2H ≤ M0e
−ηt, t ≥ 0. (3.42)

If (v∗, φ∗) is a solution to (3.4), we say that (v∗, φ∗) is exponentially stable in the mean square provided 
that every weak solution to (2.31) converges to (v∗, φ∗) exponentially in the mean square with the same 
exponential order η > 0.

Definition 3.2. We say that a weak solution (v, φ)(t) to (2.31) converges to (v∗, φ∗) ∈ H almost surely 
exponentially if there exists η > 0 such that

lim
t→∞

1
t

log |(v, φ)(t) − (v∗, φ∗)|H ≤ −η. (3.43)

If (v∗, φ∗) is a solution to (3.4), we say that (v∗, φ∗) is almost surely exponentially stable provided that every 
weak solution to (2.31) converges to (v∗, φ∗) almost surely exponentially with the same constant η > 0.

Theorem 3.2. We assume that g1 satisfies (3.2)–(3.3) and g2 satisfies

‖g2(t, v, φ)‖2
L2(H) ≤ ϕ(t) + (ζ + δ(t))|(v, φ)(t) − (v∗, φ∗)|2H, (3.44)

where ζ > 0 is a constant and ϕ(t), δ(t) are nonnegative integrable functions such that there exist real 
numbers ρ > 0, Mδ ≥ 1, Mϕ ≥ 1 with

ϕ(t) ≤ Mϕe
−ρt, δ(t) ≤ Mδe

−ρt, t ≥ 0. (3.45)
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Let (v∗, φ∗) ∈ U be the unique solution to (3.4) and let

λ−1
1 ζ + c1‖(v∗, φ∗)‖U + 2L1 − 2α1 < 0, (3.46)

where c1 is defined by (3.53) below.
Then any weak solution (v, φ)(t) to (2.31) converges to (v∗, φ∗) exponentially in the mean square. More 

precisely, there exist real numbers η ∈ (0, ρ), M0 ≡ M0((v, φ)(0)) > 0 such that

E|(v, φ)(t) − (v∗, φ∗)|2H ≤ M0e
−ηt, ∀t > 0. (3.47)

Proof. First we choose η ∈ (0, ρ) such that

λ−1
1 (ζ + η) + c1‖(v∗, φ∗)‖U + 2L1 − 2α1 < 0. (3.48)

Let us set

(w,ψ) = (v∗, φ∗) − (v, φ).

Applying Itô’s formula to eηt|(w, ψ)(t)|2H gives

eηt|(w,ψ)(t)|2H = |(w,ψ)(0)|2H +
t∫

0

ηeηs|(w,ψ)(s)|2Hds− 2ν
t∫

0

eηs〈A0v(s), w(s)〉ds

−2ε2
t∫

0

eηs〈A2
1φ(s), A1ψ(s)〉ds− 2

t∫
0

eηs〈BN
0 (v(s), v(s)) −R0(εA1φ(s), φ(s)), w(s)〉ds

−2
t∫

0

eηs〈B1(v(s), φ(s)) + αA1f(φ(s)), εA1ψ(s)〉ds + 2
t∫

0

eηs〈g0 + g1(v(s), φ(s)), (w, εA1ψ)(s)〉ds

+2
t∫

0

eηs〈g2(v(s), φ(s)), (w, εA1ψ)(s)〉dWs +
t∫

0

eηs‖g2(s, v(s), φ(s))‖2
L2(H)ds.

(3.49)

We also know that (v∗, φ∗) satisfies

t∫
0

eηs〈νA0v
∗ + BN

0 (v∗, v∗) −R0(εA1ψ
∗, φ∗), w(s)〉ds

+
t∫

0

eηs〈εA2
1φ

∗ + B1(v∗, φ∗) + αA1f(φ∗), εA1ψ(s)〉ds

=
t∫

0

eηs〈g1
0 + g1

1(v∗, φ∗), w(s)〉ds +
t∫

0

eηs〈g2
0 + g2

1(v∗, φ∗), εA1ψ(s)〉ds

≡
t∫

0

eηs〈g0 + g1(v∗, φ∗), (w, εA1ψ)(s)〉ds.

(3.50)

Using (3.49)–(3.50), we derive that
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eηtE|(w,ψ)(t)|2H = E|(w,ψ)(0)|2H +
t∫

0

ηeηsE|(w,ψ)(s)|2Hds− 2ν
t∫

0

eηsE‖w(s)‖2ds

−2ε2
t∫

0

eηsE|A3/2
1 ψ(s)|2L2ds− 2

t∫
0

eηsEFN (‖v∗‖)b0(w, v∗, w)ds

−2
t∫

0

eηsE(FN (‖v∗‖) − FN (‖v‖))b0(v, v∗, w)ds + 2
t∫

0

eηsEb1(w,ψ, εA1φ
∗)ds

−2
t∫

0

eηsEb1(v∗, ψ, εA1ψ)ds− 2α
t∫

0

eηsE〈A1f(φ∗)(s) −A1f(φ), εA1ψ(s)〉ds

+
t∫

0

eηsE‖g2(s, v(s), φ(s))‖2
L2(H)ds + 2

t∫
0

eηsE〈g1(v∗(s), φ∗(s)) − g1(v, φ), (w, εA1ψ)(s)〉ds.

(3.51)

Note that

2FN (‖v∗‖)|b0(w, v∗, w)| ≤ c1N‖(w, φ)‖2
U ,

2|FN (‖v∗‖) − FN (‖v‖)||b0(v, v∗, w)| ≤ c1‖v∗‖‖(w,ψ)‖2
U

2|b1(v∗, ψ, εA1ψ)| ≤ c1ε‖v∗‖|A1ψ|2L2 ≤ c1‖(v∗, φ∗)‖U‖(w,ψ)‖2
U ,

2|b1(w,ψ, εA1φ
∗)| ≤ cε‖w‖|A1ψ|L2 |A1φ

∗|2L2 ≤ c‖(v∗, φ∗)‖U‖(w,ψ)‖2
U ,

−α〈A1f(φ∗) −A1f(φ), εA1ψ(s)〉 ≤ εκ0|A3/2
1 ψ|2L2 ,

|〈g1(v∗(s), φ∗(s)) − g1(v, φ), (w, εA1ψ)〉| ≤ L1‖(w,ψ)‖2
U .

(3.52)

It follows that

2FN (‖v∗‖)|b0(w, v∗, w)| + |b1(v∗, ψ, εA1ψ)| + 2|FN (‖v∗‖) − FN (‖v‖)||b0(v, v∗, w)| + 2|b1(w,ψ, εA1φ
∗)|

−2α〈A1f(φ∗) −A1f(φ), εA1ψ(s)〉 + 2|〈g1(v∗(s), φ∗(s)) − g1(v, φ), (w, εA1ψ)〉|

≤ [c1‖(v∗, φ∗)‖U + 2L1] ‖(w,ψ)‖2
U + 2εκ0|A3/2

1 ψ|2L2 ,

(3.53)

for some c1 > 0.
We derive from (3.49)–(3.52) that

eηtE|(w,ψ)(t)|2H ≤ E|(w,ψ)(0)|2H +
t∫

0

ηeηsE|(w,ψ)(s)|2Hds

−2α1

t∫
0

eηsE‖(w,ψ)(s)‖2
Uds + [c1‖(v∗, φ∗)‖U + 2L1]

t∫
0

eηsE‖(w,ψ)(s)‖2
Uds

+
t∫

0

eηs(ϕ(s) + (ζ + δ(s))E|(w,ψ)(s)|2H)ds.

(3.54)

Note that in (3.54), we use the fact that

ν‖w‖2 + ε2|A3/2
1 ψ|2L2 − εκ0|A3/2

1 ψ|2L2 ≥ α1‖(w,ψ)‖2
U . (3.55)
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We recall that

−2α1 + [c1‖(v∗, φ∗)‖U + 2L1] + λ−1
1 (η + ζ) < 0. (3.56)

It follows from (3.54)–(3.56) that

eηtE(|(w,ψ)(t)|2H) ≤ E(|(w,ψ)(0)|2H) +
t∫

0

eηs(ϕ(s) + δ(s)|(w,ψ)(s)|2H)ds. (3.57)

Using the Gronwall lemma, we derive that there exists M0 > 0 such that

E(|(w,ψ)(t)|2H) ≤ M0e
−ηt, ∀t > 0, (3.58)

which proves (3.47). �
Theorem 3.3. The hypothesis are the same as in Theorem 3.2. Then any weak solution (v, φ)(t) to (2.31)
converges to the stationary solution (v∗, φ∗) of (3.4) almost surely exponentially.

Proof. Let N1 be a positive integer and (w, ψ) = (v∗1 , φ∗
1) − (v∗2 , φ∗

2). By the Itô formula, for any t ≥ N1 we 
have

|(w,ψ)(t)|2H = |(w,ψ)(N1)|2H − 2ν
t∫

N1

‖w(s)‖2ds− 2ε2
t∫

N1

|A3/2
1 ψ(s)|2L2ds

−2
t∫

N1

(FN (‖v∗‖)b0(w, v∗, w) − b1(v∗, ψ, εA1ψ))ds

−2
t∫

N1

(FN (‖v∗‖) − FN (‖v‖))b0(v, v∗, w)ds + 2
t∫

N1

b1(w,ψ, εA1φ
∗))ds

−2α
t∫

N1

〈A1f(φ∗) −A1f(φ), εA1ψ〉ds + 2
t∫

N1

〈g1(v∗(s), φ∗(s)) − g1(v, φ), (w, εA1ψ)(s)〉ds

+
t∫

N1

‖g2(s, v(s), φ(s))‖2
L2(H)ds + 2

t∫
N1

〈(w, εA1ψ)(s), g2(s, v(s), φ(s))dWs〉

(3.59)

By the Burkholder–Davis–Gundy lemma, we have

2E

⎡
⎣ sup
N1≤t≤N1+1

t∫
N1

〈(w, εA1ψ)(s), g2(s, v(s), φ(s))dWs〉

⎤
⎦

≤ η1

⎡
⎣E

N1+1∫
N1

|(w,ψ)(s)|2H‖g2(s, v(s), φ(s))‖2
L2(H)ds

⎤
⎦

1/2

≤ η1

⎡
⎣E

⎛
⎝ sup

N1≤t≤N1+1
|(w,ψ)(t)|2H

N1+1∫
N1

‖g2(s, v(s), φ(s))‖2
L2(H)ds

⎞
⎠
⎤
⎦

1/2

≤ η2

N1+1∫
N1

E‖g2(s, v(s), φ(s))‖2
L2(H)ds + 1

2E sup
N1≤t≤N1+1

|(w,ψ)(s)|2H,

(3.60)

where η1 > 0, η2 > 0 are some constants.
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Therefore as in (3.49)–(3.54), we obtain that

E

[
sup

N1≤t≤N1+1
|(w,ψ)(t)|2H

]
≤ E|(w,ψ)(N1)|2H − 2α1

N1+1∫
N1

E‖(w,ψ)(s)‖2
Uds

+
[
ζλ−1

1 + c1‖(v∗, φ∗)‖U + 2L1
] N1+1∫

N1

E‖(w,ψ)(s)‖2
Uds

+η0

N1+1∫
N1

E‖g2(s, v(s), φ(s))‖2
L2(H)ds + 1

2E sup
N1≤t≤N1+1

|(w,ψ)(t)|2H,

(3.61)

for some η0 > 0.
It follows (3.44), (3.48) and (3.61) that

1
2E sup

N1≤t≤N1+1
|(w,ψ)(t)|2H ≤ E|(w,ψ)(N1)|2H + η0

N1+1∫
N1

(ϕ(s) + (ζ + δ(s))E|(w,ψ)(s)|2H)ds. (3.62)

Since

ϕ(t) ≤ Mϕe
−ρt, δ(t) ≤ Mδe

−ρt, η ∈ (0, ρ), Mϕ ≥ 1, Mδ ≥ 1, (3.63)

it follows from Theorem 3.2 that there exist M1 = M1((v, φ)(0)) ≥ 1 such that

E

(
sup

N1≤t≤N1+1
|(w,ψ)(t)|2H

)
≤ M1e

−ηN1 , (3.64)

and the proof of the theorem follows from the Borel–Cantelli lemma as in [6] (see also [7]). �
Theorem 3.4. Let (v∗, φ∗) ∈ U be the unique solution to (3.4). Furthermore, we assume that

g2(v∗, φ∗) = 0, ∀t ≥ 0,

‖g2(t, v1, φ1) − g2(v2, φ2)‖L2(H) ≤ cg|(v1, φ1) − (v2, φ2)|H, ∀(v1, φ1), (v2, φ2) ∈ H.
(3.65)

If

−2α1 + cgλ
−1
1 + c1‖(v∗, φ∗)‖U + 2L1 < 0, (3.66)

then any weak solution to (2.31) converges to (v∗, φ∗) exponentially in the mean square. That is, there exists 
η > 0 such that

E|(v, φ)(t) − (v∗, φ∗)|2H ≤ E|(v0, φ0) − (v∗, φ∗)|2He−ηt, ∀t ≥ 0. (3.67)

Moreover, the path-wise exponential stability with probability one of (v∗, φ∗) also holds true.
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Proof. Let (w, ψ) = (v∗1 , φ∗
1) − (v∗2 , φ∗

2). We start with the equality

v∗ − v(t) = v∗ − v(0) −
t∫

0

[
νA0(v∗ − v) −BN

0 (v, v) + BN
0 (v∗, v∗)

]
ds

+
t∫

0

[R0(εA1φ
∗, φ∗) −R0(εA1φ, φ)) + g1(v∗, φ∗) − g1(v, φ))] ds

+
t∫

0

(g1
2(s, v∗, φ∗) − g1

2(s, v, φ))dW 1
s ,

φ∗ − φ(t) = φ∗ − φ(0) − ε

t∫
0

A2
1(φ∗ − φ)ds−

t∫
0

[(B1(v∗, φ∗) −B1(v, φ)] ds

−α

t∫
0

[A1f(φ∗) −A1f(φ)] ds +
t∫

0

(g2
2(v∗, φ∗) − g2

2(v, φ))dW 2
s .

(3.68)

Let η > 0 small enough and fixed later. By the Itô formula, we have

Eeηt|(w,ψ)(t)|2H = E|(w,ψ)(0)|2H +
t∫

0

ηeηsE|(w,ψ)(s)2L2ds− 2ν
t∫

0

eηsE‖w(s)‖2ds

−2ε2
t∫

0

eηsE|A3/2
1 ψ(s)|2L2ds− 2

t∫
0

eηsEFN (‖v∗‖)b0(w, v∗, w)ds

−2
t∫

0

eηsE(FN (‖v∗‖) − FN (‖v‖))b0(v, v∗, w)ds + 2ε
t∫

0

eηsEb1(w,ψ, εA1φ
∗)ds− 2ε

t∫
0

eηsEb1(v∗, ψ, εA1ψ)ds

+2
t∫

0

eηsE〈g1(v∗(s), φ∗(s)) − g1(v, φ), (w, εA1φ)(s)〉ds +
t∫

0

eηsE‖g2(v∗(s), φ∗(s)) − g2(v, φ)‖2
L2(H)ds

−2
t∫

0

eηsE〈αA1f(φ∗) − αA1f(φ), εA1ψ(s)〉ds.

(3.69)

It follows from (3.69) and (2.18)–(2.20) that

Eeηt|(w,ψ)(t)|2H ≤ E|(w,ψ)(0)|2H +
t∫

0

ηeηsE|(w,ψ)(s)|2Hds

+
[
−2α1 + 2cgλ−1

1 + c1‖(v∗, φ∗)‖U + 2L1
] t∫

0

eηsE|(w,ψ)(s)2Hds

≤ E|(w,ψ)(0)|2H + (η + κ2λ1)
t∫

0

eηs|(w,ψ)(s)|2Hds ≤ E|(w,ψ)(0)|2H,

(3.70)

where

κ2 ≡ −2α1 + cgλ
−1
1 + c1‖(v∗, φ∗)‖U + 2L1 < 0, (3.71)
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and η is chosen such that

η + κ2λ1 < 0.

It follows from (3.70) that

Eeηt|(w,ψ)(t)|2H ≤ E|(w,ψ)(0)|2H, (3.72)

and the proof of the first part of the theorem follows as that of Theorem 3.2. The rest of the theorem is 
proved using a similar method to the one in the proof of Theorem 3.3. �
Theorem 3.5. We assume that g0 ≡ 0 and there exists a constant ζ > 0 such that

‖g2(t, v, φ)‖2
L2(H) ≤ ϕ(t) + (ζ + δ(t))|(v, φ)|2H, (3.73)

where ϕ(t), δ(t) satisfy (3.45). We also suppose that g1 : [0, ∞) × U → U∗ satisfies

〈g1(t, v, φ), (v, εA1φ)〉 ≤ α(t) + (c3 + β(t))|(v, φ)|2H, (3.74)

where c3 > 0, α(t), β(t) are integrable functions such that there exist real numbers ρ > 0, Mα ≥ 1, Mβ ≥ 1, 
with

α(t) ≤ Mαe
−ρt, β(t) ≤ Mβe

−ρt, t ≥ 0. (3.75)

Furthermore, let

2α1 > ζλ−1
1 + 2c3λ−1

1 . (3.76)

Then any weak solution (v, φ)(t) to (2.31) converges to zero almost surely exponentially.

Proof. Let η ∈ (0, ρ) be such that

2α1 > λ−1
1 (ζ + η) + 2c3λ−1

1 . (3.77)

Then we have

Eeηt|(v, φ)(t)|2H = E|(v, φ)(0)|2H +
t∫

0

ηeηsE|(v, φ)(s)|2Hds

−2ν
t∫

0

eηsE‖v(s)‖2ds− 2ε2
t∫

0

eηsE|A3/2
1 φ(s)|2L2ds− 2ε

t∫
0

eηsE〈A1f(φ), εA1φ〉ds

+2
t∫

0

eηsE〈g1(v(s), φ(s)), (v, εA1φ)(s)〉ds +
t∫

0

eηsE‖g2(s, v(s), φ(s))‖2
L2(H)ds

≤ E|(v, φ)(0)|2H + (−2α1 + λ−1
1 (ζ + η) + 2c3λ−1

1 )
t∫

0

eηsE‖(v, φ)(s)‖2
Uds

+
t∫

0

eηsE(2α(s) + ϕ(s) + (β(s) + δ(s))|(v, φ)(s)|2H)ds

≤ E|(v, φ)(0)|2H +
t∫
eηsE(2α(s) + ϕ(s) + (β(s) + δ(s))|(v, φ)(s)|2H)ds,

(3.78)
0
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which gives

Eeηt|(v, φ)(t)|2H ≤ E|(v, φ)(0)|2H +
t∫

0

eηs(ϕ(s) + 2α(s) + (2β(s) + δ(s))E|(v, φ)(s)|2Hds. (3.79)

By the Gronwall lemma, we obtain that any weak solution to (2.31) converges to zero exponentially in the 
mean square. We can then finish the proof using the same method as in the proof of Theorem 3.3. �
4. Stabilization of the 3D GMCHNS model (2.31)

Hereafter, we briefly discuss the stabilization of the 3D GMCHNS model (2.31). As noted in [6,7], in 
order to produce a stabilization effect, it is enough to consider a one dimensional Wiener process for that 
purpose.

Hereafter, we suppose that g0 ∈ H and g2 is given by

g2(t, v, φ) = σ(v∗ − v, φ∗ − φ), ∀(v, φ) ∈ H,

for some σ ∈ �. We also assume that

|g1(v1, φ1) − g1(v2, φ2)|H ≤ L1|(v1, φ1) − (v2, φ2)|H, ∀(v1, φ1), (v2, φ2) ∈ H, g1(0, 0) �= 0. (4.1)

Lemma 4.1. Let (v∗, φ∗) ∈ U be the unique solution to (3.4). If g1 satisfies (4.1) and

2α1 − [c1‖(v∗, φ∗‖U + 2L1] > 0, (4.2)

where L1 is the Lipschitz constant of g1 given in (4.1), then the stationary solution (v∗, φ∗) to (3.4) is 
exponentially stable.

Proof. We will only sketch the proof as it is similar to the proof of Theorem 10.2 of [26]. Let (v, φ) be a 
solution to the deterministic system:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dv
dt

+ νA0v + BN
0 (v, v) −R0(εA1φ, φ) = g1

0 + g1
1(v, φ),

dφ
dt

+ A1μ + B1(v, φ) = g2
0 + g2

1(v, φ), μ = εA1φ + αf(φ),

(v, φ)(0) = (v0, φ0).

(4.3)

Let

(w,ψ) = (v∗, φ∗) − (v, φ).

Then (w, ψ) satisfies

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dw
dt

+ νA0w + FN (‖v‖)B0(v, w) + FN (‖v∗‖)B0(w, v∗)(FN (‖v∗‖) − FN (‖v‖))B0(v, v∗)

−R0(εA1φ
∗, ψ) −R0(εA1ψ, φ) = g1

1(v∗, φ∗) − g1
1(v, φ),

dψ
dt

+ εA2
1ψ + B1(w, φ) + B1(v∗, ψ) + αA1f(φ∗) − αA1f(φ) = g2

1(v∗, φ∗) − g2
1(v, φ),

(w,ψ)(0) = (v∗, φ∗) − (v0, φ0).

(4.4)

Let
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y = |(w,ψ)|2H.

Then, multiplying (4.4)1 by w, (4.4)2 by εA1ψ and adding the resulting equalities, we derive as in (3.49)–
(3.51) that

dy

dt
+ 2α1‖(w,ψ)‖2

U ≤ [c1‖(v∗, φ∗‖U + 2L1] ‖(w,ψ)‖2
U . (4.5)

Assuming that

σ0 ≡ 2α1 − [c1‖(v∗, φ∗‖U + 2L1] > 0, (4.6)

we derive that

dy

dt
+ κ2y ≤ 0, (4.7)

where

κ2 ≡ λ1σ0 > 0. (4.8)

It follows that

y(t) ≤ y(0)e−κ2t, ∀t ≥ 0, (4.9)

and the lemma is proved. �
If the Lipschitz constant L1 of g1 is sufficiently large such that κ2 < 0, then we do not know if (v∗, φ∗) is 

exponentially stable or not. However, the following result related to the stabilization of the 3D GMCHNS 
systems holds true.

Theorem 4.2. We assume that g1 satisfies (4.1). Let (v∗, φ∗) ∈ U be the unique solution to (3.4). Let κ2 < 0, 
where κ2 is given by (4.8). Assume that σ is any real number such that

λ1κ2 + σ2 > 0. (4.10)

Then there exists Ω0 ⊂ Ω, P(Ω0) = 0, such that for ω /∈ Ω0, there exists T (ω) > 0 such that

|(v, φ)(t) − (v∗, φ∗)|2H ≤ |(v, φ)(0) − (v∗, φ∗)|2He−ηt, ∀t ≥ T (ω), (4.11)

where η > 0 is given below and (v, φ)(t) is any weak solution to (2.31) with the function g2 given by

g2(t, x, y) = σ(v∗ − x, φ∗ − y), ∀(x, y) ∈ H. (4.12)

Proof. Let

(w,ψ)(t) = (v∗, φ∗) − (v, φ)(t).
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Applying the Itô formula to |(w, ψ)(t)|2H, we derive as in (3.49)–(3.51) that

|(w,ψ)(t)|2H = |(w,ψ)(0)|2H − 2ν
t∫

0

‖w(s)‖2ds− 2ε2
t∫

0

|A3/2
1 ψ(s)|2L2ds

−2
t∫

0

(FN (‖v∗‖) − FN (‖v‖))b0(v, v∗, w)ds

−2
t∫

0

FN (‖v∗‖)b0(w, v∗, w)ds− 2
t∫

0

b1(v∗, ψ, εA1ψ)ds + 2
t∫

0

b1(w,ψ, εA1φ
∗)ds

−2α
t∫

0

〈A1f(φ∗) −A1f(φ), εA1ψ〉ds +
t∫

0

‖g2(s, v(s), φ(s))‖2
L2(H)ds

+2
t∫

0

〈(w, εA1ψ), g2(s, v, φ)dWs(s)〉 + 2
t∫

0

〈g1(v∗, φ∗) − g1(v, φ), (w, εA1ψ)〉ds.

(4.13)

Using (3.52), we also have

−2ν‖w(s)‖2 − 2ε2|A1ψ(s)|2L2 + 2|FN (‖v∗‖) − FN (‖v‖)||b0(v, v∗, w)|

+2FN (‖v∗‖)|b0(w, v∗, w)| + 2|b1(v∗, ψ, εA1ψ)| + 2|b1(w,ψ, εA1φ
∗)|

−2α
t∫

0

〈A1f(φ∗) −A1f(φ), εA1ψ〉

≤ [−2α1 + c1‖(v∗, φ∗‖U + 2L1] ‖(w,ψ)(s)‖2
U

≤ [−2α1 + c1‖(v∗, φ∗‖U + 2L1]λ1|(w,ψ)(s)|2H.

(4.14)

Let

2η = λ1κ2 + σ2 > 0, (4.15)

where κ2 is given by (4.8).
It follows from (4.13)–(4.15) that

log |(w,ψ)(t)|2H =
t∫

0

1
|(w,ψ)(t)|2H

(
−2ν‖w(s)‖2 − 2ε2|A3/2

1 ψ(s)|2L2 + σ2|(w,ψ)(s)|2H
)
ds

+ log |(w,ψ)(0)|2H −
t∫

0

2
|(w,ψ)(s)|2H

(b1(v∗, ψ, εA1ψ) − b1(w,ψ, εA1φ
∗)) ds

−
t∫

0

2
|(w,ψ)(s)|2H

(FN (‖v∗‖)b0(w, v∗, w) + (FN (‖v∗‖) − FN (‖v‖))b0(v, v∗, w)) ds

+
t∫

0

2
|(w,ψ)(s)|2H

(〈g1(v∗, φ∗) − g1(v, φ), (w, εA1ψ)〉 − α〈A1f(φ∗) −A1f(φ), εA1ψ〉) ds

+2
t∫

0

σ|(w,ψ)(s)|2H
|(w,ψ)(s)|2H

dWs(s) −
1
2

t∫
0

4σ2|(w,ψ)(s)|4H
|(w,ψ)(s)|4H

ds

≤ log |(w,ψ)(0)|2 − 2ηt + 2σW (t).

(4.16)
H t
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Since almost surely we have

lim
t→∞

Wt(t)
t

= 0,

we can find Ω0 ⊂ Ω with P(Ω0) = 0 such that for each ω /∈ Ω0, there exists T (ω) > 0 such that for all 
t ≥ T (ω), we have

2σWt(t)
t

≤ η. (4.17)

Therefore, we obtain that for t ≥ T (ω) we derive from (4.16) that

log |(w,ψ)(t)|2H ≤ log |(w,ψ)(0)|2H − ηt, (4.18)

which proves (4.11). �
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