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We say that a polynomial differential system ẋ = P (x, y), ẏ = Q(x, y) having 
the origin as a singular point is Z2-symmetric if P (−x, −y) = −P (x, y) and 
Q(−x, −y) = −Q(x, y). It is known that there are nilpotent centers having a local 
analytic first integral, and others which only have a C∞ first integral. However 
these two kinds of nilpotent centers are not characterized for different families of 
differential systems. Here we prove that the origin of any Z2-symmetric system is 
a nilpotent center if, and only if, there is a local analytic first integral of the form 
H(x, y) = y2 + · · · , where the dots denote terms of degree higher than two.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction and statement of the main results

We consider a planar differential system of the form

ẋ = P (x, y), ẏ = Q(x, y), (1.1)

with P and Q defined and analytic in a neighborhood of the origin where the origin is an isolated singular 
point. The local phase portrait near an isolated singular point can be determined by the Hartman–Grobman 
theorem except for the case of a monodromic singularity. We recall that a singular point is monodromic when 
nearby orbits rotate around it. For analytic differential systems it is known that the unique monodromic 
singularities are centers and foci. We recall that a center is a singular point for which there exists a punctured 
neighborhood filled of periodic orbits, and a focus has a punctured neighborhood filled of spiraling orbits. 
The center problem consists in distinguishing between a center or a focus at a monodromic singular point. If 
the linear part has pure imaginary eigenvalues or has zero eigenvalues but the linear part is not identically 
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zero then there exist algorithms to find the necessary conditions to have a center, see [11,16,29]. However, 
the characterization when the linear part is totally zero is an open problem, see [17–20,26] for some partial 
results.

In this work we focus on nilpotent singularities, that is, the case when the linear part has two zero eigen-
values but the linear part is nonzero. For such singularities, unlike the case of pure imaginary eigenvalues, 
does not exist, in general, an analytic first integral in a neighborhood of the origin when the singular point 
is a center, see [12]. Nevertheless an interesting question is: What nilpotent centers still have an analytic 
first integral like the linear type centers? Of course the nilpotent Hamiltonian systems is a big family which 
have this property. But the question is if there exist other big families with this characteristic. It is well 
known that all the centers, and in particular the nilpotent centers always have a C∞ first integral, see [28]. 
Moreover for certain nilpotent systems the existence of a center is equivalent to the existence of a formal 
inverse integrating factor, see [23,24]. This result have been generalized in [4]. Sometimes there is no rela-
tion between the existence of a formal integrating factor and the integrability or the center problem, see for 
instance [2]. Limit cycle bifurcations from a nilpotent focus or center are studied in [22].

In [10] it is considered the following differential system

ẋ = y + X2n+1(x, y), ẏ = Y2n+1(x, y), (1.2)

where X2n+1 and Y2n+1 are homogeneous polynomials of degree 2n + 1 and the origin is a monodromic 
singular point. The change of variables x = x1 −α(−β)−1/2y1, y = (−β)−1/2y1 and dt = (−β)−1/2dτ where 
α = X2n+1(1, 0) and β = Y2n+1(1, 0) transforms system (1.2) into the system

ẋ = y + P2n+1(x, y), ẏ = Q2n+1(x, y), (1.3)

where P2n+1 and Q2n+1 are homogeneous polynomials of degree 2n + 1 with P2n+1(1, 0) = 0, and 
Q2n+1(1, 0) = −1. From [9] it is known that for system (1.3) there exists a formal series of the form

U = (n + 1)y2 +
∞∑
k=1

P2(kn+1)(x, y), (1.4)

where P2(kn+1) are homogeneous polynomials of degree 2(kn + 1) and P2(n+1)(1, 0) = 1, such that its 
derivative along the trajectories of system (1.3) takes the form

dU

dt
=

∞∑
k=1

fk x
2(k+1)n+2,

where fk are the focus quantities at the origin of system (1.3). In fact if P2(kn+1)(0, 1) = 0, then the formal 
series (1.4) is uniquely determined. In [9] it is proved that the origin of system (1.3) is a center if and only 
if fk = 0 for all k and if fk = 0 for k = 1, . . . , m − 1 but fm �= 0 then the origin is a focus of order m.

This result for system (1.3) was generalized in [6] to the following analytic family of planar vector fields

X =
∞∑
i=0

Xq−p+2is, (1.5)

where Xk denotes a (p, q)-quasi-homogeneous vector field of weighted degree k (see definition in the next 
section) and satisfying the following three conditions:

(i) p and q are positive odd integers without common factors and p ≤ q;
(ii) s = np − q ≥ 1 for some integer n ≥ 2;
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(iii) Xq−p = y∂x and Xq−p+2s = X(2n−1)p−q = A(x, y)∂x + B(x, y)∂y with B(1, 0) < 0.

Without loss of generality we can take B(1, 0) = −1, which means that the monomial −x2n−1 is always 
present in B(x, y). Family (1.5) contains the systems of the form (1.3). For such a big family in [6] was 
obtained the same result that for system (1.3). In [6] it was conjectured that all systems of family (1.5) have 
an analytic first integral defined in a neighborhood of the origin. This claim is, in fact, a straightforward 
consequence of the results given in [27]. Hence our first result is the following:

Theorem 1.1. The origin of system (1.5) is a nilpotent center if, and only if, there is a local analytic first 
integral which can be expanded as H(x, y) = y2 + · · · , where the dots denote terms of degree higher than 
two.

Moreover in [15] it is studied the cyclicity of system (1.5). Now we give the following definition in order 
to establish the main result of this work.

Definition 1.2. System (1.1) is Z2-symmetric (with respect to the origin) if it is invariant under the involution 
(x, y) → (−x, −y), that is P (−x, −y) = −P (x, y) and Q(−x, −y) = −Q(x, y).

Note that system (1.5) and its particular case system (1.3) are Z2-symmetric.
The main result of this work is the following.

Theorem 1.3. The origin of any Z2-symmetric system is a nilpotent center if, and only if, there is a local 
analytic first integral of the form H(x, y) = y2 + · · · , where the dots denote terms of degree higher than two.

Theorem 1.3 gives the first large family of systems, of course apart from the Hamiltonians ones, having 
a nilpotent center with a local analytic first integral around the singular point.

2. Preliminaries results and proof of the main result

As usual we define the set of natural numbers N = {1, 2, . . .}. A scalar polynomial f is quasi-homogeneous 
of type t = (t1, t2) ∈ N

2 and degree k if f(εt1x, εt2y) = εkf(x, y). The vector space of quasi-homogeneous 
scalar polynomials of type t and degree k is denoted by Pt

k. A polynomial vector field F = (P, Q)T is quasi-
homogeneous of type t and degree k if P ∈ Pt

k+t1
and Q ∈ Pt

k+t2
. The vector space of quasi-homogeneous 

polynomial vector fields of type t and degree k is denoted by Qt
k. Given an analytic vector field F, we can 

write it as a quasi-homogeneous expansion corresponding to a fixed type t:

F(x) = Fr(x) + Fr+1(x) + · · · =
∑
j≥r

Fj , (2.6)

where x ∈ R
2, r ∈ Z

+ and Fj ∈ Qt
j i.e., each term Fj is a quasi-homogeneous vector field of type t and 

degree j. Any Fj ∈ Qt
j can be uniquely written as

Fj = Xhj
+ μjD0, (2.7)

where μj = 1
r+|t| div (Fj) ∈ Pt

j , hj = 1
r+|t|D0 ∧ Fj ∈ Pt

j+|t|, D0 = (t1x, t2y)T , and Xhj
=

(−∂hj/∂y, ∂hj/∂x)T is the Hamiltonian vector field with Hamiltonian function hj, see [3, Prop. 2.7] for 
more details of this decomposition.

As we have said, in this work we are interested in the center problem for Z2-symmetric analytic nilpotent 
differential systems in the plane, i.e., differential systems of the form
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ẋ = y + P (x, y), ẏ = Q(x, y), (2.8)

where P, Q are analytic function in a neighborhood of the origin without constants and linear terms with 
P (−x, −y) = −P (x, y) and Q(−x, −y) = −Q(x, y).

The following result provides the first quasi-homogeneous component of a monodromic Z2-symmetric 
nilpotent vector field.

Proposition 2.4 (Monodromic normal preform). Consider system (2.8) that now we write as ẋ = F(x). 
If the origin of system (2.8) is monodromic then there exist a Z2-symmetric polynomial change Φ and a 
type t such that F̃ := Φ∗F is a Z2-symmetric vector field, F̃ = F̃r + · · · , F̃r ∈ Qt

r, where the dots are 
quasi-homogeneous terms of type t and degree greater than r, and the first quasi-homogeneous component 
respect to the type t, F̃r is of one of the following two forms:

(A) F̃r = (y, −x4n−1)T ∈ Q(1,2n)
2n−1 , i.e., t = (1, 2n) and r = 2n − 1, n ∈ N.

(B) F̃r = (y + dx2n+1, −x4n+1 + (2n + 1)dx2ny)T ∈ Q(1,2n+1)
2n , i.e., t = (1, 2n + 1) and r = 2n, n ∈ N.

Proof. System (2.8) can be written as

ẋ = y + xf̃1(x2) + yx2f̃2(x2, y2) + y3f̃3(y2),

ẏ = xg̃1(x2) + yg̃2(x2) + xy2g̃3(x2, y2) + y3g̃4(y2),
(2.9)

with f̃1(0) = g̃1(0) = f̃3(0) = g̃2(0) = g̃4(0) = 0 and f̃2(0, 0) = g̃3(0, 0) = 0. Let us denote by M
the lowest-degree in the Taylor expansion of g̃1(x); and N is the minimum of the lowest-degrees of the 
Taylor expansions for f̃1(x) and g̃2(x). Hence, M = ∞ arises if g̃1(x) ≡ 0 and N = ∞ corresponds to 
f̃1(x) ≡ g̃2(x) ≡ 0. Then, we can write the nilpotent system (2.9) as

ẋ = y + x2N+1f̂1(x2) + x2yf̃2(x2, y2) + y3f̃3(y2),
ẏ = x2Nyĝ2(x2) + x2M+1ĝ1(x2) + xy2g̃3(x2, y2) + y3g̃4(y2),

(2.10)

where M ∈ N ∪ {∞}, M ≥ 1, N ∈ N ∪ {∞}, and f̂1(x) = a + O (x), ĝ1(x) = b + O (x), ĝ2(x) = c + O (x), 
f̃2(x, y) = O (x, y), f̃3(y) = O (y), g̃3(x, y) = O (x, y), g̃4(y) = O (y) with (a2 + c2)b �= 0.

• If M = ∞, then the line y = 0 is filled up of singular points, the origin is not monodromic and we must 
exclude this case.

• If M < 2N then the Newton diagram of (2.10) has two exterior vertices V1 = (0, 2) associated to the 
vector field (y, 0)T and V2 = (2(M + 1), 0) associated to the vector field (0, cx2M+1)T , with c �= 0, and 
a unique compact edge of type (1, M + 1) whose vector field associated is FM = (y, cx2M+1)T where 
FM = Xh with h = −(cx2(M+1) − (M + 1)y2)/(2(M + 1)). We look at different cases in function of the 
discriminant of h, Δ = 4(M + 1)c
– If c > 0 applying statement (2) of [7, Theorem 3] we have that the origin of system (2.8) is not 

monodromic.
– If c < 0 then h has not any real factor. Then by [7, Proposition 6] the origin of system(2.8) is 

monodromic. Applying the rescaling x = u(−1/c)1/(2M), y = v(−1/c)1/(2M) we obtain the case (A)
when M is odd taking 2n = M + 1, or the case (B) when M es even taking d = 0 and 2n = M .

• If 2N < M < ∞ then the Newton diagram of (2.10) has two exterior vertices V1 = (0, 2) associated to 
the vector field (y, 0)T and V3 = (2(M + 1), 0) associated to the vector field (0, cx2M+1)T with c �= 0
and the inner vertex V2 = (2N +1, 1) associated to the vector field (ax2N+1, bx2Ny)T , with a2 + b2 �= 0, 
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where this last vertex has no even coordinates. Applying [7, Theorem 3, statement (1)], the origin of 
system (2.10) is not monodromic.

• If 2N = M < ∞ then the Newton diagram of (2.10) has two exterior vertices V1 = (0, 2) associated to 
the vector field (y, 0)T and V2 = (2(2N+1), 0) associated to the vector field (0, cx4N+1)T with c �= 0, and 
a unique compact edge of type (1, 2N +1) whose vector field associated is F2N = (y+ax2N+1, cx4N+1 +
bx2Ny)T with c(a2 + b2) �= 0.
It is a simple task to perform the splitting (2.7) for this case. We obtain Fr = Xh +μD0, with r = 2N , 
r + |t| = 2(2N + 1), and

h(x, y) = c
2(2N+1)x

2(2N+1) +
(

b
2(2N+1) −

1
2a

)
x2N+1y − 1

2y
2

= −1
2

(
y −

(
b

2(2N+1) −
a
2

)
x2N+1

)2
− Δ

2(2N + 1)x
2(2N+1),

μ(x, y) = b+(2N+1)a
2(2N+1) x2N ,

where Δ = (b − (2N +1)a)2 +4(2N +1)c is the discriminant of h. We see the different cases in function 
of the sign of Δ.
(i) If Δ > 0, then h is decomposed into a product of two simple factors. Applying [7, Theorem 3, 

statement (4)], the origin of system (2.8) is not monodromic.

(ii) If Δ ≤ 0 taking Ψ0(x, y) =
(
x, y −

(
b

2(2N+1) −
a
2

)
x2N+1

)T

we get (Ψ0)∗ Fr = (y + d̃x2N+1,

Δ
4(2N+1)x

4N+1 + (2N + 1)d̃x2Ny)T with d̃ = b+(2N+1)a
2(2N+1) .

We must take into account that as the change Ψ0 is Z2-symmetric this change transforms system 
(2.10) into another Z2-symmetric one.
(ii.1) If Δ < 0 the rescaling x = u(−4(2N+1)/Δ)1/(4N), y = v(−4(2N+1)/Δ)1/(4N) transforms the 

system into another one whose first quasi-homogeneous term is Fr = (y+dx2N+1, −x4N+1 +
(2N +1)dx2Ny)T with d = (−4(2N +1)/Δ)1/2d̃. This corresponds to the case (B) for n = N .

(ii.2) If Δ = 0 we have a system (2.10) with new values of N and M , and we repeat the previous 
arguments. �

Next Lemma is a technical result that will be used later on.

Lemma 2.5. Let F be the vector field defined by F := −Xh+
∑2k

j=k α
(0)
j xjD0+

∑∞
l=1

∑2k
j=0 α

(l)
j xjhlD0, where 

k ∈ N, h = 1
2y

2 + 1
2k+2x

2k+2 ∈ Pt
2k+2, D0 = (x, (k + 1)y)T ∈ Qt

0 and t = (1, (k + 1))T and consider the 
change of coordinates to generalized polar coordinates and the scaling of time given by

(x, y) = (uCs(θ), uk+1Sn(θ)), dt = 1
uk dτ, (2.11)

where (Cs(θ), Sn(θ)) are the solutions to the initial value problem (dx/dθ, dy/dθ) = Xh with x(0) = 1, 
y(0) = 0. Then system (ẋ, ẏ)T = F(x, y), doing the change of variables (2.11), is transformed into system

du

dτ
= u

⎡
⎣ 2k∑
j=k

α
(0)
j Csj(θ)uj−k +

∞∑
l=1

2k∑
j=0

α
(l)
j Csj(θ)u2(k+1)l+j−k

⎤
⎦ ,

dθ

dτ
= 1.

Proof. It is a simple matter to show that the functions Cs(θ), Sn(θ) have the following properties:
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(i) They satisfy 1
2Sn2(θ) + 1

2k+2Cs2k+2(θ) = 1 for all θ. Therefore h(x, y) = u2k+2 and ∇h · D0 = (2k +
2)h(x, y) = (2k + 2)u2k+2.

(ii) They are periodic functions with the same minimal period T , and satisfy Cs(T ) = 1 and Sn(T ) = 0.

Additional properties of these functions can be found in [14].
Differentiating x = uCs(θ), y = uk+1Sn(θ) with respect to the time, and denoting x = (x, y)T , we get 

ẋ = 1
uD0u̇ + 1

uk Xhθ̇. From this we obtain:

ẋ ∧ Xh = 1
uD0 ∧Xhu̇ = 1

u∇h · D0u̇ = 1
u (2k + 2)h(x, y)u̇ = (2k + 2)u2k+1u̇,

D0 ∧ ẋ = 1
uk D0 ∧ (−Xh) θ̇ = − 1

uk∇h · D0θ̇ = −2k+2
uk h(x, y)θ̇ = −(2k + 2)uk+2θ̇.

On the other hand we have

ẋ ∧ Xh =

⎡
⎣ 2k∑
j=k

α
(0)
j xj +

∞∑
l=1

2k∑
j=0

α
(l)
j xjhl

⎤
⎦D0 ∧ Xh

=

⎡
⎣ 2k∑
j=k

α
(0)
j cosj(θ)uj +

∞∑
l=1

2k∑
j=0

α
(l)
j cosj(θ)u2(k+1)l+j

⎤
⎦∇h · D0

= (2k + 2)u2k+2

⎡
⎣ 2k∑
j=k

α
(0)
j cosj(θ)uj +

∞∑
l=1

2k∑
j=0

α
(l)
j cosj(θ)u2(k+1)l+j

⎤
⎦ ,

D0 ∧ ẋ = D0 ∧ (−Xh) = −∇h · D0 = −(2k + 2)h(x, y) = −(2k + 2)u2k+2.

Therefore we get

u̇ = u

⎡
⎣ 2k∑
j=k

α
(0)
j cosj(θ)uj +

∞∑
l=1

2k∑
j=0

α
(l)
j cosj(θ)u2(k+1)l+j

⎤
⎦ ,

θ̇ = uk,

and applying the rescaling of time dt = u−kdτ we obtain the result. �
Hence in order to study the centers at the origin of systems (2.8), it is enough to study the systems whose 

first quasi-homogeneous component are of type (A) or (B) according to Proposition 2.4.
The following result shows that in case (B) the first quasi-homogeneous component can be simplified.

Theorem 2.6. If the vector field F = F̃2n+· · · , with F̃2n = (y+dx2n+1, −x4n+1+(2n +1)dx2ny)T ∈ Q(1,2n+1)
2n

has a center at the origin then d = 0.

Proof. If the origin of system (ẋ, ẏ)T = F̃2n + · · · is a center, by [1, Theorem 5] also is a center the origin 
of system (ẋ, ẏ)T = (y + dx2n+1, −x4n+1 + (2n + 1)dx2ny)T . Applying the change of variables (2.11) for 
k = 2n we obtain system (u′, θ′)T = (dCs2n(θ)u, 1)T whose solutions are given by θ(τ) = θ0 a constant and 
u(τ) = u0e

dCs2n(θ0)τ . Therefore, we have d = 0, otherwise the origin of (ẋ, ẏ)T = F̃2n is a focus. �
Consequently to study the center problem for system (2.8), without lost of generality, we can assume 

that the first quasi-homogeneous component of the vector field respect to the type t = (1, n + 1) is Fn =
(y, −x2n+1)T ∈ Q(1,n+1)

n . Notice that this case includes cases (A) and (B) of Proposition 2.4.
The following result provides a normal form of these vector fields.
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Proposition 2.7. Let F be the Z2-symmetric vector field, F :=
∑

j≥n Fj where Fj ∈ Qt
j, t = (1, n + 1) and 

Fn = (y, −x2n+1)T . Then the vector field F is orbitally equivalent to

G := Fn +
n∑

j=�n2 �+1

αjx
2jD0 +

∞∑
l=1

n∑
j=0

α
(l)
j x2jhlD0,

where h = 1
2y

2 + 1
2(n+1)x

2n+2, and D0 = (x, (n + 1)y) ∈ Qt
0.

Proof. By [8, Theorem 16] we have that the vector field Fn + · · · is orbitally equivalent to Fn +∑2n
j=n+1 αjx

jD0 +
∑∞

l=1
∑2n

j=0 α
(l)
j xjhlD0. On the other hand the vector field F is Z2-symmetric. If μ

is a scalar function sum of homogeneous monomial of degree even then μF is a Z2-symmetric vector field, 
and if G is a Z2-symmetric vector field then [F, G] is also a Z2-symmetric vector field. So applying changes 
of variables that are Z2-symmetric and the rescaling of time μ with μ(−x, −y) = μ(x, y), we obtain a 
Z2-symmetric normal form. Following the ideas [8, Section 2] it is possible to prove that a normal form 
Z2-symmetric of F is the projection of the normal form shown above over the Z2-symmetric vector fields, 
i.e.

Fn +
n∑

j=�n2 �+1

αjx
2jD0 +

∞∑
l=1

n∑
j=0

α
(l)
j x2jhlD0. �

Theorem 2.8. The origin of system (2.8) is a center if, and only if, there exists n ∈ N such that it is orbitally 
equivalent to (ẋ, ẏ)T = (y, −x2n+1)T .

Proof. The sufficient condition is trivial since the origin of (ẋ, ẏ)T = (y, −x2n+1)T is a center.
Now we see the necessary condition. If the origin of system (2.8) is a center then by Proposition 2.4 and 

Theorem 2.6, we can affirm that system (2.8) is conjugate to system (ẋ, ẏ)T = Fn + · · · being Fn = −Xh ∈
Qt

n with h = 1
2y

2 + 1
2n+2x

2n+2 ∈ Pt
2n+2, t = (1, n + 1). Applying Proposition 2.7, we get that system (2.8)

is orbitally equivalent to the system ẋ = G(x) where

G := Fn +
n∑

j=�n2 �+1

α
(0)
j x2jD0 +

∞∑
l=1

n∑
j=0

α
(l)
j x2jhlD0.

By Lemma 2.5, applying now the change (2.11) for k = n, we obtain the differential equation

du

dθ
= u

⎡
⎢⎣ n∑
j=�n2 �+1

α
(0)
j Cs2j(θ)u2j−n +

∞∑
l=1

n∑
j=0

α
(l)
j Cs2j(θ)u2(n+1)l+2j−n

⎤
⎥⎦ .

If all α(l)
j = 0 the result is proved. Otherwise we define

l0 = min
{
l ∈ N ∪ {0} : α(l)

j �= 0 for some j
}
, j0 = min

{
j : α(l0)

j �= 0
}
,

in this case the differential equation takes the form

du

dθ
= α

(l0)
j0

Cs2j0(θ)u2(n+1)l0+2j0−n(1 + O(u, θ)). (2.12)

We write the solution of (2.12) starting at u = u0 when θ = 0 as
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u(θ, u0) =
∞∑
i=1

ai(θ)ui
0 + f(θ, u0), (2.13)

where a1(0) = 1, ai(0) = 0 for i ≥ 2 and f(0, u0) = 0 with f flat at u0 = 0. Hence the Poincaré return map 
from the section {(u, θ) = (u0, 0), u0 > 0} to itself is given by the power series P (u0) = a1(T )u0 +a2(T )u2

0 +
· · · .

By replacing (2.13) into the differential equation (2.12) we get a1(θ) ≡ 1, ai(θ) ≡ 0, for i = 2, · · · , 2(n +
1)l0 + 2j0 − n − 1 and

a2(n+1)l0+2j0−n(T ) = α
(l0)
j0

T∫
0

Cs2j0(θ)dθ �= 0.

Hence the origin of system ẋ = G(x) would be a focus, which is a contradiction. �
The next result relates the center problem with the integrability of the Z2-symmetric nilpotent vector 

fields.

Theorem 2.9. If the origin of system (2.8) is monodromic, then the origin of system (2.8) is a center if, and 
only if, system (2.8) is analytically integrable.

Proof. The sufficient condition is trivial because if system (2.8) is analytically integrable and the origin is 
monodromic then the origin is a center.

On the other hand if the origin of system (2.8) is a center by Theorem 2.8 there exists n ∈ N such that 
system (2.8) is orbitally equivalent to (ẋ, ẏ)T = (y, −x2n+1)T . But this system is Hamiltonian, and therefore 
polynomially integrable. Undoing the change of variables we have that system (2.8) is formally integrable 
and by applying [27, Theorem A] we deduce that F is analytically integrable. �
Remark. We know that all the linear type centers are analytically integrable, see [25,29]. This does not 
happen with nilpotent centers, in this case the characterization of a center is determined by the orbital 
reversibility, see [11]. Theorem 2.9 provides another large family of vector fields with this property, that is, 
the center problem is equivalent to the analytic integrability problem for these systems.

The following result provides an efficient algorithm to characterize and compute Z2-symmetric nilpotent 
centers.

Theorem 2.10. Let F be the vector field of system (2.8). The following statements are satisfied.

(i) There exists a formal function I(x, y) = y2 +
∑

j≥2 I2j(x, y) with I2j(x, y) homogeneous polynomial of 
degree 2j and certain constants αj ∈ R, j ≥ 3, such that

∇I · F =
∑
j≥3

αjx
2j . (2.14)

Moreover, it is possible to choose I2j(0, y) ≡ 0 for all j ≥ 3 and in this case I is the unique formal 
function that satisfies (2.14).

(ii) If the origin of system (2.8) is monodromic, it is a center if, and only if, αj = 0 for all j ≥ 3.

Proof. We write F = (y, 0)T +
∑

F2k+1 with F2k+1 = (P2k+1, Q2k+1)T .
k≥1
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We prove that it is possible to choose I2j with j ≥ 3 satisfying statement (i). For j = 2, the expression 
∇I · F of degree 4 is

(∇I · F)4 = ∇y2 · F3 + ∇I4 · (y, 0)T = 2yQ3 + ∂I4
∂x

y.

=
(
∂I4
∂x

+ 2Q3

)
y.

Choosing I4(x, y) = β2y
4+xJ3(x, y) with β2 ∈ R, and J3(x, y) = − 1

x

∫ x

0 2Q3(u, y)du which is a homogeneous 
polynomial of degree 3, we get (∇I · F)4 = 0.

The expression ∇I · F of degree 2j with j > 2 is

(∇I · F)2j = ∇y2 · F2j−1 + ∇I2j · (y, 0)T +
j−1∑
i=2

∇I2i · F2(j−i)+1

= 2yQ2j−1 + ∂I2j
∂x

y +
j−1∑
i=2

∇I2i · F2(j−i)+1.

There exists an homogeneous polynomial R2j−1 of degree 2j − 1 and a constant αj ∈ R such that

j−1∑
i=2

∇I2i · F2(j−i)+1 = R2j−1y + αjx
2j , (2.15)

and therefore

(∇I · F)2j =
(

2Q2j−1 + ∂I2j
∂x

+ R2j−1

)
y + αjx

2j .

So we must take I2j(x, y) = βjy
2j + xJ2j−1(x, y) where

J2j−1(x, y) = − 1
x

x∫
0

(R2j−1(u, y) + 2Q2j−1(u, y)) du,

is a homogeneous polynomial of degree 2j−1 and βj ∈ R. If we choose βj = 0 we obtain a unique polynomial 
I2j with I2j(0, y) ≡ 0.

Now we prove statement (ii). First, we see the sufficient condition. If αj = 0 for all j ≥ 3, then system 
(2.8) is formally integrable, by applying [27, Theorem A] we deduce that it is analytically integrable. As the 
origin of the system is monodromic then it is a center. Next we see the necessary condition. If the origin of 
system (2.8) is a center, by Theorem 2.9 the system is analytically integrable and by [12, Theorem 1] we can 
affirm that there exists a first integral of the form I = y2 +

∑
j>2 Ij where Ij is a homogeneous polynomial 

of degree j.
Taking into account that system (2.8) is Z2-symmetric, that is, invariant by the involution (x, y) →

(−x, −y) its first integral inherits this property. Consequently I2i+1 = 0 for all i ≥ 1.
On the other hand, the level curves I = C where C is a constant are ovals in a neighborhood of 

the origin because I is a first integral of a center. We assume that not all αj are zero, and we consider 
j0 = min {j ∈ N, j ≥ 3 : αj �= 0}. Applying condition (2.14) we have

∇I · F = αj0x
2j0 (1 + o(1)) .
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Hence ∇I ·F ≥ 0 if αj0 > 0, or ∇I ·F ≤ 0 if αj0 < 0, i.e. the orbits of the system (2.8) cross the ovals I = C

always outward or inward. Therefore the origin of system (2.8) is a focus, which is a contradiction. �
The following results characterize the centers of some families of Z2-symmetric nilpotent systems of the 

form

ẋ = y + P2n+1(x, y),
ẏ = Q2m+1(x, y),

(2.16)

where P2n+1 and Q2m+1 are homogeneous polynomials of degree 2n + 1 and 2m + 1, respectively, and 
Q2m+1(1, 0) < 0, otherwise the origin of system (2.16) is not monodromic. Without loss of generality we 
can assume that Q2m+1(1, 0) = −1, that is, we can take Q2m+1(x, 0) = −x2m+1.

Proposition 2.11. If the origin of (2.16) is a center, then it is satisfied one of the following conditions:

(a) m < 2n.
(b) 2n ≤ m and P2n+1(1, 0) = 0.

Moreover, in this last case the first component of the vector field associated to system (2.16), respect to the 
type t = (1, m + 1) is Fm = (y, −x2m+1)T ∈ Qt

m.

Proof. If P (1, 0) = a2n+1 �= 0 and 2n < m, then the Newton diagram of (2.16) has two exterior vertices 
V1 = (0, 2) associated to the vector field (y, 0)T and V3 = (2(m + 1), 0) associated to the vector field 
(0, −x2m+1)T , and the inner vertex V2 = (2n + 1, 1) associated to the vector field (a2n+1x

2n+1, 0)T where 
this last vertex has no even coordinates. Applying [7, Theorem 3, statement (1)], the origin of system (2.16)
is not monodromic, therefore it is not a center.

If P (1, 0) = a2n+1 �= 0 and 2n = m, then the Newton diagram of (2.16) has two exterior vertices 
V1 = (0, 2) associated to the vector field (y, 0)T and V3 = (2(m + 1), 0) associated to the vector field 
(0, −x2m+1)T , and a unique compact edge of type (1, m + 1) whose vector field associated is Fm = (y +
a2n+1x

m+1, −x2m+1)T .
It is a simple task to perform the splitting (2.7) for this case. We obtain Fm = Xh + μD0, where 

D0 = (x, (m + 1)y)T , and

h = − 1
2(m+1)

(
(m + 1)y2 + a2n+1(m + 1)xm+1y + x2(m+1)

)
= −1

2

((
y + a2n+1

2 xm+1)2 + Δx2(m+1)
)
,

Δ = 4−(m+1)a2
2n+1

4(m+1) ,

μ = 1
2a2n+1x

m �≡ 0.

(i) If Δ < 0 then h has two simple factors. Applying [7, Theorem 3, item (4)] we deduce that the origin 
of system (2.16) is not monodromic, which is a contradiction.

(ii) If Δ = 0 the unique invariant curve of Fr is C = y + 1
2a2n+1x

m+1, and consequently Fr is not 
polynomially integrable because ∇C · Fr = (m + 1)μC �= 0. Therefore F is not integrable and by 
Theorem 2.9 the origin of system (2.16) is not a center.

(iii) If Δ > 0 the unique invariant curve of Fm is h and consequently Fm is not polynomially integrable 
because ∇h · Fm = 2(m + 1)μh �= 0. Therefore F is not integrable and by Theorem 2.9 the origin of 
system (2.16) is not a center.
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Therefore m < 2n or m = 2n with P2n+1(1, 0) = 0, and in this case the first component of the vector field 
associated to system (2.16), respect to the type t = (1, m + 1) is Fm = (y, −x2m+1)T . �
Theorem 2.12. Consider system (2.16) with m < 2n or (m = 2n and P2n+1(1, 0) = 0), and n �= km, 
1 ≤ k ≤ m + 1. Then the origin of (2.16) is a center if, and only if, the system (2.16) is Rx-reversible, i.e. 
invariant by the symmetry (x, y, t) → (−x, y, −t).

Proof. By Proposition 2.11 if m < 2n or m = 2n and P2n+1(1, 0) = 0 we have that the first component of 
the vector field F associated to system (2.16), respect to the type t = (1, m + 1) is Fm = (y, −x2m+1)T , i.e. 
F = Fm + · · · . The origin of the system ẋ = Fm(x) is monodromic because Fm = Xh with

h = −1
2 y2 − 1

2m + 2 x2m+2,

which is a negative defined function. Applying [1, Theorem 2] the origin of system (2.16) is monodromic.
The sufficient condition is trivial because if system (2.16) is Rx-reversible, as the origin of system (2.16)

is monodromic, this implies that the origin of (2.16) is a center.
Now we are going to prove the necessary condition. If we assume that the origin of system (2.16) is a 

center by Theorem 2.10 there exists a unique formal function I = y2 +
∑

j≥2 I2j where I2j is a homogeneous 
polynomial of degree 2j with I2j(0, y) ≡ 0 such that ∇I · F = 0.

We consider F = F̃ + F where F̃ is sum of even monomials in x in the first component and odd in 
the second one, i.e. F̃ is Rx-reversible, and F is a sum of odd monomials in x in the first component and 
even in the second one. If F ≡ 0, F is Rx-reversible and the result is proved, otherwise let p be the lowest 
quasi-homogeneous degree respect to the type t = (1, m + 1) of the vector field F such that Fp �≡ 0.

Working with respect of type t = (1, m + 1) we have that

F̃ = Fm + · · ·

where dots indicate Rx-reversible quasi-homogeneous vector fields of degree greater than m. Therefore F̃ is 
Rx-reversible and applying [1, Theorem 2] the origin of system ẋ = F̃(x) is monodromic, that is, the origin of 
system ẋ = F̃(x) is a center. Hence by Theorem 2.10 there exists a unique formal function Ĩ = y2+

∑
j≥2 Ĩ2j

where Ĩ2j is a homogeneous polynomial of degree 2j with Ĩ2j(0, y) ≡ 0 such that ∇Ĩ · F̃ = 0.
As Fm is Rx-reversible, we have m < p. Considering the type t = (1, m + 1), then F and F̃ coincide up 

to degree j with m ≤ j ≤ p − 1, and F̃p �≡ Fp because Fp �≡ 0. Considering also the type t = (1, m + 1) we 
will have I =

∑
j≥2(m+1) Ij , Ĩj =

∑
j≥2(m+1) Ĩj , with Ij , Ĩj ∈ Pt

j , Ij = Ĩj for 2(m + 1) ≤ j ≤ m + 1 + p, 
being I2(m+1) = (m + 1)y2 + x2(m+1).

Consider J = I − Ĩ then the first quasi-homogeneous term of J is of order m + 2 + p and satisfies:

0 = ∇I · F = ∇(Ĩ + J) · (F̃ + F) = ∇J · F̃ + ∇I · F.

Therefore

0 = (∇I · F)2(m+1)+p = ∇Jm+2+p · F̃m + ∇I2(m+1) · Fp. (2.17)

Since Fp is a sum of odd monomials in x in the first component and even in the second, we have that 
∇I2(m+1) · Fp is sum of even monomials in x and ∇Jm+2+p · F̃m too. Therefore Jm+2+p is sum of odd 
monomials in x. Moreover Jm+2+p is sum of homogeneous monomials of degree even. Then it is sum of odd 
monomials in y. Let s ∈ N such that (2s − 1)(m + 1) ≤ m + 2 + p < (2s + 1)(m + 1). Therefore
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Jm+2+p =
s∑

l=1

αlx
Aly2l−1, where Al = m + 2 + p− (2l − 1)(m + 1).

Then the following situations can happen:

(i) Fp = (0, b2m+1−i1x
2m+1−i1yi1)T with i1 = 2i − 1 odd, that is, p = 2im with 1 ≤ i ≤ m + 1.

(ii) Fp = (a2n+1−j1x
2n+1−j1yj1)T with j1 = 2j even, that is, p = 2n + 2jm with 0 ≤ j ≤ n.

(iii) Fp = (a2n+1−j1x
2n+1−j1yj1 , b2m+1−i1x

2m+1−i1yi1)T with i1 = 2i − 1 odd and j1 = 2j even, that is, 
p = 2im = 2n +2jm with 0 ≤ i ≤ m +1, 0 ≤ j ≤ n, which implies n = (i − j)m with 1 ≤ i − j ≤ m +1. 
This case is excluded by the hypothesis n �= km, 0 ≤ k ≤ m + 1.

(i) Case p = 2im with n �= km, for 0 ≤ k ≤ m +1. In this case Fp = F2im = (0, b2(m+1−i)x
2(m+1−i)y2i−1)T , 

and m + 2 + p = (2i − 1)(m + 1) + 2(m + 1 − i) + 1. Therefore s = i and

Jm+2+p =
i∑

l=1

αlx
Aly2l−1, where

Al = 2(i− l)(m + 1) + 2(m + 1 − i) + 1, and

∇I2(m+1) · Fp = 2(m + 1)b2(m+1−i)x
2(m+1−i)y2i.

From equation (2.17) we get

−α1 = 0,

Alαl − (2l + 1)αl+1 = 0, 1 ≤ l ≤ i− 1,

Aiαi = −2(m + 1)b2(m+1−i) �= 0.

Consequently equation (2.17) provides a contradiction.
(ii) Case p = 2n + 2jm with n �= km, for 0 ≤ k ≤ m + 1. In this case Fp = F2n+2jm =

(a2(n−j)+1x
2(n−j)+1y2j , 0)T , and m + 2 + p = (2j + 1)(m + 1) + 2(n − j) + 1. Therefore s = j + 1

and

Jm+2+p =
j+1∑
l=1

αlx
Aly2l−1, where

Al = 2(j + 1 − l)(m + 1) + 2(n− j) + 1, and

∇I2(m+1) · Fp = 2(m + 1)a2(n−j)+1x
2(m+n−j)+1y2j .

Again from equation (2.17) we obtain

−α1 = 0,

Alαl − (2l + 1)αl+1 = 0, 1 ≤ l ≤ j − 1,

αjAj − (2j + 1)αj+1 = −2(m + 1)a2(n−j)+1 �= 0,

Aj+1αj+1 = 0.

Consequently equation (2.17) also provides a contradiction. �
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3. Applications

We consider the differential system

ẋ = y + a21x
2y + a12xy

2 + a03y
3 + a32x

3y2 + a23x
2y3 + a14xy

4 + a05y
5,

ẏ = −x3 + b21x
2y + b12xy

2 + b03y
3.

(3.18)

Theorem 3.13. The origin of system (3.18) is a center if, and only if, one of the following conditions holds.

(a) b21 = a32 = a12 = b03 = 0,
(b) b21 = a32 = a14 = a12 + 3b03 = a21 + b12 = 0, b03 �= 0,
(c) b21 = a14 = a05 = a03 = a23 = a12 + 3b03 = a32 + 6b03b12 = 0, b03b12 �= 0.

Proof. The origin of system (3.18) is monodromic. Just see that the first quasi-homogeneous component 
respect to the type t = (1, 2) is F1 = (y, −x3) and apply Proposition 2.4. We will use the scalar algorithm of 
Theorem 2.10 and we will impose that the constants α6, α8, · · · , must be null. When we apply the algorithm 
the value of the first constants modulo the annulation of the previous ones are:

α6 = b21,

α8 = a12 + 3b03,

α10 = 2a21b03 + 2b03b12 + a32,

α12 = 3a14 − 2b03(a21 + b12)(a21 − 2b12),

α14 = b03
[
(a21 + b12)(a21b12 − 2b212 + 3a03) − 3a23

]
.

(i) If b03 = 0 then we have a14 = a32 = a12 = b21 = 0, and we obtain the case (a). In this case the vector 
field F = (y+a03y

3 +a21x
2y+a05y

5 +a23x
2y3, −x3 + b12xy

2)T is Rx reversible and therefore the origin 
is a center.

(ii) If b03 �= 0 then a23 = (a21 + b12)(a21b12 − 2b212 + 3a03)/3 and the next constant is

α16 = b03(a21 + b12)2(a21b12 − 2b212 + 3a03).

(ii.1) If a21 + b12 = 0, then a23 = a14 = a32 = b21 = 0, with a12 = −3b03 �= 0 that is the case (b). 
The vector field in this case is F = (y− b12x

2y− 3b03xy2 + a03y
3 + a05y

5, −x3 + b12xy
2 + b03y

3)T
which is Hamiltonian and hence the origin is a center.

(ii.2) If b03(a21 + b12) �= 0 then the vanishing of α16 implies a03 = −1
3b12(a21 − 2b12), and the following 

constant is

α18 = b03a05(a21 + b12).

Since b03(a21 + b12) �= 0, the unique possibility to vanish α18 is to take a05 = 0. Imposing this 
condition the following constant value is

α20 = b303(a21 + b12)2(a21 − 2b12).

Imposing a21 = 2b12, we get a05 = a03 = a23 = a14 = b21 = 0, a12 = −3b03 �= 0, a32 =
−6b03b12 �= 0, which determines the case c). In this case the vector field associated is F =
(y − 3b03xy2 + 2b12x2y − 6b03b12x3y2, −x3 + b03y

3 + b12xy
2)T . This vector field has the inverse 
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integrating factor V = (1 +2b12x2)3/2, V (0) �= 0, consequently F is analytic integrable, and since 
the origin is monodromic, it is center. �

Now we consider the differential system

ẋ = y + a90x
9 + a81x

8y + a72x
7y2 + a63x

6y3 + a54x
5y4,

ẏ = −x5 + b41x
4y + b23x

2y3 + b14xy
4 + b05y

5.
(3.19)

Theorem 3.14. Then origin of system (3.19) is a center if, and only if, one of the following conditions holds.

(a) a90 = a72 = a54 = b41 = b23 = b05 = 0.
(b) a81 = a72 = a63 = a54 = b41 = b14 + b05 = b23 + 9a90 = 0, a90 �= 0.

Proof. The origin of system (3.19) is monodromic. This can easily be seen taking into account that the first 
quasi-homogeneous component respect to the type t = (1, 3) is F1 = (y, −x5) and applying Proposition 2.4. 
Now, as before, we will use the scalar algorithm of Theorem 2.10 imposing that the first constants α6, α8, · · · , 
must be null. The value of the first constants modulo the annulation of the previous ones is:

α10 = b41,

α14 = b23 + 9a90,

α18 = 7a72 + 15b05,

α22 = −61a81a90 − 21a90b14 + 3a54,

α26 = −567a90a63 − a72(195a81 + 11b14),

α30 = 1280a2
90a72 + (39a2

81 − 337a81b14 − 96b214)a90 − 37a72a63.

In fact, we have compute the constants α30+4i for 1 ≤ i ≤ 4. In order to find the irreducible decomposition 
of the ideal generated by these constants we have used the routine minAssGTZ [13] of the computer algebra 
system Singular [21]. As a result we have obtained the necessary conditions (a) and (b) of the theorem.

Now we will see the sufficiency of these two conditions.
In the case (a) system (3.19) is Rx-reversible and since the origin is monodromic then it is a center.
In the case (b) system (3.19) is a sum of two quasi-homogeneous vector fields of type t = (1, 3). More 

specifically ẋ = F := F2 +F8 con F2 = Xh ∈ Qt
2 with h = −y2/2 −x6/6 and F8 = a90(x9, −9x2y3)T ∈ Qt

8. 
Moreover F has the inverse integrating factor V = h(1 − 3a90x

3y). Hence by [5, Theorem 1.3] system (3.19)
is analytically integrable and as the origin is monodromic, see Proposition 2.4, then the origin is a center. �
Remark. Statement (b) of Theorem 3.14 proves that the hypothesis n �= km with 1 ≤ k ≤ m + 1 of 
Theorem 2.12 is necessary. Actually in this case n = 4, m = 2, k = 2 there exist centers which are not 
axis-reversible.

Finally, we consider the differential system

ẋ = y + a50x
5 + a41x

4y + a32x
3y2 + a23x

2y3 + a14xy
4 + a05y

5,

ẏ = −x3 + b21x
2y + b12xy

2 + b03y
3.

(3.20)

Theorem 3.15. The origin of system (3.20) is a center if, and only if, system (3.20) is Rx-reversible.

Proof. By applying Proposition 2.4, the origin of system (3.20) is monodromic. From the algorithm of 
Theorem 2.10, the value of the first constants modulo the annulation of the previous ones are:
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α6 = b21,

α8 = 5a50 + 3b03,

α10 = 5a32 + b03b12,

α12 = 15a14 + b03(45a41 + 8b212),

α14 = b03
[
345a23 − 288b203 + 200b312 + 1005b12a41

]
.

i) If b03 = 0 then we have a14 = a32 = a50 = b21 = 0 and we obtain the vector field F = (y + a41x
4y +

a23x
2y3 + a05y

5, −x3 + b12xy
2)T , that it is Rx reversible and therefore the origin is a center.

ii) If b03 �= 0 then a23 = 96b203/115 − 40b312/69 − 67b12a41/23 and the next constant is

α16 = b03(77625a05 + 39312b203b12 + 5175a2
41 − 48000b212a41 − 11200b412).

Then the vanishing of α16 implies

a05 = −1456
2875b

2
03b12 −

1
15a

2
41 + 128

207b
2
12a41 + 448

3105b
4
12,

and the next constants are:

α18 = b03
[
154350b12a2

41 + 75(6140b312 + 48033b203)a41 + 4b212(24500b312 + 72981b203)
]
,

α20 = b03
[
−137473875a3

41 + 14694097950b212a2
41 + 45b12(383059300b312

+1129106061b203)a41 + 3184216000b612 − 951034932b203b312 + 7784075376b403
]
,

α22 = b03
[
−3203784643500b12a3

41 + 1350(6574383245b312 − 44293983786b203)a2
41

+45b212(261072714500b312 + 28971358803b203)a41 + 4b12(547617815500b612
−1232261979255b203b312 + 2341088776656b403)

]
.

In this case, there are no values such that α18 = α20 = α22 = 0 except that all the remaining parameters 
be zero. �
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